• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Interfacial properties of g-C3N4/TiO2 heterostructures studied by DFT calculations*

    2021-01-21 02:08:20ChenShanPeng彭春山YongDongZhou周永東SuiShuanZhang張雖栓andZongYanZhao趙宗彥
    Chinese Physics B 2021年1期

    Chen-Shan Peng(彭春山), Yong-Dong Zhou(周永東), Sui-Shuan Zhang(張雖栓), and Zong-Yan Zhao(趙宗彥),?

    1Faculty of Materials Science and Engineering,Kunming University of Science and Technology,Kunming 650093,China

    2Department of Architectural Engineering,Henan Quality Polytechnic,Pingdingshan 467000,China

    Keywords: photocatalysis,g-C3N4,TiO2,heterostructures,interfacial states

    1. Introduction

    Since Wang et al. reported the photocatalytic hydrogen production of g-C3N4,[1]the g-C3N4has received extensive attention from researchers due to its excellent performance.For example, g-C3N4has the advantages of reasonable electronic band structure (band gap 2.70 eV), non-toxicity, low cost, long-term stability, and convenient preparation.[2–8]Although its photocatalytic activity has been confirmed in previous research, most of the reported photocatalytic efficiencies of the pure g-C3N4are limited by the high recombination rate of its photo-generated electron–hole pairs.[9–11]Accordingly, it has become an important research direction to explore high-efficiency g-C3N4-based photocatalysts with better separation/transfer efficiency of photo-generated electron–hole pairs. In order to solve this problem, many attempts have been made to improve its photocatalytic properties,such as non-metal doping,[12,13]metal doping,[14,15]noble metal loading,[16]heterostructure constructing,[17]etc.Among these methods,the heterostructures coupled with another photocatalyst can reduce the recombination rate of the photo-generated electron–hole pairs,and many kinds of photocatalysts,such as TiO2, WO3, ZnO, etc.,[18–22]have been adopted to construct the g-C3N4-based heterostructures.

    In the latest development of g-C3N4-based photocatalysts, the TiO2-constructed heterostructure has become a research hotspot due to its feasibility and effectiveness for the spatial separation of photo-generated electron–hole pairs. The TiO2is the most popular photocatalyst and combining TiO2with other semiconductors to build heterojunction has several obvious advantages in enhancing the electron–hole pair separation.[23,24]Therefore, the g-C3N4/TiO2heterostructure has been extensively studied to further enhance the visible light catalytic activity.[25–27]Different kinds of g-C3N4/TiO2composite photocatalysts with heterostructure have been prepared by various strategies in previous studies. For instance,g-C3N4/TiO2nanocomposites were successfully prepared by a solid-state method through using urea and commercial TiO2as precursors, showing that the absorption and photocatalytic properties in visible-light region are enhanced.[28]Ren et al.synthesized the g-C3N4/TiO2heterojunction by in situ synthesis, which showed good photodegradation towards Orange II.[29]Liu et al.[30]and Tan et al.[31]used a one-step method to synthesize a hetero-structured g-C3N4/TiO2composite,which can rapidly degrade pollutants with visible-light irradiated.[30,31]

    Although many experimental researches indicated that the g-C3N4/TiO2heterostructure can enhance photocatalytic performance, the corresponding intrinsic and essential mechanism has rarely been explained in depth.[32–34]In this paper, the supercell models for g-C3N4/TiO2heterostructure formed by monolayer g-C3N4and TiO2(001)surface are constructed at first. The structural and electronic properties of these models are further calculated by density functional theory(DFT).Based on these results,the underlying mechanism of g-C3N4/TiO2heterostructure to enhance the photocatalytic performance is proposed.

    2. Computational methods and models

    All calculations in the present work were performed through the Cambridge Serial Total Energy Package (short as CASTEP) codes.[35]The core electrons were treated by the ultrasoft pseudopotential;[36]and the exchange–correlation functional in the generalized gradient approximation (GGA)was described by using the PBE.[37]In order to accurately describe the nonbonding van der Waals interaction along the caxis, the DFT-D of van der Waals dispersion corrections was used.[38]In the present work,a“fine”quality setting was used to achieve a good compromise between speed and accuracy,which is suitable for most of calculations. The Monkhorst–Pack scheme K-points grid sampling was set to be 1×1×1 for the irreducible Brillouin zone. A 54×32×256 mesh was used for fast Fourier transformation. An energy cutoff of 340 eV was used for expanding the Kohn–Sham wave functions. The minimization algorithm chosen was the Broyden–Fletcher–Goldfarb–Shanno scheme.[39]The convergence criteria for optimizing all model geometric structures were set to be 1×10-6eV per atom for the self-consistent field tolerance,0.03 eV·?A-1for the maximum force, 0.05 GPa for the maximum stress tolerance,1×10-3?A for the maximum displacement tolerance,1×10-5eV per atom for the maximal energy change. Then, the optimized structures were further used to investigate the electronic structures and other properties.

    For the construction of heterostructure,an important factor is crystal lattice matching. An ideal heterostructure requires the lattice constants of the two components to match with each other as much as possible. If the crystal lattice mismatch is too large, the interface is unstable due to the large interfacial stress. Consequently, in the present work, in the case of g-C3N4/TiO2–H heterostructure(“H”refers to g-C3N4combined horizontally with TiO2as shown in Fig. 1(a)), a four-layer TiO2(001) slab was chosen as a substrate with a 3×2 supercell (11.35 ?A×7.57 ?A). This supercell can match well with a 1×1 unit cell of g-C3N4(12.35 ?A×7.13 ?A).The degree of mismatching crystal lattice is u=8.44% and Δv=5.99%. If the lattice mismatch at the interface is less than 10%,then such an interface is considered to be capable of forming composite materials with heterostructure. More importantly, for two-dimensional material (i.e., g-C3N4) loaded on the surface of three-dimensional material(i.e.,g-TiO2),the interface stress generated by lattice mismatch can be further released through the deformation of two-dimensional material along the normal direction of the interface (i.e., [001] direction). Therefore, the lattice mismatch mentioned above can be accepted for the experimental feasibility. In the case of g-C3N4/TiO2–V heterostructure(“V”denotes g-C3N4combined vertically with TiO2), two different kinds of models were considered: g-C3N4/TiO–VC and g-C3N4/TiO–VN.Between them,the interface of g-C3N4/TiO2–VC heterostructure has C atoms of g-C3N4as the contact point as shown in Fig. 2(a),while the interface of g-C3N4/TiO–VN heterostructure has N atoms of g-C3N4as the contact point as shown in Fig.3(a).For all models,the atoms in the two first layers that are close to the interface are allowed to be freely relaxed, while the atoms in the other two layers that are on the other side of the slab are fixed to mimic the bulk effect. To eliminate the interaction between two neighboring images along the normal direction,the thickness of vacuum layer was set to be 20 ?A.

    Fig.1.(a)Side view of g-C3N4/TiO2–H interface model,(b)average electrostatic potential,and(c)difference in average electron density along interfacial normal direction.

    Fig.2. (a)Side view of g-C3N4/TiO2–VC interface model,(b)average electrostatic potential,and(c)difference in average electron density along interfacial normal direction.

    Fig.3. (a)Side view of g-C3N4/TiO2–VN interface model,(b)average electrostatic potential, (c) difference in average electron density along interfacial normal direction.

    3. Results and discussion

    3.1. Interfacial structures and interfacial energy

    To investigate the stabilities of g-C3N4/TiO2heterostructures,the structural parameters including interface formation energy, interface spacing, and lay spacing expansion are calculated and the results are listed in Table 1. The interface spacing of the g-C3N4/TiO2–H heterostructure is 2.106 ?A;the interface spacing of the g-C3N4/TiO2–VC heterostructure is 1.945 ?A; the interface spacing of the g-C3N4/TiO2–VN heterostructure is 2.251 ?A. The interfacial spacing of the g-C3N4/TiO2–VC heterostructure is found to be minimal,which is closely related to the interface atomic composition. For example, when g-C3N4contacts the TiO2in a vertical manner,since g-C3N4contacts the TiO2, C atoms, and N atoms, respectively, at the interface, there is a difference in interface spacing or interface energy. Therefore, the interface spacing of g-C3N4/TiO2–VC heterostructure is smaller than that of g-C3N4/TiO2–VN heterostructure. At the same time, the interfacial spacing of g-C3N4/TiO2–H heterostructure is found to be between the interfacial spacing of g-C3N4/TiO2–VC heterostructure and that of g-C3N4/TiO2–VN heterostructure.This is caused by the formation of different bonds when the interfaces interact,because the g-C3N4/TiO2–H heterostructure interface bonds are mainly van der Waals bonds. The layer spacing expansion represents the local relaxation: positive value denotes widened spacing.Comparing these three heterostructures, the first atomic TiO2layer in the g-C3N4/TiO2–H heterostructure is inward relaxed, while the first atomic TiO2layer in the g-C3N4/TiO2–VC heterostructure and the g-C3N4/TiO2–VN heterostructure are outward relaxed. The value of layer spacing gradually decreases from L1 to L3,approaching to the value of bulk spacing. These different phenomena indicate that the g-C3N4has different effects on the substrate when placed in different ways to construct the heterostructure.

    Table 1. Calculated interfacial parameters of relaxed heterostructures: interface spacing, expansion of lay spacing, and interface formation energy(γint)in units of meV/?A2.

    The stability and realizability of interfaces are usually evaluated by the interface formation energy (γint). In the present work,the interface formation energy is calculated from the following formula:

    in which ETiO2-surface, Eg-C3N4, and Eg-C3N4/TiO2-interfaceare the total energy of the models of TiO2surface,g-C3N4molecular layer, and g-C3N4/TiO2interface; S is the area of the interface. The interface formation energy of g-C3N4/TiO2–H heterostructure is smallest, and its value is 3.967 meV/?A2,which is obviously smaller than those of other two vertical heterostructures (6.518 meV/?A2for g-C3N4/TiO2–VC, and 7.943 meV/?A2for g-C3N4/TiO2–VC).The interface formation energy of g-C3N4/TiO2–VC heterostructure is very large,implying the strong interaction between g-C3N4and TiO2. The strong interface formation can represent strong interface interaction, and vice versa. By combining the calculation results of interfacial spacing,the g-C3N4/TiO2–VC heterostructure can be determined to have a tight interface, while the g-C3N4/TiO2–H heterostructure possesses a van der Waals weak interface.

    3.2. Electronic structures

    To investigate the underlying mechanism of the high activity of g-C3N4/TiO2composite photocatalyst, the local and partial densities of states of g-C3N4/TiO2interfaces were calculated and depicted in Figs. 4–6. When g-C3N4and TiO2are combined to form a g-C3N4/TiO2–H heterostructure, the Fermi level(EF)is relatively shifted in the forbidden band,indicating the variation of the band alignment in different kinds of the g-C3N4/TiO2interfaces. The N-2p,N-2s, Ti-3d, C-2p,and O-2p states contribute considerably to the top of valence band(VB),in which the contribution of N-2p states and O-2p states are predominant. The bottom of VB is mainly composed of the C-2p and N-2p states. The bottom of conduction band (CB) is made up of C-2p, N-2p, Ti-3d, and O-2p states, and has a slightly hybridized state, in which the Ti-3d state is dominant. The density of states of the g-C3N4/TiO2–VC and g-C3N4/TiO2–VN interfaces are identical to that of g-C3N4/TiO2–H interface. However, the top of CB split into many peaks, implying that more obvious delocalization phenomena occur. At the same time, it is observed that the g-C3N4/TiO2–VC and g-C3N4/TiO2–VN interfaces produce obvious interface states that are caused by N-2p and C-2p state in the forbidden band.The interface state of g-C3N4/TiO2–VC interface is most obvious,which presents outstanding metallic properties. Combined with the analysis of interface formation energy and interface spacing in the previous section,the interfacial spacing of g-C3N4/TiO2–VC heterostructures is shown to be minimal. That is to say, the interface state appearing in the forbidden band presents metallic properties and contributes to the transfer of photo-generated electrons and holes, which can effectively improve the photocatalytic performance of g-C3N4/TiO2heterostructure.

    Fig.4. Local and partial densities of states for g-C3N4/TiO2–H heterostructure at interface.

    Fig. 5. Local and partial densities of states for g-C3N4/TiO2–VC heterostructure at interface.

    To investigate the charge transfer and separation at the interface,the Mulliken population analysis of the plane-wave pseudopotential calculation is performed on the three heterostructures and is the results are depicted in Fig.7. In order to compare the monolayer g-C3N4with the bulk of TiO2,the results of the Mulliken charge are also calculated in which the C and N atom have a Mulliken charge of 0.480 e and-0.380 e,respectively. The Ti and O atoms have a Mulliken charge of 1.330 e and-0.670 e, respectively. From Fig.7(a), it can be found that the O atom has a Mulliken charge of-0.660 e and-0.620 e at the interface of the g-C3N4/TiO2–H heterostructure, compared with that of TiO2bulk, the change of the O atom is not very obvious. At the interface,the number of Mulliken charges for the Ti atom is 1.350 e,which is slightly larger than that of the TiO2bulk phase of 1.330 e. In general, the change in the number of Mulliken charges carried by the O and Ti atoms in the TiO2layer near the interface is not significant as compared with that in the TiO2bulk. For g-C3N4,the number of Mulliken charges for the C atom at the interface is 0.450 e,and the number of Mulliken charges for the N atom is-0.390 e and-0.410 e,which means that the C atom loses very few electrons,compared with that of monolayer g-C3N4,while the N atom gains electrons. It is indicated that a slight charge transfer occurs along the direction from g-C3N4to TiO2at the interface.

    Fig.6.Local and partial densities of states for g-C3N4/TiO2–VN heterostructure at interface.

    For the g-C3N4/TiO2–VC heterostructure as shown in Fig.7(b),the Mulliken charge number of the O atom and the Ti atom in the TiO2layer at the interface are-0.660 e(-0.640 e)and 1.320 e, respectively. This is in contrast to the values of the bulk phase of TiO2(-0.670 e and 1.330 e),where both the Ti and O atom lose some electrons. At the interface,the number of Mulliken charges for the C atom in the g-C3N4layer is 0.390 e, which indicates that the C atom is electron-accepted compared with the g-C3N4bulk phase (0.480 e) and N atom loses electrons.It is shown that a slight transfer of charge from the TiO2layer to the g-C3N4layer occurs at the interface. For the g-C3N4/TiO2–VN heterostructure as shown in Fig. 7(c),the O atom in the TiO2layer loses electrons, the N atom in the g-C3N4layer gains electrons, and the electron transfer at the interface is the same as that for the g-C3N4/TiO2–VC heterostructure.

    Fig.7. Mulliken population analysis of(a)g-C3N4/TiO2–H heterostructure,(b)g-C3N4/TiO2–VC heterostructure,and(c)g-C3N4/TiO2–VN heterostructure.

    3.3. Built-in electric fields

    The calculated electronic potential and planar-averaged charge density difference along the normal direction of the interface are depicted in Figs.1–3. For the g-C3N4/TiO2–H heterostructure, as shown in Fig. 1(b), the average potential of TiO2is -15.73 eV, which is significantly lower than that of g-C3N4(-11.20 eV).At the interface,the electronic potential has a mutation along the normal direction of the interface due to the crystal lattices of the atoms arranged on both sides being not consistent. In addition, the relaxation of the position of the interface atoms causes the arrangement of atoms in the interface to be different from that of the lattice lattices on both sides. Therefore,the electrostatic potential in the interface region is also different from the potential distribution on both sides. It is found that there is a significant mutation in the average electrostatic potential at the interface,and an interfacial electric field is formed in a narrow interval, and the direction of the electric field is directed from TiO2to g-C3N4. Under the action of the electric field, the carriers are each drifted in the direction of the applied electric field force. This is advantageous for improving photocatalytic performance. As shown in Fig.1(c),it is found that the electron density of the g-C3N4at the interface decreases, and the charge density in the TiO2layer increases, which indicates that there is a charge transfer along the direction from g-C3N4to TiO2. This result is consistent with the analysis of the Mulliken population above.In other words,a dipole moment is generated at the interface.That is to say, the generation of the dipole moment at the interface creates a built-in electric field, which is advantageous for improving the separation efficiency of carriers at the interface and suppressing the recombination of photo-generated electron–hole pairs.Moreover,the situation that the charge depletion and accumulation mainly occur between the TiO2slab and the g-C3N4slab also demonstrates that the interaction between TiO2and g-C3N4is very weak, which means that the g-C3N4/TiO2–H possesses a vdW heterostructure.

    The electrostatic potential along the interfacial normal direction of g-C3N4/TiO2–VC heterostructure is illustrated in Fig. 2(b). The obvious feature is that the potential of TiO2layer (with an average potential of -18.8 eV) is lower than that of g-C3N4layer(with an average potential of-1.72 eV).When the g-C3N4and TiO2contact each other and form a vertical hetero-structure,at the interface,the average electrostatic potential has a very obvious mutation,and a strong interfacial electric field is formed in a narrow interval,which contributes to the separation of electrons and holes.The difference in average electron density along the normal direction of the interface is shown in Fig. 2(c). It is found that the accumulation layer of electrons is formed on the TiO2side,and a depletion layer is formed on the g-C3N4side at the interface. This indicates that a small quantity of charge transfer from the TiO2layer to the g-C3N4layer at the interface,which is consistent with the result of the Mulliken population analysis above.

    For the g-C3N4/TiO2–VN heterostructure as shown in Figs. 3(b) and 3(c), the accumulation region of charge at the interface is close to the g-C3N4layer and some peaks appear,and the charge dispersion region is close to the TiO2layer,which is the opposite to the scenario for g-C3N4/TiO2–VC.This shows that this has a weakening effect on the built-in electric field produced at the interface. However, the situation of the potential in the normal direction along the interface is the same as that of the g-C3N4/TiO2–VC heterostructure. A dipole moment is generated at the interface, and the built-in electric field thus caused contributes to enhancing photocatalytic performance.

    Based on the above analysis, in the cases of g-C3N4/TiO2–H and g-C3N4/TiO2–VC heterostructures, the electrons accumulate in the center of interfacial region,while in the case of g-C3N4/TiO2–VN heterostructure,the electrons accumulate on the side of g-C3N4layer. The electrons’transfer and accumulation will generate an additional electric field.In the former two cases, these additional electric fields can weaken the interfacial built-in electric field, which is generated by the lattice potential. In summary, the built-in interfacial electric field is directed from TiO2(001)layer to g-C3N4layer.Moreover,the additional electric field produced by electron transfer in the case of g-C3N4/TiO2–VN heterostructure will obviously enhance this electric field. On the other hand,the calculated results of electronic structures indicate that the photo-generated electrons will be transferred from the CB of g-C3N4layer to the CB of TiO2layer, which is consistent with recent experimental observations.[40–44]Thus,the photogenerated electron transfer process will be accelerated under the action of interfacial electric field. Therefore, the forming of the interface between g-C3N4and TiO2is conducive to the separation of photo-generated electron–hole pairs,and the improvement of the performance of g-C3N4and TiO2composite photocatalyst,which is found in recent experiments.[40–44]

    4. Conclusions

    Three kinds of g-C3N4/TiO2heterstructures are considered and compared in the present work. When g-C3N4combines horizontally with TiO2to form a heterostructure, they are combined through van der Waals interaction. The spacing between two layers is larger and the interface formation energy is smaller. Although there is an electric field built into the interface between the two components, it is difficult to transfer electrons between them due to the large spatial hindrance. However, the interfacial van der Waals interaction can regulate the electronic structure on both sides of the interface, so that the photocatalytic reaction can be carried out independently on both sides of the interface, which can promote the improvement of photocatalytic performance. When g-C3N4combines vertically with TiO2to form a heterostructure through C atoms, they have strong covalent interaction.The spacing between two layers is smaller and the interface formation energy is larger. There is a built-in electric field between the two components,and the atoms are bonded to each other, making it very easy for electrons to transport between them. At the same time,the interfacial interaction can further regulate the electronic structure on both sides,so that the photocatalytic reaction can be carried out independently on both sides of the interface,which can significantly enhance the photocatalytic performance. The latter g-C3N4/TiO2heterostructure is relatively difficult to synthesize in experiment,but it is worth trying. These findings provide some helpful guidances in developing the g-C3N4/TiO2heterostructure-based photocatalysts.

    亚洲精品一区av在线观看| 亚洲av成人av| 99热这里只有是精品50| 村上凉子中文字幕在线| 色综合欧美亚洲国产小说| 亚洲av美国av| 真实男女啪啪啪动态图| 午夜福利高清视频| 日韩亚洲欧美综合| 大型黄色视频在线免费观看| 国产美女午夜福利| 久久人人精品亚洲av| 亚洲国产日韩欧美精品在线观看| 婷婷色综合大香蕉| 亚洲成人久久爱视频| 亚洲av成人不卡在线观看播放网| 热99re8久久精品国产| .国产精品久久| 精品一区二区三区av网在线观看| 日本精品一区二区三区蜜桃| 国产午夜福利久久久久久| 国产又黄又爽又无遮挡在线| 国产欧美日韩一区二区精品| 我的女老师完整版在线观看| 午夜福利在线观看免费完整高清在 | 国产成人a区在线观看| 俺也久久电影网| 久久草成人影院| 少妇人妻一区二区三区视频| 一区二区三区激情视频| 国产精品电影一区二区三区| 午夜精品在线福利| 一个人免费在线观看的高清视频| 少妇裸体淫交视频免费看高清| av在线天堂中文字幕| 我的老师免费观看完整版| 蜜桃久久精品国产亚洲av| 69人妻影院| 成人国产综合亚洲| 精品人妻一区二区三区麻豆 | 18禁黄网站禁片免费观看直播| 国产高清三级在线| 午夜免费激情av| 国产不卡一卡二| 日本成人三级电影网站| 欧美国产日韩亚洲一区| 免费大片18禁| 精品久久久久久,| 一本综合久久免费| 日本在线视频免费播放| 一本一本综合久久| 色哟哟·www| 久久久久久大精品| 99久国产av精品| 久久九九热精品免费| 免费人成视频x8x8入口观看| 午夜福利免费观看在线| av欧美777| 神马国产精品三级电影在线观看| 内射极品少妇av片p| 欧美成人免费av一区二区三区| 日韩欧美精品免费久久 | 91麻豆av在线| 亚洲av免费高清在线观看| 欧美zozozo另类| 99在线人妻在线中文字幕| av欧美777| 国产精品影院久久| 全区人妻精品视频| 18+在线观看网站| 别揉我奶头 嗯啊视频| 久久久久九九精品影院| 国产精品精品国产色婷婷| 免费高清视频大片| 午夜福利在线在线| 欧美日韩瑟瑟在线播放| 欧美丝袜亚洲另类 | 香蕉av资源在线| 一级黄色大片毛片| 深爱激情五月婷婷| 91午夜精品亚洲一区二区三区 | 国模一区二区三区四区视频| 亚洲av中文字字幕乱码综合| 国产淫片久久久久久久久 | 能在线免费观看的黄片| 18禁在线播放成人免费| 91久久精品电影网| 亚洲天堂国产精品一区在线| 欧美在线一区亚洲| 国产精品日韩av在线免费观看| 午夜福利欧美成人| 国产免费一级a男人的天堂| 波野结衣二区三区在线| 国产精品人妻久久久久久| 久久国产精品人妻蜜桃| 亚洲欧美激情综合另类| 免费观看的影片在线观看| 国内毛片毛片毛片毛片毛片| 免费电影在线观看免费观看| 亚洲精品日韩av片在线观看| 国产高清视频在线播放一区| 免费av不卡在线播放| 久久久国产成人免费| 日日夜夜操网爽| x7x7x7水蜜桃| 18禁黄网站禁片午夜丰满| 亚洲av免费高清在线观看| 亚洲五月天丁香| 制服丝袜大香蕉在线| 久久99热这里只有精品18| 亚洲av成人不卡在线观看播放网| 欧美区成人在线视频| 老熟妇乱子伦视频在线观看| 18+在线观看网站| 中文字幕久久专区| 精品久久久久久成人av| 国产精品嫩草影院av在线观看 | 欧美日本视频| 99精品在免费线老司机午夜| 欧美极品一区二区三区四区| 久久草成人影院| 欧美色视频一区免费| 99久久无色码亚洲精品果冻| 一级毛片久久久久久久久女| 男女床上黄色一级片免费看| 亚洲美女视频黄频| 久久久成人免费电影| 亚洲国产精品999在线| 欧美一区二区精品小视频在线| 夜夜看夜夜爽夜夜摸| 免费av观看视频| 精品久久久久久久久久免费视频| 久久久久精品国产欧美久久久| 老司机午夜福利在线观看视频| 一进一出抽搐动态| 亚洲精华国产精华精| 欧美xxxx黑人xx丫x性爽| 免费观看人在逋| 日韩欧美免费精品| 欧美日韩中文字幕国产精品一区二区三区| 日韩成人在线观看一区二区三区| 亚洲精品一区av在线观看| 老熟妇仑乱视频hdxx| 国产一区二区三区视频了| 在线观看免费视频日本深夜| 日韩欧美在线乱码| 精品一区二区三区av网在线观看| 99热这里只有精品一区| 日韩欧美在线二视频| 特大巨黑吊av在线直播| 国产中年淑女户外野战色| 久久久色成人| 日韩亚洲欧美综合| 久久久国产成人免费| 欧美成人性av电影在线观看| 一级毛片久久久久久久久女| 听说在线观看完整版免费高清| www.色视频.com| 国产极品精品免费视频能看的| 欧美区成人在线视频| 欧美激情国产日韩精品一区| 国产精品不卡视频一区二区 | 久久国产乱子伦精品免费另类| 日本免费一区二区三区高清不卡| 伦理电影大哥的女人| 国产精品亚洲美女久久久| 在线国产一区二区在线| 在线播放国产精品三级| 蜜桃久久精品国产亚洲av| 日本撒尿小便嘘嘘汇集6| 国产精品女同一区二区软件 | 亚洲av电影不卡..在线观看| 亚洲人成伊人成综合网2020| 久久久国产成人精品二区| 成年免费大片在线观看| 真人一进一出gif抽搐免费| 欧美日韩乱码在线| 性色av乱码一区二区三区2| 欧美性感艳星| 欧美精品国产亚洲| 女生性感内裤真人,穿戴方法视频| 日本精品一区二区三区蜜桃| 久久精品国产自在天天线| 免费看a级黄色片| 久久久色成人| 久久6这里有精品| 国产精品精品国产色婷婷| 亚洲av一区综合| 国产一区二区三区在线臀色熟女| 色综合站精品国产| 亚州av有码| 一个人免费在线观看电影| 天美传媒精品一区二区| 天堂√8在线中文| 一a级毛片在线观看| 3wmmmm亚洲av在线观看| 又粗又爽又猛毛片免费看| 我的老师免费观看完整版| 每晚都被弄得嗷嗷叫到高潮| 在线天堂最新版资源| 亚洲电影在线观看av| 久久国产精品影院| 免费看光身美女| 国产亚洲精品av在线| 免费av观看视频| 在线观看舔阴道视频| 国产激情偷乱视频一区二区| 国产亚洲精品综合一区在线观看| 国产精品人妻久久久久久| 久久久久久久久久成人| 久久精品国产亚洲av涩爱 | 成熟少妇高潮喷水视频| 日本在线视频免费播放| 在线观看舔阴道视频| 国产精品影院久久| 精品人妻视频免费看| 宅男免费午夜| 午夜福利免费观看在线| 成人午夜高清在线视频| 美女cb高潮喷水在线观看| 非洲黑人性xxxx精品又粗又长| 桃色一区二区三区在线观看| xxxwww97欧美| 国产单亲对白刺激| 国产大屁股一区二区在线视频| 久久久精品大字幕| av黄色大香蕉| 精品人妻一区二区三区麻豆 | 国产探花极品一区二区| 国产精品一区二区三区四区免费观看 | 亚洲国产高清在线一区二区三| 自拍偷自拍亚洲精品老妇| 精华霜和精华液先用哪个| 欧美黄色片欧美黄色片| 国产精品自产拍在线观看55亚洲| 啪啪无遮挡十八禁网站| bbb黄色大片| 国内久久婷婷六月综合欲色啪| 中文字幕人妻熟人妻熟丝袜美| 亚洲午夜理论影院| 白带黄色成豆腐渣| 91午夜精品亚洲一区二区三区 | 悠悠久久av| 亚洲精品日韩av片在线观看| 欧美精品国产亚洲| 我要搜黄色片| 一本一本综合久久| 极品教师在线视频| 欧美潮喷喷水| 女同久久另类99精品国产91| 91字幕亚洲| 国产免费av片在线观看野外av| 国产精品爽爽va在线观看网站| 日韩高清综合在线| 亚洲精品456在线播放app | 国内久久婷婷六月综合欲色啪| av在线老鸭窝| 色综合婷婷激情| 夜夜看夜夜爽夜夜摸| 亚洲国产精品sss在线观看| 天堂动漫精品| 啪啪无遮挡十八禁网站| 亚洲人与动物交配视频| 久久伊人香网站| 91九色精品人成在线观看| 午夜两性在线视频| 少妇被粗大猛烈的视频| 亚洲内射少妇av| 色精品久久人妻99蜜桃| 亚洲人成伊人成综合网2020| 亚洲不卡免费看| 在线观看舔阴道视频| 麻豆久久精品国产亚洲av| 午夜福利欧美成人| 亚洲av电影在线进入| 午夜免费激情av| 久久精品国产99精品国产亚洲性色| av在线老鸭窝| 亚洲国产精品合色在线| 91久久精品电影网| 久久久久久久久大av| 制服丝袜大香蕉在线| 五月玫瑰六月丁香| 亚洲精品影视一区二区三区av| 尤物成人国产欧美一区二区三区| 美女免费视频网站| 精品一区二区三区视频在线| 在线播放无遮挡| 日本黄大片高清| 婷婷精品国产亚洲av| 欧美在线黄色| 99在线视频只有这里精品首页| 日日摸夜夜添夜夜添av毛片 | 悠悠久久av| 丝袜美腿在线中文| 99久久99久久久精品蜜桃| 国产精品久久久久久精品电影| 99精品久久久久人妻精品| 免费看光身美女| 日韩欧美三级三区| 欧美色欧美亚洲另类二区| 亚洲av二区三区四区| 国产精品自产拍在线观看55亚洲| 欧美国产日韩亚洲一区| av中文乱码字幕在线| 在线观看午夜福利视频| 91在线观看av| 波多野结衣高清作品| 99热6这里只有精品| 国产老妇女一区| 琪琪午夜伦伦电影理论片6080| 又爽又黄a免费视频| av天堂在线播放| 一边摸一边抽搐一进一小说| 亚洲一区二区三区不卡视频| 欧美黄色片欧美黄色片| 特大巨黑吊av在线直播| 久久香蕉精品热| 国产精品精品国产色婷婷| 色尼玛亚洲综合影院| 精品一区二区三区人妻视频| а√天堂www在线а√下载| 啦啦啦观看免费观看视频高清| 五月伊人婷婷丁香| 国产人妻一区二区三区在| 婷婷精品国产亚洲av| 国产亚洲欧美在线一区二区| 久久草成人影院| 欧美区成人在线视频| 免费人成视频x8x8入口观看| 欧美不卡视频在线免费观看| 99国产精品一区二区蜜桃av| 日韩精品中文字幕看吧| 两个人视频免费观看高清| 国产伦在线观看视频一区| 久久久久久大精品| 欧美高清成人免费视频www| 精品久久国产蜜桃| 麻豆一二三区av精品| 国产精品一区二区三区四区久久| 高潮久久久久久久久久久不卡| 欧美黄色片欧美黄色片| 亚洲在线自拍视频| 亚洲av成人av| 美女被艹到高潮喷水动态| 国产欧美日韩精品亚洲av| 观看免费一级毛片| 男女床上黄色一级片免费看| 日韩大尺度精品在线看网址| 变态另类丝袜制服| 天堂av国产一区二区熟女人妻| 天堂动漫精品| 国产精品电影一区二区三区| 成年女人永久免费观看视频| 久久久久久久久中文| 久久精品综合一区二区三区| 国产精品人妻久久久久久| 午夜福利免费观看在线| 91九色精品人成在线观看| 最近视频中文字幕2019在线8| 亚洲中文日韩欧美视频| 极品教师在线免费播放| 内射极品少妇av片p| 日本免费a在线| 国产精品99久久久久久久久| 狠狠狠狠99中文字幕| 日韩国内少妇激情av| 一夜夜www| 亚洲欧美日韩东京热| 国产伦人伦偷精品视频| 国内精品一区二区在线观看| 中亚洲国语对白在线视频| 亚洲经典国产精华液单 | 中文资源天堂在线| 午夜亚洲福利在线播放| 亚洲国产精品合色在线| 国产精品久久视频播放| 成年女人看的毛片在线观看| 成人av在线播放网站| 日本免费一区二区三区高清不卡| x7x7x7水蜜桃| 亚洲欧美日韩无卡精品| 精品久久久久久成人av| 91麻豆精品激情在线观看国产| 乱码一卡2卡4卡精品| 免费电影在线观看免费观看| 人妻丰满熟妇av一区二区三区| 欧美精品国产亚洲| 久久久久久久久中文| 我要看日韩黄色一级片| 欧美精品啪啪一区二区三区| 午夜福利在线观看吧| 九九在线视频观看精品| 国产精品嫩草影院av在线观看 | 搡老岳熟女国产| 午夜福利成人在线免费观看| 丰满的人妻完整版| 午夜精品一区二区三区免费看| АⅤ资源中文在线天堂| 99久久99久久久精品蜜桃| 偷拍熟女少妇极品色| 国产探花极品一区二区| 精品久久久久久久末码| 亚洲中文字幕一区二区三区有码在线看| 久久久色成人| 亚洲av成人不卡在线观看播放网| 久久精品国产99精品国产亚洲性色| 18禁黄网站禁片免费观看直播| 中文字幕免费在线视频6| 草草在线视频免费看| 午夜久久久久精精品| 国产成年人精品一区二区| 国产精品电影一区二区三区| 俄罗斯特黄特色一大片| 老熟妇乱子伦视频在线观看| 男人的好看免费观看在线视频| 国内精品美女久久久久久| 熟女人妻精品中文字幕| 2021天堂中文幕一二区在线观| 久久草成人影院| 热99在线观看视频| 久久久精品大字幕| 嫩草影院精品99| 特级一级黄色大片| 性插视频无遮挡在线免费观看| 熟女电影av网| 18禁黄网站禁片午夜丰满| av中文乱码字幕在线| 婷婷丁香在线五月| 色吧在线观看| 天堂av国产一区二区熟女人妻| 国产精品精品国产色婷婷| 国产伦一二天堂av在线观看| 嫩草影院入口| 两个人的视频大全免费| 最新在线观看一区二区三区| 搡女人真爽免费视频火全软件 | 欧美色视频一区免费| 亚洲精品亚洲一区二区| 亚洲av不卡在线观看| 男女做爰动态图高潮gif福利片| 亚洲人成网站在线播| 18禁黄网站禁片免费观看直播| 亚洲国产精品久久男人天堂| 男女床上黄色一级片免费看| 国产精品不卡视频一区二区 | 欧美日韩黄片免| 亚洲人成电影免费在线| 精品人妻视频免费看| 亚洲美女搞黄在线观看 | 久久精品国产亚洲av香蕉五月| 又黄又爽又刺激的免费视频.| 亚洲国产欧美人成| 在线十欧美十亚洲十日本专区| 99久久无色码亚洲精品果冻| 身体一侧抽搐| 免费在线观看亚洲国产| 老司机午夜福利在线观看视频| 久久精品久久久久久噜噜老黄 | 人妻夜夜爽99麻豆av| 很黄的视频免费| 少妇被粗大猛烈的视频| 精品久久久久久久久久免费视频| 亚洲最大成人av| 国产精品一区二区三区四区免费观看 | 一区福利在线观看| 日韩大尺度精品在线看网址| 国内毛片毛片毛片毛片毛片| 在线a可以看的网站| 成人av在线播放网站| 久久人人精品亚洲av| 亚洲国产精品久久男人天堂| www.色视频.com| 日日夜夜操网爽| 日本免费a在线| 变态另类成人亚洲欧美熟女| 国产美女午夜福利| 色噜噜av男人的天堂激情| 日本一本二区三区精品| 极品教师在线免费播放| 麻豆成人av在线观看| 久9热在线精品视频| 午夜福利18| 又爽又黄a免费视频| 琪琪午夜伦伦电影理论片6080| 一个人看视频在线观看www免费| 久久久久国内视频| 久久欧美精品欧美久久欧美| 亚洲av不卡在线观看| 欧美黑人欧美精品刺激| 国产伦在线观看视频一区| 欧美成人一区二区免费高清观看| 91午夜精品亚洲一区二区三区 | 国产精品98久久久久久宅男小说| 成人av在线播放网站| 亚洲国产精品999在线| 中文字幕免费在线视频6| 国产高清视频在线观看网站| 欧美乱色亚洲激情| 俺也久久电影网| 久久欧美精品欧美久久欧美| 日本在线视频免费播放| 亚洲av日韩精品久久久久久密| 又黄又爽又免费观看的视频| 1024手机看黄色片| av国产免费在线观看| 亚洲在线自拍视频| 国产黄色小视频在线观看| 亚洲 欧美 日韩 在线 免费| 成年免费大片在线观看| 亚洲,欧美精品.| 欧美日本视频| 久久久久九九精品影院| 日本与韩国留学比较| 国产在视频线在精品| or卡值多少钱| 在线观看免费视频日本深夜| 在线看三级毛片| 免费av毛片视频| 午夜日韩欧美国产| 亚洲精品久久国产高清桃花| 亚洲真实伦在线观看| 午夜久久久久精精品| 我要看日韩黄色一级片| 亚洲人成网站在线播放欧美日韩| 97超级碰碰碰精品色视频在线观看| 国产精品久久久久久精品电影| 人人妻人人看人人澡| 国产精品久久视频播放| av天堂在线播放| 午夜久久久久精精品| 最近视频中文字幕2019在线8| 麻豆成人av在线观看| 老司机午夜十八禁免费视频| 国产精品久久久久久精品电影| 免费av观看视频| 成人无遮挡网站| av在线观看视频网站免费| 国产大屁股一区二区在线视频| av在线天堂中文字幕| 日本黄色视频三级网站网址| 久久精品国产99精品国产亚洲性色| 深夜精品福利| 搞女人的毛片| 午夜精品久久久久久毛片777| 色噜噜av男人的天堂激情| 日日摸夜夜添夜夜添小说| 丝袜美腿在线中文| 嫩草影视91久久| 又爽又黄a免费视频| 极品教师在线免费播放| 午夜福利在线观看免费完整高清在 | 国产一区二区三区视频了| 亚洲第一欧美日韩一区二区三区| 亚洲熟妇熟女久久| 少妇高潮的动态图| 成人性生交大片免费视频hd| 亚洲成人精品中文字幕电影| 日韩大尺度精品在线看网址| 国产高清有码在线观看视频| 日本免费一区二区三区高清不卡| 亚洲人成网站在线播| 国产精品三级大全| 在线观看66精品国产| 夜夜夜夜夜久久久久| 男女床上黄色一级片免费看| 欧美激情久久久久久爽电影| 一进一出抽搐动态| 高清日韩中文字幕在线| 久久精品国产亚洲av涩爱 | 91字幕亚洲| 久久伊人香网站| 露出奶头的视频| 成人特级黄色片久久久久久久| 国产单亲对白刺激| 有码 亚洲区| 三级男女做爰猛烈吃奶摸视频| 夜夜夜夜夜久久久久| 十八禁网站免费在线| 看十八女毛片水多多多| 在线看三级毛片| 精品午夜福利在线看| 99久久九九国产精品国产免费| 三级毛片av免费| 欧美午夜高清在线| 一个人看视频在线观看www免费| 国产真实乱freesex| 精品一区二区免费观看| 欧美激情国产日韩精品一区| 成人av在线播放网站| 国产精品久久久久久精品电影| 欧美乱色亚洲激情| 久99久视频精品免费| 久久久成人免费电影| 午夜日韩欧美国产| 亚洲成av人片免费观看| 日本 av在线| 欧美日本视频| 久9热在线精品视频| 国产免费av片在线观看野外av| 国产熟女xx| 国产真实乱freesex| 亚洲激情在线av| 免费看光身美女| 午夜激情福利司机影院| 亚洲18禁久久av| 波野结衣二区三区在线| 又爽又黄无遮挡网站| 国产黄a三级三级三级人| 女同久久另类99精品国产91| 国产精品久久久久久久久免 | 免费观看精品视频网站| 欧美xxxx黑人xx丫x性爽| 精品久久久久久,| 精品久久久久久久人妻蜜臀av|