• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Role of Ag microalloying on glass forming ability and crystallization kinetics of ZrCoAgAlNi amorphous alloy

    2021-01-21 02:08:20SurendarGeethaRajanandAlaazim
    Chinese Physics B 2021年1期

    A Surendar, K Geetha, C Rajan, and M Alaazim

    1Department of Pharmacology,Saveetha Dental College and Hospital,Saveetha Institute of Medical and Technical Sciences,Chennai,India

    2CSE,Excel Engineering College,Pallakapalayam,Komarapalayam,637303,India

    3IT,K S Rangasamy College of Technology Tiruchengode,Namakkal,Tamil Nadu 637215,India

    4Faculty of Engineering,Universitas Muhammadiyah Surakarta(UMS),Indonesia

    Keywords: bulk metallic glass,materials design,crystallization kinetics,glass forming ability

    1. Introduction

    Due to their acceptable corrosion resistance and high mechanical properties,ZrCo-based bulk metallic glasses(BMGs)are potential candidates for application in a wide range of engineered structures.[1–4]Among several developed ZrCo-based alloys, ZrCoAl ternary system shows a good glass forming ability (GFA).[6]However, there exists a long path to make usable this type of alloys in the industrial applications. Unlike crystalline alloys, metallic glass formers show restricted ductility,especially at room temperature,so that it is necessary to use advanced fabrication methods to achieve BMGs with eligible shapes and configurations.[7]Hence, understanding the thermal stability and crystallization kinetics of BMG alloys for optimization of crucial variables in the production process seems very important.

    In general, the isothermal and non-isothermal analyses have been employed to evaluate the crystallization kinetics in the BMGs.[8–11]The similarity between non-isothermal analysis and devitrification processes makes the athermal condition more favorable in the kinetic study of MG alloys. To explain the crystallization kinetic evolution,the thermo-analytical approaches,including kinetic parameters,have been used;[12,13]however,Gibbs free energy changes(ΔGsl)from super-cooled liquid to crystallization of amorphous phase may also be able to interpret the crystallization events in the BMGs.[14]Due to the difficult experimentations for measuring Gibbs energy variations, some theoretical expressions such as KN and TS equations have been presented.[15]For example, a novel expression was proposed, in which the Gibbs energy was accurately estimated in multicomponent Zr-based BMGs.[16,17]In this regard,the nucleation rate exponentially relies on the activation barrier,which is inversely correlated with ΔGslso that the higher GFA and better thermal stability strongly depends on the low ΔGslvalue.[18]The fragility parameter (m) is another factor describing the GFA and thermal stability of amorphous alloys with the reflection of deviation degree of a supercooled liquid from the Arrhenius trend beyond the glass transition temperature.[19–21]When a liquid is cooled in the range of glass transition temperature, the viscosity is dramatically intensified by more than 12 orders in magnitude.[22]The concept of liquid fragility defines the accelerated process in the viscosity. Under the super-cooling event,the liquid may experience the increment of viscosity in an Arrhenius-like fashion,while the viscosity trend may be in the form of non-Arrhenius scaling. Hence, the m parameter is a criterion, in which the viscosity changes is characterized as function of temperature gradient.[22]According to standard definition, it is suggested that the deviation degree defines the GFA with three types of fragile, intermediate and strong liquids. The fragile liquids exhibit a considerable deviation from the Arrhenius trend(m ≤70)leading to a loose-packed structure with lower energy barrier for nucleation. On the other side, the strong liquids with m values of 16–30 tend to create dense-packed atomic arrangements, which result in more difficult nucleation and growth,higher GFA and better thermal stability Moreover,liquids with intermediate fragile features have m values of 30–70 with inherent characteristics between pure fragile and strong liquids.

    As mentioned in literature,it is very crucial to understand the inherent feature of metallic glass formers to be able to design and fabricate the desired amorphous alloys with exceptional properties. Hence,in this work we tried to develop new BMGs with chemical compositions of Zr5(Co33Ag2)Al10Ni5,Zr5(Co31Ag4)Al10Ni5, and Zr5(Co29Ag6)Al10Ni5to identify the role of Ag minor addition on the crystallization kinetics and GFA.There are some works showing the biocompatibility,corrosion resistance and mechanical properties of Ag addition in Zr-based BMGs;[23–25]however, there is a need to evaluate fundamental features, such as thermal stability and GFA,for achieving ZrCo BMGs capable to be used in engineering structures.

    2. Experimental procedure

    High purity elements of Zr, Co, Al, Ni, and Ag were used to prepare master alloy ingots with nominal compositions of Zr50(Co33Ag2)Al10Ni5, Zr5(Co31Ag4)Al10Ni5, and Zr5(Co29Ag6)Al10Ni5. The above-mentioned compositions are coded as A1,A2,and A3 in this paper. The arc re-melting technique under Ti-gettered high purity argon was applied for alloying process. The master alloys were re-melted four times to convince elemental homogeneity in the ingots. The BMG rods with length of 4 cm and minimum diameter of 3 mm were produced using a copper mold suction casting technique equipped with a water-cooled system for subsequent analyses.Moreover,rods with different diameters,from 3 mm to 6 mm,were cast to identify the critical thicknesses.

    After rod fabrication,the structure of specimens were analyzed with x-ray diffraction (XRD) using Cu Kα radiation.To explore the thermal characteristics of specimens,differential scanning calorimeter(DSC)was employed. The DSC instrument was calibrated with pure indium sample. For DSC experiment, the samples with 1-mm thickness were cut from the reference rods and kept in the Al2O3pans under argon environment. The cooling/heating rates of 5, 10, 15, and 20 K/min were considered for the DSC experiment.

    3. Results and discussion

    Figure 1 shows the XRD patterns of samples with different chemical compositions. All the patterns indicate a broad hump intensified at the 2θ ~=38?and there are no sharp peaks implying the lack of crystalline phases in the cast samples.Hence, the XRD patterns justify that the samples are inherently fully amorphous. Non-isothermal DSC analysis with different heating rates was used to evaluate the thermal characteristics of amorphous samples.

    Fig.1. XRD patterns for samples A1,A2,and A3.

    As given in Fig. 2, the endothermic event in the DSC curves determines the glass transition phenomenon under the heating process. The glass transition is accompanied with a sharp exothermic event related to the primitive crystallization process. It is also found that all the samples can be thermally stable up to temperature of ~775 K at 20 K/min heating rate,while at the higher temperature the crystallization event is activated in the amorphous structure. It is should be noted that all the specimens have two sharp crystallization peaks in the DSC curves showing that the crystallization event occurs in two main stages. In other words, at least two dominant crystalline phases may be formed during the heating stage in the DSC experiment. Based on detailed results of DSC experiment in 20 K/min(see Table 1),it is revealed that the Ag addition significantly decreases the melting point of ZrCo-based alloys.

    Table 1. The thermal characteristics of samples at the heating rate of 20 K/min.

    According to the DSC analysis, the rise in heating rate leads to the shift of crystallization event and glass transition to the higher temperatures, which means that mentioned processes are inherently thermally activated. Considering this feature, it is possible to study the kinetics of glass transition and crystallization using varied kinetic approaches. As a most well-known kinetic approach,the Kissinger model can describe the thermally evolution of crystallization events in the solid-state reaction.[26]With a following equation,one can estimate the activation energy of crystallization(Ex)in the amorphous alloys:

    Fig.2. DSC curves for samples(a)A1,(b)A2,and(c)A3.

    where C is a constant, R is the gas constant, and Txdefines the characteristic temperature, i.e., glass transition temperature(Tg)or crystallization temperature(Tc),obtained from the DSC results. Following the mentioned equation, the linear fit of 1/Txversus ln(β/T2x) can define the activation energy value.

    Figure 3 illustrates the fitted plots of Kissinger model for all the specimens corresponding to both of crystallization and glass transition events. At the first glance, one can see that the incline of fitted plots for Tgcurves is higher than the Tcones,which means the Egis higher than the Ec. Moreover,it is found that the Ag addition may increase the Eg, while the Ecvalues decreases with Ag dopant in the glassy alloy. Nevertheless, the studies indicate that the Kissinger model is not applicable in explaining the crystallization kinetics of metallic glasses for all the situations.[18]Hence it is required to consider other approaches for more investigations.

    Fig. 3. Kissinger fitted plots for (a) glass transition and (b) crystallization event.Flynne Walle Ozawa(FWO)is another model especially proposed for estimating the activation energy of crystallization event in the metallic glasses.[18] Considering Eq.(2),the FWO method relates the 1/Tc to ln(β)in order to calculate the effective activation energy:

    The FWO crystallization plots of samples A1,A2,and A3 are illustrated in Fig. 4(a). To have an accurate comparison, the calculated activation energy values for the crystallization event based on FWO and Kissinger approaches are simultaneously given in Fig.5. One can see that both approaches confirm the activation energy (Ec) enhancement with the rise in Ag content; however,the Kissinger method shows slightly higher Ecvalues in comparison with the FWO. The increasing trend of Ecdemonstrated that the silver addition changes the atomic arrangement of structure somehow to make difficult primary nucleation and subsequent crystallization.

    To evaluate the crystallization evolution, the samples were annealed at their 1.2Tgtemperatures and analyzed with the XRD experiment(see Fig.6). According to the crystalline peaks, the B2-ZrCo and Zr6CoAl2metallic phases are dominant in the microstructure, which were also shown in other works.[6]Regarding the structural relaxation event, a novel approach was developed by Moynihan et al.[27]relating the activation energy to the glass transition

    Considering Eq. (3), the linear fit of 1/Tgand lnβ can explain the activation energy value for the glass transition phenomenon. Figure 4(b)presents the Moynihan plots,compared to the FWO results.

    Fig.4. (a)The FWO plot for crystallization and(b)Moynihan plot for glass transition.

    Figure 5 also shows how the Ag addition may affect the Egtrend for samples A1,A2,and A3,respectively. According to the results, both Moynihan and Kissinger methods present similar Egvalues. It is also found that the Ag addition leads to a significant decrease in activation energy of glass transition. Hence, it is concluded that the sample A1 with lower Ag content has the stronger interactive metallic bonds leading to a higher activation energy. Moreover, figure 5 indicates that Ecis lower than Egvalues for all the specimens.This outcome was also reported for Zr-based BMGs in other works.[18]In general, the structural relaxation occurs at the temperature range much lower than the crystallization temperature. Hence, the atomic mobility at the glass transition temperature is considerably less than the crystallization process and consequently,the energy barrier for atomic rearrangement may be high leading to a more activation energy in the glass transition event.

    Fig. 5. The activated energy for glass transition and crystallization event based on the Kissinger,FWO,and Moynihan models.

    Fig. 6. The XRD patterns of samples A1, A2, and A3 after 2-h annealing treatment at 1.2Tg.

    Besides the mentioned approaches, Johnson–Mehl–Avrami approximation can be applied for explaining the crystallization kinetics in metallic glasses.[28]According to Eq. (4), the time dependence of crystallization volume fraction can be described as follows:

    where n is the kinetic exponent used to define the crystallization morphology. Moreover, equation (5) is employed to describe α parameter as a function of temperature at the nonisothermal situation:[28]

    In this equation,φ defines the heat flux and T and Tfshow the lower and upper temperatures that the crystallization occurs.It should be noted that T and Tfwere considered at the beginning and the end of first crystallization peak in each DSC curve.Considering Eq.(5),α changes as a function of temperature for samples A1,A2,and A3 are demonstrated in Fig.7.

    Fig.7. The crystalline fraction as a function of the temperature for(a)A1,(b)A2,(c)A3.

    The results show that the α–T plots are in the form of sigmoidal curves. This type of trend is conventional for glassy alloys under non-isothermal situations.[29]It should be noted that there are two peaks in the crystallization region and a fitting procedure was used to provide sigmoidal curves.The various heating rate (VHR) method is one of the recent thermo-analytical models explaining the crystallization kinetics of glassy materials based on JMA transformation approach,given in Eq.(4).[30]According to VHR method,the n exponent is averaged over whole completion of crystallization as a function of heating rates. To obtain the n value, it is necessary to consider two different times and temperatures for two diverse α1and α2at a certain heating rate:[30]

    The calculations were done and the n values for the samples are presented in Fig. 8. As shown clearly, n values are in the range of 1.85–2.45 indicating the three-dimensional crystalline growth with a decline in nucleation rate. Although,this event is common in all the samples,n values are reduced with the increment of silver content. So it is concluded that the silver can play an important role in the inhibition of nucleation and growth of crystalline metallic phases.

    Fig.8. Avrami exponent values for different situations.

    Fragility is another parameter describing the inherent features of metallic glasses. In general,the glass relaxation in the BMGs follows Vogel–Fulcher–Tammann (VFT) equation or the Arrhenius equation. According to the Arrhenius behavior, the fragility can be studied in the relation to the effective activation energy:[31]

    Table 2 gives mEvalues obtained from the samples heated with rate of 20 K/min. As observed, the calculated values are in the range of 33–41 for all the specimens. This indicates that our BMG alloys are classified in the“intermediatefragile-strength” metallic glasses. The results also show that mEvalue declines with the rise in Ag content. Hence, it is concluded that the Ag-rich BMG composition with lower mE

    value has the higher GFA and better thermodynamic stability. To confirm this conclusion, it is also required to evaluate the characteristic temperatures such as γ and Trgparameters describing the GFA in the glassy materials.[32]Based on calculated values in Table 2,the Ag addition leads to the increase in γ and Trgparameters. The GFA parameter is also correlated to the critical diameter so that with Ag minor addition the critical thickness was significantly enhanced. It should be noted that metallic glass formers with better GFA are needed a lower driving force to thermodynamically create crystallization phase in the microstructure.[33]In other words,the silver addition declines the driving force for crystallization and defines a lower activation barrier for crystallization. Hence, the sample A3 has the lowest driving force, which is also confirmed by Ec calculation from the FWO and Kissinger equations.

    Table 2. The basic parameters attained from the DSC results at the heating rate of 20 K/min.

    4. Conclusions

    This work aims to show that how the minor addition of Ag influences the thermal stability,GFA and activation energy of glass transition and crystallization kinetics in the ZrCoAgAlNi BMGs. It was revealed that the rise in Ag content led to the decrease in activation energy for glass transition,while the activation energy for crystallization increased. The results also showed that the Avrami exponent is in the range of 2.1–2.7 for all the specimens;however,it declined with rise in Ag content. This event affected the crystallization kinetics and repressed the nucleation and growth. Evaluating fragility parameter, it was shown that all the samples were classified in the intermediate strength BMG alloys. Finally, it was found that the Ag addition improved the GFA and thermal stability through the small changes in the structural arrangements.

    国产午夜福利久久久久久| 国产成人av教育| 国产成人av教育| 高潮久久久久久久久久久不卡| 757午夜福利合集在线观看| 99久久久亚洲精品蜜臀av| 热99在线观看视频| 嫩草影院新地址| 中文字幕精品亚洲无线码一区| 久久久久精品国产欧美久久久| 欧美高清成人免费视频www| 欧美最新免费一区二区三区 | 欧美性猛交黑人性爽| 毛片一级片免费看久久久久 | 亚洲一区高清亚洲精品| 国产伦在线观看视频一区| 久久久久久九九精品二区国产| 香蕉av资源在线| 69人妻影院| 国产中年淑女户外野战色| 一本精品99久久精品77| 中文亚洲av片在线观看爽| 少妇丰满av| 欧美一区二区亚洲| 女人被狂操c到高潮| 波多野结衣巨乳人妻| 午夜福利在线观看免费完整高清在 | 我的女老师完整版在线观看| 十八禁人妻一区二区| 99热这里只有精品一区| 国语自产精品视频在线第100页| 午夜福利18| 有码 亚洲区| 欧美乱妇无乱码| 欧美另类亚洲清纯唯美| 亚洲国产日韩欧美精品在线观看| 一个人看的www免费观看视频| 好男人电影高清在线观看| 波多野结衣高清作品| 日韩高清综合在线| 久久久久久久亚洲中文字幕 | 可以在线观看的亚洲视频| 99热这里只有是精品50| 每晚都被弄得嗷嗷叫到高潮| 国产一区二区激情短视频| 亚洲欧美日韩高清专用| 日日摸夜夜添夜夜添小说| 亚洲电影在线观看av| 九九久久精品国产亚洲av麻豆| 欧美成人性av电影在线观看| 欧洲精品卡2卡3卡4卡5卡区| 国产老妇女一区| 国产精品av视频在线免费观看| 午夜亚洲福利在线播放| 97人妻精品一区二区三区麻豆| 中文字幕熟女人妻在线| 欧美中文日本在线观看视频| 成人高潮视频无遮挡免费网站| 人人妻人人澡欧美一区二区| 亚洲七黄色美女视频| 欧美黄色淫秽网站| 免费无遮挡裸体视频| 亚洲精品成人久久久久久| 我要搜黄色片| 欧美黄色淫秽网站| 亚洲最大成人中文| 欧美在线黄色| 69av精品久久久久久| 国产精品亚洲av一区麻豆| 9191精品国产免费久久| 精品久久久久久,| 欧美一区二区亚洲| 国产久久久一区二区三区| 99久久九九国产精品国产免费| www日本黄色视频网| 国产高清有码在线观看视频| 国产精品久久久久久久久免 | 亚洲精品粉嫩美女一区| 亚洲欧美激情综合另类| 国产精品人妻久久久久久| 波多野结衣高清无吗| 国产精品爽爽va在线观看网站| 国产麻豆成人av免费视频| 国产激情偷乱视频一区二区| 神马国产精品三级电影在线观看| 一夜夜www| 国产成人欧美在线观看| 麻豆成人av在线观看| 久久精品国产亚洲av香蕉五月| 少妇裸体淫交视频免费看高清| 欧美丝袜亚洲另类 | 色视频www国产| 看黄色毛片网站| 亚洲 国产 在线| 90打野战视频偷拍视频| x7x7x7水蜜桃| 久久久久免费精品人妻一区二区| 中文字幕人成人乱码亚洲影| 男人的好看免费观看在线视频| www.熟女人妻精品国产| 亚洲电影在线观看av| 波多野结衣高清作品| 亚洲国产色片| 熟妇人妻久久中文字幕3abv| 精华霜和精华液先用哪个| 狠狠狠狠99中文字幕| 精品午夜福利视频在线观看一区| 99视频精品全部免费 在线| 久久国产乱子免费精品| 999久久久精品免费观看国产| 免费观看人在逋| 男女视频在线观看网站免费| 日韩av在线大香蕉| 非洲黑人性xxxx精品又粗又长| 性欧美人与动物交配| 亚洲人成网站高清观看| 亚洲一区二区三区不卡视频| 欧美三级亚洲精品| 日韩中字成人| 国产av不卡久久| 国产精品久久视频播放| 男插女下体视频免费在线播放| 日韩欧美精品v在线| 丰满的人妻完整版| 日韩av在线大香蕉| 亚洲人与动物交配视频| 久久久久精品国产欧美久久久| 久久伊人香网站| 18+在线观看网站| 午夜福利在线在线| 婷婷六月久久综合丁香| 69人妻影院| 国产69精品久久久久777片| 国产又黄又爽又无遮挡在线| 91九色精品人成在线观看| 国产极品精品免费视频能看的| 五月伊人婷婷丁香| 九色成人免费人妻av| 亚洲欧美日韩卡通动漫| 一进一出抽搐动态| 又爽又黄a免费视频| 91狼人影院| 每晚都被弄得嗷嗷叫到高潮| 黄色女人牲交| 制服丝袜大香蕉在线| 欧美日韩福利视频一区二区| 在线播放国产精品三级| 欧美高清成人免费视频www| 国产极品精品免费视频能看的| 久久热精品热| 在线观看av片永久免费下载| 亚洲美女黄片视频| 亚洲18禁久久av| 欧美xxxx黑人xx丫x性爽| 美女 人体艺术 gogo| 成人一区二区视频在线观看| 亚洲色图av天堂| 少妇被粗大猛烈的视频| 深爱激情五月婷婷| 给我免费播放毛片高清在线观看| 欧美中文日本在线观看视频| 丁香六月欧美| 久久精品国产亚洲av涩爱 | 日韩中字成人| 成人特级av手机在线观看| 69人妻影院| 人妻久久中文字幕网| 国产伦在线观看视频一区| av天堂在线播放| 中文字幕熟女人妻在线| 桃色一区二区三区在线观看| 成人精品一区二区免费| 亚洲成人久久性| 精品乱码久久久久久99久播| 日韩欧美免费精品| 男女视频在线观看网站免费| 蜜桃久久精品国产亚洲av| 久久国产精品影院| 国产91精品成人一区二区三区| 免费观看的影片在线观看| 精品一区二区三区av网在线观看| 亚洲精品一卡2卡三卡4卡5卡| 搡老岳熟女国产| 欧美性猛交黑人性爽| 国产国拍精品亚洲av在线观看| 熟妇人妻久久中文字幕3abv| 亚洲av二区三区四区| av天堂在线播放| ponron亚洲| 又粗又爽又猛毛片免费看| 欧美一区二区精品小视频在线| 精华霜和精华液先用哪个| 国产黄片美女视频| av在线蜜桃| 午夜免费成人在线视频| 露出奶头的视频| 18禁裸乳无遮挡免费网站照片| 男人的好看免费观看在线视频| 国产成人啪精品午夜网站| 9191精品国产免费久久| 亚洲va日本ⅴa欧美va伊人久久| 久久九九热精品免费| 夜夜夜夜夜久久久久| 少妇的逼水好多| 欧美日韩综合久久久久久 | 国模一区二区三区四区视频| 色视频www国产| 可以在线观看毛片的网站| 国产精品野战在线观看| 男插女下体视频免费在线播放| 性色av乱码一区二区三区2| 毛片一级片免费看久久久久 | 久久久久久久久大av| 一个人免费在线观看电影| 日韩欧美精品免费久久 | 最近最新免费中文字幕在线| 一级黄片播放器| 男女那种视频在线观看| 亚洲中文字幕日韩| 91麻豆精品激情在线观看国产| 男女床上黄色一级片免费看| 欧美日本亚洲视频在线播放| 久久精品综合一区二区三区| 久9热在线精品视频| 真实男女啪啪啪动态图| 国产精品亚洲一级av第二区| 亚洲av美国av| 亚洲aⅴ乱码一区二区在线播放| 日本三级黄在线观看| 国产白丝娇喘喷水9色精品| 国产野战对白在线观看| 露出奶头的视频| 午夜福利在线观看吧| 欧美高清性xxxxhd video| 午夜视频国产福利| 日日夜夜操网爽| 女同久久另类99精品国产91| 日本在线视频免费播放| 9191精品国产免费久久| 村上凉子中文字幕在线| or卡值多少钱| 中文字幕免费在线视频6| 国产一区二区三区视频了| a级毛片免费高清观看在线播放| 国产精品亚洲av一区麻豆| .国产精品久久| 天堂动漫精品| 亚洲成a人片在线一区二区| 老熟妇乱子伦视频在线观看| 天堂动漫精品| 国产亚洲欧美98| 激情在线观看视频在线高清| 精品人妻视频免费看| 黄色视频,在线免费观看| 免费在线观看成人毛片| 国产熟女xx| 日本五十路高清| 有码 亚洲区| 色吧在线观看| 一夜夜www| 在线看三级毛片| 天堂av国产一区二区熟女人妻| 看黄色毛片网站| 搡老岳熟女国产| 亚洲精品色激情综合| 狠狠狠狠99中文字幕| 亚洲av不卡在线观看| 午夜福利成人在线免费观看| 天堂网av新在线| 成年女人看的毛片在线观看| 一二三四社区在线视频社区8| 欧美一区二区亚洲| 老司机福利观看| 欧美日韩国产亚洲二区| 一级a爱片免费观看的视频| 免费大片18禁| 久久伊人香网站| 天天躁日日操中文字幕| 欧美3d第一页| 日日夜夜操网爽| 日韩免费av在线播放| 亚洲av五月六月丁香网| 午夜福利高清视频| 欧美日韩中文字幕国产精品一区二区三区| 91麻豆av在线| 少妇高潮的动态图| 欧美黄色片欧美黄色片| 免费在线观看成人毛片| 两性午夜刺激爽爽歪歪视频在线观看| 午夜福利18| 97热精品久久久久久| 最近最新中文字幕大全电影3| 久久久久免费精品人妻一区二区| 日日夜夜操网爽| 自拍偷自拍亚洲精品老妇| 久久精品国产自在天天线| 一区二区三区四区激情视频 | 熟女人妻精品中文字幕| 搡老熟女国产l中国老女人| 人人妻,人人澡人人爽秒播| 91在线精品国自产拍蜜月| 亚洲精品乱码久久久v下载方式| 国内精品一区二区在线观看| 精品国产三级普通话版| 俄罗斯特黄特色一大片| 国产精品久久电影中文字幕| 伦理电影大哥的女人| 一进一出好大好爽视频| 国产亚洲精品久久久com| 在线播放国产精品三级| 亚洲第一区二区三区不卡| 亚洲av电影在线进入| 亚洲欧美精品综合久久99| 久久欧美精品欧美久久欧美| 可以在线观看的亚洲视频| 动漫黄色视频在线观看| 十八禁人妻一区二区| 激情在线观看视频在线高清| 天美传媒精品一区二区| 内射极品少妇av片p| 琪琪午夜伦伦电影理论片6080| 久久久久久久亚洲中文字幕 | 丁香六月欧美| 国产一区二区在线av高清观看| 最近最新中文字幕大全电影3| 午夜a级毛片| 成年女人毛片免费观看观看9| 久久欧美精品欧美久久欧美| 国产真实乱freesex| 亚洲国产高清在线一区二区三| 亚洲精品影视一区二区三区av| 欧美绝顶高潮抽搐喷水| 欧美性感艳星| 国产午夜精品论理片| 90打野战视频偷拍视频| 日韩欧美在线乱码| 听说在线观看完整版免费高清| 人妻丰满熟妇av一区二区三区| 免费电影在线观看免费观看| 九色国产91popny在线| 男女做爰动态图高潮gif福利片| 极品教师在线视频| 午夜福利欧美成人| 国产成人啪精品午夜网站| av国产免费在线观看| 首页视频小说图片口味搜索| 美女大奶头视频| 欧美黄色淫秽网站| 亚洲国产精品sss在线观看| 桃色一区二区三区在线观看| 亚洲美女黄片视频| 久久草成人影院| 国产乱人视频| 中文字幕精品亚洲无线码一区| 久久久久久九九精品二区国产| 好男人在线观看高清免费视频| 精品国产亚洲在线| 久久午夜亚洲精品久久| 99久久久亚洲精品蜜臀av| 久久久色成人| 日韩免费av在线播放| 一级作爱视频免费观看| 久久久久久九九精品二区国产| 1024手机看黄色片| 国产精品综合久久久久久久免费| 亚洲国产色片| 亚洲 国产 在线| 亚洲成人久久爱视频| 91久久精品电影网| 能在线免费观看的黄片| 国产精品影院久久| 日本撒尿小便嘘嘘汇集6| 此物有八面人人有两片| 色视频www国产| 免费看a级黄色片| 99热这里只有是精品在线观看 | 国产成人啪精品午夜网站| 久久精品久久久久久噜噜老黄 | 免费av观看视频| 国产精品一及| 熟女人妻精品中文字幕| 色视频www国产| 女同久久另类99精品国产91| 亚洲狠狠婷婷综合久久图片| 18美女黄网站色大片免费观看| 精品一区二区三区视频在线| 国产黄片美女视频| 淫秽高清视频在线观看| 淫妇啪啪啪对白视频| 国产精品av视频在线免费观看| 日本一二三区视频观看| 国产精品乱码一区二三区的特点| 有码 亚洲区| 久久国产精品人妻蜜桃| av国产免费在线观看| 国产亚洲av嫩草精品影院| 免费看光身美女| 国产一区二区激情短视频| 日韩欧美国产在线观看| 色噜噜av男人的天堂激情| 久9热在线精品视频| 一级黄色大片毛片| 一级毛片久久久久久久久女| 麻豆一二三区av精品| 欧美黄色片欧美黄色片| 在线播放国产精品三级| 一a级毛片在线观看| 一本久久中文字幕| 亚洲最大成人中文| 日本与韩国留学比较| 国产成人福利小说| 国产综合懂色| www日本黄色视频网| bbb黄色大片| 亚洲 欧美 日韩 在线 免费| 乱人视频在线观看| 乱码一卡2卡4卡精品| 日本与韩国留学比较| 国产精品嫩草影院av在线观看 | 夜夜夜夜夜久久久久| 亚洲电影在线观看av| 淫秽高清视频在线观看| 国产精品爽爽va在线观看网站| 日日摸夜夜添夜夜添小说| АⅤ资源中文在线天堂| 国产色爽女视频免费观看| 色综合亚洲欧美另类图片| 欧洲精品卡2卡3卡4卡5卡区| 村上凉子中文字幕在线| 国产亚洲av嫩草精品影院| 亚洲成人久久性| 性色avwww在线观看| 久久精品国产99精品国产亚洲性色| 色哟哟哟哟哟哟| 久久九九热精品免费| 熟女电影av网| 亚洲欧美日韩卡通动漫| 国产精品99久久久久久久久| 国产一区二区亚洲精品在线观看| 中亚洲国语对白在线视频| 成人精品一区二区免费| 国产精品,欧美在线| 久久精品国产亚洲av天美| 91av网一区二区| 桃色一区二区三区在线观看| av福利片在线观看| 成年女人永久免费观看视频| 尤物成人国产欧美一区二区三区| 99在线人妻在线中文字幕| www.色视频.com| 男人狂女人下面高潮的视频| ponron亚洲| 亚洲五月婷婷丁香| 欧美不卡视频在线免费观看| av在线天堂中文字幕| 在线国产一区二区在线| 一二三四社区在线视频社区8| 级片在线观看| 亚洲一区二区三区色噜噜| 精品久久久久久久末码| 757午夜福利合集在线观看| 99国产综合亚洲精品| 少妇的逼水好多| 久久人人爽人人爽人人片va | x7x7x7水蜜桃| 成人国产综合亚洲| 嫩草影院新地址| 内射极品少妇av片p| 国产三级黄色录像| 国产在线精品亚洲第一网站| 五月伊人婷婷丁香| 国产欧美日韩一区二区精品| 女同久久另类99精品国产91| 色播亚洲综合网| 看片在线看免费视频| 精品午夜福利在线看| 亚洲欧美激情综合另类| 麻豆成人av在线观看| 国产91精品成人一区二区三区| 亚洲精品乱码久久久v下载方式| 亚洲专区中文字幕在线| 欧美乱妇无乱码| 成人特级黄色片久久久久久久| 亚洲精品影视一区二区三区av| 欧美日韩瑟瑟在线播放| 51午夜福利影视在线观看| 欧美绝顶高潮抽搐喷水| а√天堂www在线а√下载| 757午夜福利合集在线观看| 51午夜福利影视在线观看| 一本综合久久免费| 听说在线观看完整版免费高清| 国产精品人妻久久久久久| 久久久久久久午夜电影| 波多野结衣巨乳人妻| 少妇的逼好多水| 国产探花在线观看一区二区| 在线免费观看的www视频| 久久国产精品人妻蜜桃| 美女黄网站色视频| 国产色爽女视频免费观看| 国产私拍福利视频在线观看| 久久国产精品人妻蜜桃| 日韩欧美三级三区| 国产成人a区在线观看| 欧美黑人欧美精品刺激| 又黄又爽又刺激的免费视频.| 他把我摸到了高潮在线观看| 日本在线视频免费播放| 久久亚洲精品不卡| 久久久久性生活片| 亚洲精品一区av在线观看| 99热这里只有是精品在线观看 | 真人一进一出gif抽搐免费| 精品一区二区三区视频在线观看免费| 亚洲成av人片免费观看| 国产一级毛片七仙女欲春2| 久久午夜亚洲精品久久| 悠悠久久av| 成人av在线播放网站| 日韩人妻高清精品专区| 热99re8久久精品国产| 国产av在哪里看| 亚洲成人久久爱视频| 丰满人妻熟妇乱又伦精品不卡| 不卡一级毛片| 亚洲av免费高清在线观看| 在线天堂最新版资源| 国产精品精品国产色婷婷| 老司机深夜福利视频在线观看| 久久久久久久午夜电影| 最后的刺客免费高清国语| 亚洲一区二区三区色噜噜| 很黄的视频免费| 亚洲成人中文字幕在线播放| 久久伊人香网站| 欧美午夜高清在线| 欧美一级a爱片免费观看看| 精品久久久久久久久av| netflix在线观看网站| 51午夜福利影视在线观看| 亚洲欧美日韩东京热| 狠狠狠狠99中文字幕| 国产毛片a区久久久久| 欧美xxxx黑人xx丫x性爽| 免费一级毛片在线播放高清视频| 精品久久久久久久久av| 好看av亚洲va欧美ⅴa在| 精品免费久久久久久久清纯| h日本视频在线播放| 禁无遮挡网站| av在线蜜桃| 三级毛片av免费| 人人妻,人人澡人人爽秒播| 中出人妻视频一区二区| 久久亚洲精品不卡| 精品久久久久久久久久免费视频| 欧美性猛交黑人性爽| 亚洲,欧美,日韩| 国产亚洲欧美在线一区二区| 欧美一级a爱片免费观看看| 久久久久久国产a免费观看| 国产精品亚洲美女久久久| 两个人视频免费观看高清| 在线a可以看的网站| 一本久久中文字幕| 又紧又爽又黄一区二区| 免费av毛片视频| 国产视频内射| 色噜噜av男人的天堂激情| 真实男女啪啪啪动态图| 亚洲熟妇中文字幕五十中出| 看免费av毛片| 成人特级av手机在线观看| 免费观看精品视频网站| 90打野战视频偷拍视频| 好看av亚洲va欧美ⅴa在| 国产高清有码在线观看视频| 久久国产精品影院| 国产一区二区亚洲精品在线观看| 性欧美人与动物交配| 黄色女人牲交| 久久久久性生活片| 国产野战对白在线观看| 国产中年淑女户外野战色| 亚洲成人免费电影在线观看| 久久亚洲真实| 久久香蕉精品热| 国产精品美女特级片免费视频播放器| 伦理电影大哥的女人| 欧美性猛交╳xxx乱大交人| 91九色精品人成在线观看| 免费观看人在逋| .国产精品久久| av视频在线观看入口| 久久国产精品影院| 欧美成狂野欧美在线观看| 一区二区三区高清视频在线| 午夜激情福利司机影院| 国产精品久久久久久亚洲av鲁大| 久久久久性生活片| 日韩欧美精品v在线| 亚洲第一电影网av| 97超视频在线观看视频| 久久久久久久亚洲中文字幕 | 亚洲美女视频黄频| 乱码一卡2卡4卡精品| 丰满的人妻完整版| 亚洲av电影不卡..在线观看| 久久精品国产自在天天线| 真实男女啪啪啪动态图| 国产av不卡久久| 色尼玛亚洲综合影院| 女生性感内裤真人,穿戴方法视频| 亚洲国产日韩欧美精品在线观看|