• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    The effects of Er3+ion concentration on 2.0-μm emission performance in Ho3+/Tm3+co-doped Na5Y9F32 single crystal under 800-nm excitation*

    2021-01-21 02:08:34BenliDing丁本利XiongZhou周雄JianliZhang章踐立HaipingXia夏海平HongweiSong宋宏偉andBaojiuChen陳寶玖
    Chinese Physics B 2021年1期

    Benli Ding(丁本利), Xiong Zhou(周雄), Jianli Zhang(章踐立),Haiping Xia(夏海平),?, Hongwei Song(宋宏偉), and Baojiu Chen(陳寶玖)

    1Key Laboratory of Photo-electronic Materials,Ningbo University,Ningbo 315211,China

    2State Key Laboratory on Integrated Optoelectronics,College of Electronic Science and Engineering and College of Physics,Jilin University,Changchun 130012,China

    3Department of Physics,Dalian Maritime University,Dalian 116026,China

    Keywords: 2.0-μm emission,Er3+/Ho3+/Tm3+,energy transfer,Na5Y9F32 single crystal

    1. Introduction

    In recent decades, ~2.0-μm infrared laser single crystals based on Tm3+and Ho3+as the central luminous ions have been received extensive attention owing to their both prominent physical–chemical properties and high emission efficiency beneficial from periodic lattice field structure of threedimensional symmetry.[1–4]Previously studied single crystals were mainly concentrated on oxide ones.[5]The oxide single crystals have drawbacks of the low transmittance in the range of infrared and low luminous efficiency due to high matrix phonon energy.[6]In contrast,the fluorides have attracted substantial attention because of its lower phonon energy and higher transparency. The Na5Y9F32is a newly developed fluoride single crystal.[7]It possesses excellent thermal stability,higher optical transparency in the range of infrared and optical performance, and is easy for trivalent rare-earth ions to replace the Y3+ions. These excellent properties make it very suitable as potential laser matrix for 2.0-μm infrared laser devices. Compared with the cubic NaYF4crystal, Na5Y9F32crystal may possess better thermal stability. Although both Na5Y9F32and cubic NaYF4crystals belong to fluorite cubic system,in which Na3+and Y3+ions are randomly distributed in the cationic positions in the center of the cube, there are still obvious differences in crystal structure resulting into their different properties. For the Na5Y9F32crystal,the dodecahedrons and octahedrons are formed by coordinated by 8 and 6 numbers of F-ions. Both Na+and Y3+are located in the dodecahedral sites, while the octahedrons are in vacant. The octahedral vacancies may provide a possible buffer space for the ion vibration resulting into the thermal stability.[8]While for cubic NaYF4,the cation sites are mainly occupied by Na+and Y3+,adjacent to F-,and each Na+or Y3+is coordinated by 8 number of F-ions to form a dodecahedron.[9]

    As we all know, the energy level transition of Ho3+:5I7→5I8or Tm3+:3F4→3H6can obtain ~2.0-μm emission.For Ho3+ion-doped single crystal, the operation of tunable laser can extend to ~2.1 μm, while for Tm3+-doped single crystal,the tunable range can only be extended from 1.85 μm to 2.03 μm. Moreover,Ho3+ion generally has a higher emission cross section and a longer lifetime of higher laser energy levels compared to Tm3+ion,and these features are conducive to low-threshold and efficient laser operation.[10,11]However,there is still a tough task due to the lack of suitable absorption bands for Ho3+ion that cannot directly absorb the most common commercial laser diodes at the pumping beam of 800 nm or 980 nm.[12]Therefore,some corresponding sensitizers such as Er3+,Tm3+,and Yb3+ions are taken into consideration to absorb pumping energy effectively due to they have strong absorption band near 800-nm wavelength (Er3+or Tm3+ion)and near 980-nm wavelength(Er3+or Yb3+ion).[13]Previous researches have demonstrated that single crystal co-doped or tri-doped with sensitizer ions and Ho3+can lead to an increase in emission intensity of 2.0 μm,and the energy transfer mechanisms between Ho3+ion and sensitizer ions have also been studied in Ho3+/Er3+, Ho3+/Yb3+, Ho3+/Tm3+co-doped,and Ho3+/Er3+/Yb3+tri-doped single crystals.[14–17]Nevertheless,there is no investigation about the 2.0-μm emission of fluoride single crystal tri-doped with Er3+/Tm3+/Ho3+.

    In this work, we report the further enhanced 2.0-μm emission by addition of Er3+in the Tm3+/Ho3+co-doped Na5Y9F32single crystals. The 2.0-μm emission characteristics and energy transfer mechanism were analyzed. The absorption cross sections and emission cross sections were determined to evaluate the spectral performance.ions concentrations in Na5Y9F32single crystals were recorded by ICP (Inductive Coupled Plasma Emission Spectrometer).Table 1 illustrated the doping concentrations of Tm3+,Ho3+,and Er3+ions in the raw materials and the measured concentrations of Tm3+, Ho3+, and Er3+ions in the synthesized crystal. A Bruker D8 Advance(Germany)was used to record the x-ray diffraction(XRD).A Cary 5000 UV/VIS/NIR spectrophotometer(Agilent Co.,America)was used to measure the absorption spectra. The emission spectra and decay curves of the prepared single crystals were obtained by an FLSP 920-type spectrometer(Edinburgh Co.,England). All of the above measurements were performed at room temperature.

    2. Experimental

    An improved Bridgman method was used to grow the Na5Y9F32single crystals under the condition of using KF as a flux.The commercial KF,YF3,NaF,HoF3,ErF3,and TmF3powders with 99.99% high purity were prepared as raw materials to grow Na5Y9F32single crystals according to the following molar composition: 30 NaF-18 KF-(50.2-χ)YF3-χ(χ =1, 2, 3) ErF3-0.8 HoF3-1 TmF3. The 0.8-mol% Ho3+singly doped, 0.8-mol% Ho3+/1-mol% Tm3+co-doped, 0.8-mol%Ho3+/0.5 mol%Er3+co-doped, χ-mol%(χ =1,2, 3)Er3+/0.8-mol%Ho3+/1-mol%Tm3+tri-doped Na5Y9F32single crystals were denoted as NYF-H,NYF-HT,NYF-HE,and NYF-HTEχ, respectively. The specific growth processes of Na5Y9F32single crystal were described in Ref.[7].

    The obtained single crystals were cut and then polished to the thickness of 2 mm for the spectral and optical measurements as shown in Fig.2(e). The real Tm3+,Ho3+,and Er3+

    3. Results and discussion

    3.1. EDS and XRD analyses

    Figures 1(a)and 1(b)show the scanning electron microscope(SEM)image and energy dispersive x-ray spectroscopy(EDS) analysis of the NYF-HTE0.5 crystal. It can be seen from the SEM image of Fig.1(a)that the polished single crystal shows a smooth surface at a magnification of 10000. The EDS analysis of Fig. 1(b) shows that the composition of the single crystal is very close to the nominal Na5Y9F32composition and the Na5Y9F32single crystal is mainly composed of F, Na, Y, Ho, Er, Tm and a small amounts of K. The detection of K ion signal in the EDS analysis is believed due to a small amount of K residue as a flux in crystal growth. Figures 1(c)–1(h)display the color mappings of all the elements in the NYF-HTE0.5 crystal.

    Figures 2(b)–2(d) show the XRD patterns of NYF-H,NYF-HE, and NYF-HTE0.5 crystals. According to the PDF cards(27-1428),as shown in Fig.2(a),the diffraction peak position of the obtained single crystal sample doped with Er3+,Ho3+,Tm3+ions completely matches the diffraction peak position of the standard Na5Y9F32. In addition,the cell parameters can be calculated by[18]

    The calculated cell parameters of the NYF-HTE0.5 single crystals are a=b=c=0.5545 nm from the measured XRD pattern.

    Table 1. Molar fractions of Er3+,Ho3+,and Tm3+ in raw material and measured concentrations of Er3+,Ho3+,and Tm3+ ions in Na5Y9F32 single crystals.

    Fig. 1. (a) The SEM image of the NYF-HTE0.5 crystal; (b) the EDS analysis of the the NYF-HTE0.5 crystal,and(c)–(h)elemental mappings for the NYF-HTE0.5 crystal.

    Fig.2.XRD patterns of(a)the standard data for Na5Y9F32 crystal;(b)NYFH crystal; (c) NYF-HE crystal; (d) NYF-HTE0.5 crystal; (e) the photos of NYF-HTE0.5 crystal polished slices.

    3.2. Absorption spectra and absorption cross section spectra

    Figure 3 illustrates the absorption spectra of the NYFH, NYF-HE, and NYF-HTE0.5 crystals in the wavelength of 400 nm–2200 nm. In order to eliminate the influence of sample thickness,the absorbance is converted into absorption coefficient α according to the following formula:

    where A and L are the absorbance and the thickness of the single crystal,respectively. The absorption bands of Ho3+,Er3+,and Tm3+are also labeled in Fig.3, which is consistent with transitions from the ground state to higher energy levels. For Ho3+singly doped NYF-H crystal,the absorption peaks corresponding to the Ho3+ion transitions from the5I8ground state to the higher levels5G5,5F1/5G6,5F3,5S2/5F4,5F5,5I6,5I7located in the characteristic wavelength of 413,446,480,535,642,1153,1929 nm,are observed. While for the Ho3+,Er3+co-doped NYF-HE one, it can be observed the Er3+characteristic absorption consisting of seven main bands centered at 485, 516, 538, 639, 800, 973, 1515 nm, which is attributed to the Er3+transitions from4F13/2to4F2/7,4H11/2,4S3/2,4F9/2,4I9/2,4I11/2,4I13/2, respectively besides the absorption bands of Ho3+ion. In addition to the absorption peaks of Er3+and Ho3+, there appear new four absorption bands at 681, 798, 1197, and 1637 nm which is attributed to the transitions from3H6to3S2,3,3H4,3H5, and3F4of Tm3+ion in the Ho3+,Tm3+,and Er3+triply doped NYF-HTE0.5 crystal.It can be confirmed from Figs.1 and 2 that the Ho3+, Tm3+,and Er3+rare-earths ions are effectively introduced into the crystal lattices of Na5Y9F32crystals. In addition, there appear strong absorption bands at 800 nm(Er3+:4F15/2→4I9/2and Tm3+:3H6→3H4)and 980 nm(Er3+:4F15/2→4I11/2)which are very favorable for using commercial LEDs at 800-nm and 980-nm wavelengths as pumping sources.[19]

    Fig.3. Optical absorption spectra of NYF-H,NYF-HE,NYF-HTE0.5 crystals.

    The absorption and emission cross sections at 2.0 μm are usually measured to clarify the energy transfer mechanism between the Er3+, Tm3+, and Ho3+ions. According to the absorption spectra of Na5Y9F32single crystal illustrated in Fig. 3, the absorption cross section at 2.0 μm can be calculated by[20]

    where I0and I are intensity of the incident optical and optical intensity throughout the crystals, respectively. L, N, and α are the thickness of the crystal, the concentration of rare earth ion, and the absorption coefficient, respectively. Figure 4 illustrates the calculated absorption cross sections of the Ho3+:5I7→5I8transition. As shown in the figure,the maximum absorption cross sections of NYF-HTE1 crystal reaches 2.86×10-21cm2.

    Fig.4. Absorption cross-section spectra of the Ho3+ : 5I7 →5I8 transition in NYF-HTE1 crystal.

    3.3. Emission spectra and emission cross section spectra

    Figure 5(a) illustrates the fluorescence spectra of χEr/0.8Ho/1Tm(χ =0,0.5,1,and 2)doped Na5Y9F32crystals in the range of 1400 nm–2200 nm under excitation at 800 nm,and figures 5(b)and 5(c)show the intensity at 2.0 μm,1.47 μm, 1.53 μm, and 1.64 μm as change of the Er3+concentrations. Figures 6(a) and 6(b) display the fluorescence spectra of χEr/0.8Ho/1Tm (χ = 0, 0.5, 1, and 2) tri-doped Na5Y9F32crystals in the 2500 nm–2900 nm band and the intensity at 2.7 μm and 2.8 μm as change of Er3+concentration.In addition, the relative fluorescence intensity of the ordinate in Figs. 5(a) and 6(a) is the fluorescence intensity obtained by measurement. As shown in Fig. 5(a), there are main four emission peaks centered at 2 μm,1.64 μm,1.53 μm,1.47 μm,while in Fig. 6(b), two peaks at 2.7 μm and 2.8 μm. The intensity of emission bands at 1.64 μm, 1.53 μm is extremely weak in all four samples as shown in insert of Fig.5(a). The emissions at 2.0 μm and 2.8 μm come from the transitions of Ho3+:5I7→5I8and Ho3+:5I6→5I7, respectively. The emissions at 1.53 μm and 2.7 μm correspond to the transitions of Er3+:4I13/2→4I15/2and Er3+:4I11/2→4I13/2, respectively. The other emissions at 1.47 μm and 1.64 μm arise from Tm3+:3H4→3F4and Tm3+:3F4→3H6transitions,respectively. As shown in Figs.5(b),5(c),and 6(b),by contrast of NYF-HT and NYF-HTEχ (χ =0.5,1,and 2)crystals,it is apparent that the 1.53-μm,1.64-μm,2.0-μm,2.7-μm,and 2.8-μm emission intensities of Na5Y9F32crystals increase gradually as increase of Er3+concentration from 0 mol%to 1 mol%,and it reaches maximum when the Er3+concentration is about~1 mol%,it decreases abruptly with Er3+concentration ranging from 1 mol%to 2 mol%. However,the fluorescence intensity of 1.47 μm gradually decreases as increase of the Er3+ion concentration. In addition, the peak intensity ratio values of 2.0 μm to 1.64 μm and 2.0 μm 1.53 μm in NYF-HT and NYF-HTEχ crystals are also shown in Table 2. The 2.0-μm fluorescence of NYF-HTE1 crystals possesses the maximum intensity in the present study, and the peak intensity ratios of 2.0 μm to 1.64 μm and 2.0 μm to 1.53 μm return to 50.22 and 59.09. It strongly indicates that the energy in Tm3+:3F4(1.64 μm)and Er3+:4I13/2(1.53 μm)levels mostly transfers sufficiently to the Ho3+:5I7level by emitting 2.0-μm emission. Besides, the values of the I2.0/I1.53, I2.0/I1.64become larger as the concentration of Er3+ion increases until the Er3+concentration reaches 1 mol%. Therefore,the Er3+ion is considered as an efficient sensitizer for improving 2.0-μm emission in Ho3+,Tm3+co-doped Na5Y9F32crystals,and the optimum doping combination concentrations of Er3+,Ho3+,and Tm3+are about 1 mol%,0.8 mol%,and 1 mol%.

    Fig.5. (a)Emission spectra of NYF-HT,NYF-HTEχ (χ=0.5,1,2)crystals pumped at 800-nm LD, (b) the relationships between the 2.0-μm intensity and the concentration of Er3+, (c) the relationships between the 1.47-μm,1.53-μm,and 1.53-μm intensities and the concentration of Er3+.

    Fig. 6. Emission spectra of NYF-HT, NYF-HTEχ (χ =0.5, 1, 2) crystals pumped at 800-nm LD, (b) the relationships between the 2.7-μm, 2.8-μm intensities and the concentration of Er3+.

    Table 2. The intensity ratios of I2.0/I1.53,I2.0/I1.64 in NYF-HT,NYF-HTEχ(χ =0.5,1,2)crystals.

    The emission cross section can be obtained from the calculated absorption cross section by using the McCumber formula as follows:[21]

    where Zland Zurepresent the partition functions of the lower level (Ho3+:5I8) and the upper level (Ho3+:5I7), respectively; T, K are room temperature and the Boltzmann constant, respectively; h, λ, c, and Ezldenote Planck constant,transition (Ho3+:5I7→5I8) wavelength, light velocity, and zero-line energy,respectively.

    Figure 7 illustrates the calculated emission cross sections of the Ho3+:5I7→5I8transition. As shown in the figure,the maximum emission cross sections of NYF-HTE1 crystal reaches 5.26×10-21cm2. The obtained emission cross section of Na5Y9F32single crystal is larger than those in tellurite glass (4.52×10-21cm2),[22]fluoride glass (2.47×10-21cm2)[23]and germanate glass(4×10-21cm2).[24]The laser effect would benefit from the Na5Y9F32single crystal of high emission cross-section as host material, indicating that the Er3+/Ho3+/Tm3+tri-doped Na5Y9F32single crystal is a potentially useful material for 2.0-μm applications.

    Fig.7. Emission cross-section spectra of the Ho3+: 5I7 →5I8 transition in NYF-HTE1 crystal.

    3.4. Gain cross section spectra

    On the basis of the obtained absorption cross section and emission cross section, the optical gain coefficient g(λ) as a function of population inversion for the upper laser state can be calculated and defined as[25]

    where N2and N1are the population inversion volume-densities of the upper level(Ho3+:5I7)and lower level(Ho3+:5I7),respectively. The inversion volume-density of total population is N=N2+N1,and therefore the gain cross section spectrum G(λ)can be estimated by

    where P is the proportion of population inversion, and 0 ≤P ≤1. Figure 8 shows the gain cross sections of Ho3+:5I7→5I8transition in NYF-HTE1 crystal based on a function of differentP values and wavelengths. The value of P increases gradually from 0 to 1, with an increment of 0.1. As shown in Fig.8,a positive gain is obtained when P >0.3. It is confirmed that the gain band extends to longer wavelength and the gain coefficient increases with the increased value of P. In addition,it can be noticed that the pumping threshold of 2.0-μm laser is lower,which is advantageous for the 2.0-μm laser.

    Fig.8.Gain cross-section spectra of the Ho3+:5I7 →5I8 transition in NYFHTE1 crystal.

    3.5. Energy transfer mechanics and fluorescence decay curves

    Fig.9. The energy level diagram and possible energy transfer mechanism in Ho3+/Tm3+ co-doped and Er3+/Ho3+/Tm3+ tri-doped Na5Y9F32 crystals.

    Then, we calculate the fluorescence lifetime by the following formula:

    Figure 10 shows the decay curves of Ho3+:5I7→5I8transition monitored at 2.0-μm region of NYF-HT and NYFHTE1 crystals excited by 800 nm, the fitted lifetimes is 18.46 ms and 16.28 ms, repetitively. It can be observed that when Er3+ions are added to the Tm3+/Ho3+system,the lifetime of 2.0 μm is reduced from 18.46 ms to 16.28 ms.It can be seen from Fig.9,the ET1,ET2,ET3,ET5,and ET6 processes are probable to occur between Er3+and Tm3+,Er3+and Ho3+due to the near energy levels. It should be noted that the ET6 process is much easier to take place due to no requiring phonon assistance between Tm3+:3H4and Er3+:4I9/2. Under excitation of 800-nm light, the Tm3+ion absorbs the photo of 800 nm by transition from3H6to3H4, and some of energy transfer to Er3+ion by ET6 process. As is known,the ET4 is easier to occur than ET2 process because of the nearer energy difference. The triply doping of Er3+results into the attenuation of the ET4 process and reduction of the lifetime of 2.0 μm.The fluorescence lifetime of NYF-HTE1 crystal at 2.0 μm is much higher than that of germanium tellurate glass reported previously (6.83 ms).[13]The longer radiation lifetime usually reduces the laser oscillation threshold,[26]which indicates that Er3+/Ho3+/Tm3+tri-doped Na5Y9F32single crystal is a promising 2.0-μm laser candidate material.

    Fig. 10. Decay curves of Ho3+ : 5I7 levels monitored at 2.0-μm region of NYF-HT and NYF-HTE1 samples.

    Based on the obtained fluorescence lifetimes,we can calculate the energy transfer efficiency between Er3+and Ho3+in Er3+/Ho3+/Tm3+tri-doped Na5Y9F32single crystal by the following equation[29]

    where τAand τDAare the lifetime of the Ho3+:5I7level in NYF-HT crystal and the Ho3+:5I7level in NYF-HTE1 crystal, respectively. The efficiency of ET2 process from Er3+:4I13/2to Ho3+:5I7is calculated to be 11.81%. It suggests that the process of Er3+to Ho3+makes a part of the contribution of transfer energy to Ho3+ion together with the energy transfer process of Tm3+to Ho3+,resulting into further enhancement of 2.0 μm.

    4. Conclusion

    Our experiments demonstrated that the 2.0-μm emission intensity of Tm3+/Ho3+co-doped Na5Y9F32single crystal can be further enhanced by introduction of Er3+into the system under 800-nm excitation. The optimized doping concentration of Er3+is ~1 mol% for Tm3+(~1 mol%),Ho3+(~0.8 mol%)-doped Na5Y9F32crystal to reach a maximum fluorescence emission of 2.0 μm. The calculated maximum absorption and emission cross-sections at 2.0 μm for 1Er3+/0.8Ho3+/1Tm3+tri-doped Na5Y9F32crystal are 2.86×10-21cm2and 5.26×10-21cm2, respectively. Meanwhile,the fluorescence lifetimes of 1Er3+/0.8Ho3+/1Tm3+tri-doped Na5Y9F32crystal is 18.46 ms. The efficiency of ET2 progress is calculated to be 11.81%according to the measured fluorescence lifetimes. Consequently,the excellent luminous properties suggest that Er3+/Ho3+/Tm3+tri-doped Na5Y9F32crystals are attractive and significant materials for 2.0-μm lasers.

    Acknowledgment

    Benli Ding prepared the samples and wrote the article.Xiong Zhou and Jianli Zhang carried out relevant experimental measurements. Xia Haiping embellished and checked the article. Hongwei Song and Baojiu Chen assisted the data analysis. All authors contributed to the general discussion.

    国产精品久久久人人做人人爽| 中出人妻视频一区二区| 51午夜福利影视在线观看| 黄片大片在线免费观看| 午夜久久久久精精品| 亚洲无线观看免费| ponron亚洲| 国产伦精品一区二区三区视频9 | 国产精品av视频在线免费观看| 成在线人永久免费视频| 国产成人av教育| 99热这里只有是精品50| 亚洲国产高清在线一区二区三| 午夜福利18| 视频区欧美日本亚洲| 香蕉国产在线看| 在线播放国产精品三级| 99视频精品全部免费 在线 | 天堂av国产一区二区熟女人妻| 亚洲午夜理论影院| 国语自产精品视频在线第100页| 国产v大片淫在线免费观看| 免费人成视频x8x8入口观看| 国产精品久久视频播放| 青草久久国产| 久久久久九九精品影院| 最近最新中文字幕大全免费视频| 日韩三级视频一区二区三区| 色综合亚洲欧美另类图片| 岛国视频午夜一区免费看| 一a级毛片在线观看| 香蕉av资源在线| 最近最新中文字幕大全免费视频| 亚洲男人的天堂狠狠| 熟妇人妻久久中文字幕3abv| av国产免费在线观看| 90打野战视频偷拍视频| 桃色一区二区三区在线观看| 亚洲专区字幕在线| 亚洲成人中文字幕在线播放| 母亲3免费完整高清在线观看| 国产成人欧美在线观看| 日韩精品中文字幕看吧| 国产主播在线观看一区二区| 中国美女看黄片| 欧美极品一区二区三区四区| 成人高潮视频无遮挡免费网站| 国产av在哪里看| 淫秽高清视频在线观看| 亚洲一区高清亚洲精品| 欧美激情久久久久久爽电影| 91av网一区二区| 嫩草影院精品99| 熟女人妻精品中文字幕| 观看免费一级毛片| 国产午夜精品论理片| av天堂在线播放| 亚洲精品美女久久av网站| 色精品久久人妻99蜜桃| 三级毛片av免费| 国产高清三级在线| 又黄又粗又硬又大视频| 国内精品美女久久久久久| 日韩欧美一区二区三区在线观看| 在线观看午夜福利视频| xxx96com| 国内精品美女久久久久久| 丰满人妻一区二区三区视频av | 精品国产美女av久久久久小说| 国产伦人伦偷精品视频| 亚洲欧美精品综合久久99| 在线国产一区二区在线| 欧美又色又爽又黄视频| 叶爱在线成人免费视频播放| 婷婷丁香在线五月| 手机成人av网站| 亚洲国产精品sss在线观看| 色综合站精品国产| e午夜精品久久久久久久| 久久久久久久久中文| 亚洲成人久久性| 97超视频在线观看视频| 亚洲成人久久爱视频| 真人做人爱边吃奶动态| 久久久国产欧美日韩av| 亚洲国产精品成人综合色| 成熟少妇高潮喷水视频| 日韩精品中文字幕看吧| 99热只有精品国产| 热99re8久久精品国产| 中文字幕高清在线视频| 村上凉子中文字幕在线| 国产成人精品无人区| 欧美一级毛片孕妇| 国产毛片a区久久久久| 最新中文字幕久久久久 | 久久精品国产综合久久久| 国产精品久久久久久亚洲av鲁大| 欧美日韩乱码在线| 日韩欧美国产在线观看| 久久久久久九九精品二区国产| 国产三级黄色录像| 欧美中文日本在线观看视频| 国产黄片美女视频| 欧美黑人欧美精品刺激| 午夜激情福利司机影院| 搞女人的毛片| 精华霜和精华液先用哪个| 97超视频在线观看视频| 久久久久国内视频| 国产欧美日韩精品一区二区| 亚洲欧美日韩无卡精品| 中国美女看黄片| 两个人看的免费小视频| 国产精品久久久久久亚洲av鲁大| 夜夜爽天天搞| 国产又黄又爽又无遮挡在线| 久久久久久人人人人人| 我要搜黄色片| 亚洲国产中文字幕在线视频| 黄色 视频免费看| 国产三级在线视频| 午夜福利在线观看吧| 国产 一区 欧美 日韩| 午夜福利在线观看免费完整高清在 | 波多野结衣高清作品| 亚洲色图 男人天堂 中文字幕| 免费观看精品视频网站| 亚洲国产精品sss在线观看| 免费人成视频x8x8入口观看| 亚洲在线自拍视频| 亚洲精品一区av在线观看| 国产黄色小视频在线观看| 亚洲avbb在线观看| 人妻夜夜爽99麻豆av| 久久久久久国产a免费观看| 国产成人一区二区三区免费视频网站| 欧美激情久久久久久爽电影| 九色成人免费人妻av| 热99re8久久精品国产| 国产伦在线观看视频一区| 午夜a级毛片| 男人的好看免费观看在线视频| 欧美一级a爱片免费观看看| 老熟妇仑乱视频hdxx| 亚洲狠狠婷婷综合久久图片| 成人18禁在线播放| 婷婷精品国产亚洲av在线| 狠狠狠狠99中文字幕| 日本在线视频免费播放| 嫩草影视91久久| 观看美女的网站| 亚洲第一电影网av| 午夜免费成人在线视频| a在线观看视频网站| 国产精品野战在线观看| 搡老岳熟女国产| 国模一区二区三区四区视频 | 黄色视频,在线免费观看| 亚洲第一欧美日韩一区二区三区| 国产亚洲精品久久久久久毛片| 亚洲av成人av| 色视频www国产| 国产精品国产高清国产av| 色吧在线观看| e午夜精品久久久久久久| 成人国产综合亚洲| 久久精品综合一区二区三区| 精品久久久久久成人av| 亚洲中文字幕一区二区三区有码在线看 | 亚洲成人久久爱视频| 又黄又粗又硬又大视频| 国产av不卡久久| 成年免费大片在线观看| 精品一区二区三区视频在线观看免费| 黄频高清免费视频| 91老司机精品| 亚洲乱码一区二区免费版| 色播亚洲综合网| 黑人欧美特级aaaaaa片| 亚洲乱码一区二区免费版| 久久精品91无色码中文字幕| 韩国av一区二区三区四区| 久久精品夜夜夜夜夜久久蜜豆| a级毛片在线看网站| 日日夜夜操网爽| 天天躁狠狠躁夜夜躁狠狠躁| 桃红色精品国产亚洲av| 国产免费男女视频| www.999成人在线观看| 亚洲欧美激情综合另类| 黄色日韩在线| 嫩草影院精品99| 亚洲精品乱码久久久v下载方式 | or卡值多少钱| 成人亚洲精品av一区二区| 国产午夜福利久久久久久| 叶爱在线成人免费视频播放| xxx96com| 亚洲片人在线观看| 桃色一区二区三区在线观看| 日本成人三级电影网站| 叶爱在线成人免费视频播放| 免费观看精品视频网站| 久久婷婷人人爽人人干人人爱| 麻豆国产av国片精品| 中文资源天堂在线| 国产av不卡久久| 一级作爱视频免费观看| 看片在线看免费视频| 啦啦啦免费观看视频1| 男人的好看免费观看在线视频| 91在线观看av| 丰满的人妻完整版| 国产精品亚洲av一区麻豆| 熟女电影av网| 日日干狠狠操夜夜爽| 天堂网av新在线| 国产精品久久久av美女十八| 在线观看日韩欧美| 欧美日韩综合久久久久久 | 午夜精品一区二区三区免费看| 2021天堂中文幕一二区在线观| 99riav亚洲国产免费| 国产亚洲精品av在线| 国产精品久久久久久精品电影| bbb黄色大片| 亚洲色图av天堂| 国产一区二区在线av高清观看| 色av中文字幕| 日本五十路高清| a在线观看视频网站| 亚洲一区二区三区不卡视频| 国产一区二区在线av高清观看| 亚洲男人的天堂狠狠| 亚洲专区中文字幕在线| 久久九九热精品免费| 又黄又粗又硬又大视频| www.999成人在线观看| 成熟少妇高潮喷水视频| 免费看a级黄色片| 国产亚洲精品久久久com| 国产亚洲精品一区二区www| 欧美黄色片欧美黄色片| 日本在线视频免费播放| 国产真人三级小视频在线观看| 1024手机看黄色片| 变态另类成人亚洲欧美熟女| 欧美成人性av电影在线观看| 韩国av一区二区三区四区| 日韩成人在线观看一区二区三区| 一本一本综合久久| 日本成人三级电影网站| 日韩欧美免费精品| 天堂网av新在线| 男人舔女人下体高潮全视频| 亚洲欧美激情综合另类| 老汉色∧v一级毛片| 国产成人精品久久二区二区91| 我要搜黄色片| 欧美极品一区二区三区四区| 午夜免费成人在线视频| 操出白浆在线播放| 九九在线视频观看精品| 99久久无色码亚洲精品果冻| 国产免费男女视频| 麻豆国产97在线/欧美| 久久伊人香网站| 国产精品影院久久| 真人一进一出gif抽搐免费| 欧美日韩精品网址| 欧美一区二区国产精品久久精品| 亚洲欧美日韩高清在线视频| 久久这里只有精品中国| 久久久久国产一级毛片高清牌| 成人av一区二区三区在线看| 国产成人影院久久av| 免费看光身美女| 床上黄色一级片| 亚洲欧洲精品一区二区精品久久久| 亚洲精品一区av在线观看| 精品欧美国产一区二区三| 国产精品98久久久久久宅男小说| 99国产精品一区二区蜜桃av| 国产精品99久久久久久久久| 欧美日韩中文字幕国产精品一区二区三区| 高潮久久久久久久久久久不卡| 美女午夜性视频免费| 国产成人一区二区三区免费视频网站| 久久久久久人人人人人| 亚洲欧美日韩高清专用| 国产极品精品免费视频能看的| 久久久久久久精品吃奶| 国产免费男女视频| 免费大片18禁| 窝窝影院91人妻| 国产精品久久久久久精品电影| 久久久久国产一级毛片高清牌| 男人舔奶头视频| 久久午夜亚洲精品久久| 亚洲精品在线美女| 久久久久九九精品影院| 99视频精品全部免费 在线 | 日韩人妻高清精品专区| 在线观看免费午夜福利视频| 一进一出抽搐gif免费好疼| 中国美女看黄片| 岛国在线观看网站| 男女之事视频高清在线观看| 老司机深夜福利视频在线观看| 国产精品九九99| 日本一本二区三区精品| 久久中文看片网| 亚洲精品乱码久久久v下载方式 | 欧美xxxx黑人xx丫x性爽| 特级一级黄色大片| 久久中文字幕一级| 国产成+人综合+亚洲专区| 九九热线精品视视频播放| 啦啦啦韩国在线观看视频| 美女黄网站色视频| 黑人欧美特级aaaaaa片| 国产成年人精品一区二区| 国产精品 欧美亚洲| 少妇人妻一区二区三区视频| 亚洲精品456在线播放app | 丰满人妻熟妇乱又伦精品不卡| 亚洲成人中文字幕在线播放| 99久久综合精品五月天人人| 成人三级黄色视频| 精品午夜福利视频在线观看一区| 亚洲国产精品sss在线观看| 亚洲欧美激情综合另类| 2021天堂中文幕一二区在线观| 狂野欧美白嫩少妇大欣赏| 精品一区二区三区视频在线观看免费| 国产成人影院久久av| 亚洲欧美精品综合一区二区三区| 性色av乱码一区二区三区2| 在线国产一区二区在线| 亚洲狠狠婷婷综合久久图片| 中文资源天堂在线| 欧美日韩乱码在线| 亚洲最大成人中文| 久久中文字幕人妻熟女| 亚洲av成人一区二区三| 听说在线观看完整版免费高清| 99久久精品一区二区三区| 日本精品一区二区三区蜜桃| 亚洲在线自拍视频| 99热只有精品国产| 亚洲欧美日韩高清在线视频| 亚洲国产欧洲综合997久久,| 日日夜夜操网爽| 亚洲国产欧洲综合997久久,| 两个人看的免费小视频| 波多野结衣高清作品| 淫妇啪啪啪对白视频| 亚洲av美国av| 中文字幕久久专区| 国产一区二区激情短视频| 99精品在免费线老司机午夜| 国产三级黄色录像| 亚洲av成人一区二区三| 在线观看美女被高潮喷水网站 | 最新在线观看一区二区三区| 久久久久亚洲av毛片大全| 精品无人区乱码1区二区| 日韩精品青青久久久久久| 国产成人av教育| 久久精品人妻少妇| 禁无遮挡网站| 一个人看视频在线观看www免费 | 欧美另类亚洲清纯唯美| 一级黄色大片毛片| 成人特级av手机在线观看| 校园春色视频在线观看| 12—13女人毛片做爰片一| 一本久久中文字幕| 老汉色∧v一级毛片| 麻豆国产av国片精品| 国产高潮美女av| 麻豆成人午夜福利视频| 18禁观看日本| 99热6这里只有精品| 人人妻,人人澡人人爽秒播| 欧美日韩福利视频一区二区| 久久久久国产精品人妻aⅴ院| 亚洲乱码一区二区免费版| 1000部很黄的大片| 一个人免费在线观看的高清视频| 国产美女午夜福利| 天堂网av新在线| 99国产极品粉嫩在线观看| 嫩草影院入口| 中文字幕高清在线视频| 99久久精品热视频| 最近最新中文字幕大全电影3| 88av欧美| 波多野结衣巨乳人妻| 午夜福利免费观看在线| 亚洲专区字幕在线| 夜夜爽天天搞| 成年女人看的毛片在线观看| 在线观看免费午夜福利视频| av中文乱码字幕在线| 又爽又黄无遮挡网站| www日本黄色视频网| www.精华液| 丰满的人妻完整版| 看免费av毛片| 亚洲性夜色夜夜综合| 欧美绝顶高潮抽搐喷水| 久久天躁狠狠躁夜夜2o2o| 亚洲熟女毛片儿| 18美女黄网站色大片免费观看| 麻豆成人av在线观看| 久久性视频一级片| 日韩免费av在线播放| 亚洲人成伊人成综合网2020| 91av网一区二区| 国产精品久久电影中文字幕| 1024香蕉在线观看| 最近在线观看免费完整版| 麻豆久久精品国产亚洲av| 成人性生交大片免费视频hd| 国产男靠女视频免费网站| 成年女人毛片免费观看观看9| 99re在线观看精品视频| 国产综合懂色| 亚洲精品美女久久av网站| 中文字幕高清在线视频| 亚洲精品中文字幕一二三四区| 曰老女人黄片| 给我免费播放毛片高清在线观看| 国内少妇人妻偷人精品xxx网站 | 亚洲av成人不卡在线观看播放网| 国产精品亚洲av一区麻豆| 色噜噜av男人的天堂激情| 色尼玛亚洲综合影院| 国产精品免费一区二区三区在线| 啦啦啦韩国在线观看视频| 国产一区二区三区在线臀色熟女| 国内精品一区二区在线观看| 免费看十八禁软件| 久久久久久人人人人人| 国语自产精品视频在线第100页| 岛国在线免费视频观看| 全区人妻精品视频| 日韩有码中文字幕| 日韩成人在线观看一区二区三区| 国产精品永久免费网站| 久久久水蜜桃国产精品网| netflix在线观看网站| 一个人免费在线观看电影 | 国产欧美日韩一区二区精品| 亚洲精品一区av在线观看| 色av中文字幕| 深夜精品福利| 看黄色毛片网站| 一夜夜www| 精品福利观看| 亚洲国产色片| 91av网一区二区| 伦理电影免费视频| 成年女人永久免费观看视频| 少妇熟女aⅴ在线视频| www.www免费av| 12—13女人毛片做爰片一| 两人在一起打扑克的视频| 少妇丰满av| 国产高清三级在线| 最近视频中文字幕2019在线8| 又黄又爽又免费观看的视频| 两性夫妻黄色片| 大型黄色视频在线免费观看| 免费看日本二区| 久久天堂一区二区三区四区| 可以在线观看毛片的网站| 黄色视频,在线免费观看| 白带黄色成豆腐渣| 久久久色成人| 亚洲欧美日韩无卡精品| 最新美女视频免费是黄的| 亚洲av日韩精品久久久久久密| 亚洲va日本ⅴa欧美va伊人久久| 午夜福利在线观看吧| 一进一出抽搐gif免费好疼| 又爽又黄无遮挡网站| 亚洲激情在线av| 丁香六月欧美| cao死你这个sao货| 亚洲中文字幕一区二区三区有码在线看 | 超碰成人久久| a在线观看视频网站| 成人国产一区最新在线观看| 熟女少妇亚洲综合色aaa.| 天堂动漫精品| 超碰成人久久| 午夜精品在线福利| 午夜福利18| 中文字幕最新亚洲高清| 色综合站精品国产| 国产黄片美女视频| 操出白浆在线播放| avwww免费| 脱女人内裤的视频| 日日干狠狠操夜夜爽| 成年女人看的毛片在线观看| 美女高潮的动态| 午夜免费观看网址| 欧美日本视频| 18美女黄网站色大片免费观看| 国内少妇人妻偷人精品xxx网站 | 哪里可以看免费的av片| 亚洲最大成人中文| 99在线视频只有这里精品首页| 欧美av亚洲av综合av国产av| 黑人欧美特级aaaaaa片| 国产精品av久久久久免费| 黑人巨大精品欧美一区二区mp4| 熟女人妻精品中文字幕| 亚洲片人在线观看| 精品久久久久久久人妻蜜臀av| av视频在线观看入口| 午夜福利在线观看免费完整高清在 | 国产三级黄色录像| 成年版毛片免费区| 亚洲人与动物交配视频| 久久精品国产亚洲av香蕉五月| 免费一级毛片在线播放高清视频| 一个人观看的视频www高清免费观看 | 波多野结衣高清作品| 国产免费男女视频| 精品欧美国产一区二区三| 美女大奶头视频| 淫妇啪啪啪对白视频| 国产伦人伦偷精品视频| 色哟哟哟哟哟哟| 很黄的视频免费| 2021天堂中文幕一二区在线观| 久久久国产成人精品二区| 18禁国产床啪视频网站| 成人精品一区二区免费| 久久亚洲真实| 日韩欧美 国产精品| 欧美一级毛片孕妇| 天堂√8在线中文| 真人做人爱边吃奶动态| 久久中文字幕人妻熟女| 网址你懂的国产日韩在线| 久99久视频精品免费| av欧美777| 在线播放国产精品三级| 波多野结衣高清作品| 91在线观看av| 日本一二三区视频观看| 美女大奶头视频| 免费在线观看日本一区| 久久久久久久精品吃奶| 好男人电影高清在线观看| 亚洲第一电影网av| 成在线人永久免费视频| 亚洲 欧美 日韩 在线 免费| 久久草成人影院| 99在线人妻在线中文字幕| 手机成人av网站| 午夜激情欧美在线| 日韩欧美一区二区三区在线观看| 91九色精品人成在线观看| 美女cb高潮喷水在线观看 | 久久国产精品人妻蜜桃| 少妇裸体淫交视频免费看高清| 午夜福利在线观看免费完整高清在 | 久久久精品欧美日韩精品| 变态另类成人亚洲欧美熟女| 桃色一区二区三区在线观看| 五月玫瑰六月丁香| 亚洲欧美日韩东京热| 久99久视频精品免费| 国产精品久久久人人做人人爽| 欧美乱码精品一区二区三区| 国产精华一区二区三区| 欧美在线黄色| 日日摸夜夜添夜夜添小说| 欧美成人一区二区免费高清观看 | 伦理电影免费视频| 免费看美女性在线毛片视频| 人妻夜夜爽99麻豆av| 国产成人啪精品午夜网站| 中文字幕熟女人妻在线| 欧美三级亚洲精品| 中出人妻视频一区二区| 国产亚洲欧美在线一区二区| 国产精品亚洲一级av第二区| 久久久国产成人精品二区| 国产黄a三级三级三级人| 免费无遮挡裸体视频| 在线看三级毛片| 波多野结衣高清作品| 精品福利观看| 日本黄色片子视频| 九色成人免费人妻av| 又紧又爽又黄一区二区| 国产单亲对白刺激| 19禁男女啪啪无遮挡网站| 国产精品一区二区精品视频观看| 两人在一起打扑克的视频| 天堂√8在线中文| 久久国产精品影院| 国产成人欧美在线观看| 国产一区二区激情短视频| 午夜两性在线视频| 精品久久蜜臀av无| 国产三级黄色录像|