• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Temperature-induced phase transition of two-dimensional semiconductor GaTe*

    2021-01-21 02:13:26XiaoyuWang王嘯宇XueWang王雪HongshuaiZou鄒洪帥YuhaoFu付鈺豪XinHe賀欣andLijunZhang張立軍
    Chinese Physics B 2021年1期
    關(guān)鍵詞:王雪

    Xiaoyu Wang(王嘯宇), Xue Wang(王雪), Hongshuai Zou(鄒洪帥),Yuhao Fu(付鈺豪), Xin He(賀欣),?, and Lijun Zhang(張立軍),§

    1State Key Laboratory of Integrated Optoelectronics,Key Laboratory of Automobile Materials of MOE,College of Materials Science and Engineering,Jilin University,Changchun 130012,China

    2State Key Laboratory of Superhard Materials,College of Physics,Jilin University,Changchun 130012,China

    Keywords: two-dimensional semiconductor GaTe, temperature-induced phase transition, first-principles calculation,quasi-harmonic approximation

    1. Introduction

    In recent years, two-dimensional (2D) semiconductors,bonded through van der Waals forces, have attracted extensive research interests due to their extraordinary properties and potential applications in electronic and optoelectronic devices.[1–5]They have unique layer-dependent electronic properties. III–VIA compound gallium telluride(GaTe)is a 2D layered semiconductor with a moderate direct bandgap of ~1.65 eV[6–8]and a high photoresponsivity for few-layer sheets (104A/W),[9]which render it great potential applications in the field of optoelectronic devices.[10–12]However,current studies on 2D GaTe have obvious limitations. There are two phases of GaTe reported, the monoclinic phase (m-GaTe, space group C2/m) and the hexagonal phase (h-GaTe,space group P63/mmc),[13–16]but current studies are still exclusively restricted to the m-GaTe owing to the difficulty in the fabrication of 2D h-GaTe. Unlike the situation in other III–VIA 2D semiconductor materials,such as GaS,GaSe,and InSe,[17–19]the most stable phase of GaTe under room temperature is the low symmetry monoclinic phase, rather than the high symmetry hexagonal phase.[20]

    The phase transition between the monoclinic and hexagonal phases of GaTe was reported experimentally. Gillan et al.fabricated h-GaTe using the metal-organic chemical vapor deposition technique. They found that h-GaTe gradually transformed into m-GaTe upon annealing at 500?C.[15]Yu et al.succeeded in driving the GaTe phase transition from h-GaTe to m-GaTe using laser irradiation.[20]Zhao et al. obtained h-GaTe by stripping several layers of m-GaTe. They proposed a two-stage transformation mechanism. Firstly, m-GaTe transformed into a tetragonal phase (t-GaTe), then t-GaTe transformed into h-GaTe spontaneously.[21]Both annealing and laser irradiation were accompanied by temperature changes.Gillan et al. mentioned that controlling the synthesis temperature affects the lattice structure of the product.Therefore,temperature variation should be the most important factor,which influences the phase transition process of GaTe.

    In this paper,we investigated the phase transition of GaTe by using quasi-harmonic approximation(QHA)to estimate the Gibbs free energy.[22]We predicted a phase transition from h-GaTe to m-GaTe when the temperature is lowered to 261 K within the QHA method. The calculated results are consistent with the phase transition process from h-GaTe to m-GaTe with the cooling annealing and laser cooling irradiation treatment in the experiments.[15,20]We also used the nudged elastic band(NEB) method[23,24]to estimate the barriers and transition state structures of the phase transition from m-GaTe to t-GaTe and from t-GaTe to h-GaTe. We obtained that the m-GaTe to t-GaTe transition process has a barrier of 199 meV/formula and the t-GaTe to h-GaTe phase transition has a barrier of 288 meV/formula. The relatively high energy barriers demonstrate the irreversible nature of the phase transition, which is consistent with the experimentally observed results. In addition, we further investigated the thermodynamic stable, electronic,and phonon properties of m-GaTe to t-GaTe phases. It was found that the calculated bandgap values and the Raman spectra are in satisfactory agreement with the experimental results,indicating the reliability of our results.

    2. Method

    We performed first-principles calculations based on density functional theory,as implemented in the Vienna ab initio simulation package.[25–27]The electron–core interaction was described by using the projected augmented wave pseudopotentials. The 4s24p1(Ga) and 5s25p4(Te) were treated explicitly as valence electrons. We used the generalized gradient approximation in the Perdew–Burke–Ernzerhof[28]form as the exchange-correlation functional. Structure optimization(including lattice parameters and internal atomic positions)was performed using the conjugate gradient technique[29]until the energy converged to 10-6eV and the force converged to 0.005 eV/?A.A kinetic energy cutoff of 230 eV was used for the wave-function expansion and a grid spacing of 2π×0.03 ?A-1was used for electronic Brillouin zone integration.To properly take into account the long-range van der Waal(vdW)interactions, after a serious of tests to vdW-optB86b, vdW-optB88,vdW-optPBE, and vdW-DF2 functional, the vdW-optB86b functional was adopted.[30]Since the standard density functional tends to underestimate the band gap of semiconductors, the higher-level hybrid density functional HSE06[31]was used to calculate the electronic structures.[32,33]Spinorbit coupling was taken into consideration since it is potentially important for electronic structures of heavy p-electron systems. The phase transition barriers were calculated using the NEB method in conjunction with the climbing image method.[23,24,34]Harmonic phonons properties were calculated using the real-space supercell approach as implemented in the PHONOPY code.[35,36]We obtained the temperature dependence of the Gibbs free energy for m-GaTe and h-GaTe by using the QHA theory,[37]which has been successfully used in describing temperature-induced phase transition processes.[22,38–40]

    3. Results and discussion

    Figures 1(a) and 1(b) show the crystal structures of m-GaTe and h-GaTe, respectively. Both phases have layered structures, with two Ga atoms sandwiched between two Te atoms in each layer. But it is clear that the two structures are quite different in the atom arrangements. In h-GaTe phase,each Ga atom is bonded to one Ga atom and three Te atoms,and the two sublayers present an AA stacking along the perpendicular direction to form bulk,with the weak van der Waals interaction between layers. In contrast,the crystal of m-GaTe demonstrates a distorted layer-structure in which one-third of the Ga–Ga bonds turn from vertical to horizontal towards to the layer plane. The optimized lattice parameters are shown in Table 1, and the corresponding experimental data are also list for reference.[16,41,42]The monoclinic phase m-GaTe with space group C2/m has the lattice parameters of a=17.440 ?A,b=4.129 ?A, c=10.511 ?A, α =γ =90?, and β =103.8?.The hexagonal phase h-GaTe with space group P63/mmc has the lattice parameters of a = b = 4.106 ?A, c = 16.918 ?A,α =β =90?, and γ =120?. Our structural optimization results well agree with the reported experimental values,with an error less than 1%.

    Fig.1. The side and top views of crystal structures of m-GaTe(a)and h-GaTe(b). The elements of Ga and Te are in blue and brown,respectively.

    Table 1. Experimental(Exp.) and calculated(Cal.) lattice parameters(in ?A)of m-GaTe and h-GaTe.

    Now, we turn to the phase transition temperature of GaTe. We determined the temperature of phase transition by comparing the Gibbs free energy as a function of temperature at constant pressure. The quasi-harmonic approximation is a phonon-based model of solid-state physics used to describe volume-dependent thermal effects. Within the QHA method,[37]the Helmholtz free energy at temperature T and equilibrium lattice volume V is defined as

    where q is all wave vectors and λ is all three phonon branches in the first Brillouin zone. kBis the Boltzmann constant, ? is the reduced Planck constant, and ωqλ(V)is the frequency of the phonon. Then the Gibbs free energy is obtained by minimizing the free energy,

    where minV[function of V]means to find the unique minimum value in the brackets by changing the volume. Figure 2(a)shows the curves of the Gibbs free energy with respect to temperature of m-GaTe and h-GaTe. The curve intersects at 261 K.Therefore,we proved the possibility of a temperatureinduced phase transition between the two phases and predicted the theoretical phase transition temperature of 261 K.

    We further obtained the trend of volume change with temperature, as shown in Fig. 2(b). The volume of m-GaTe is smaller than that of h-GaTe over the studied temperature range. Meanwhile, the thermal expansion coefficient of m-GaTe is higher.Therefore,in the phase transition process from m-GaTe to h-GaTe,the crystal lattice of h-GaTe suffers growing compressive stress during the nucleation and growth process.As a result,the phase transition requires a greater driving force,and the actual phase transition temperature of the heating process might be higher than the theoretical phase transition temperature. The current analysis also provides a new perspective for understanding the spontaneous phase transition from m-GaTe to h-GaTe caused by the exfoliating process:when the bulk GaTe is exfoliated into layered GaTe,the stress is released. According to the relationship of Gibbs free energy described above, there will be a spontaneous phase transition from m-GaTe to h-GaTe under room temperature.

    Fig. 2. (a) Gibbs free energy versus temperature of h-GaTe (red line)and m-GaTe (black line) curve. (b) Volume versus temperature of h-GaTe(red line)and m-GaTe(black line).

    In order to have an in-depth understanding of the phase transition of GaTe, we further calculated the energy barrier to obtain the energy required to accomplish the phase transition. We adopted a two-step phase transition process mechanism,which has been reported by Zhao et al.[21]The structure evolution and energy barriers have been identified by using NEB method with five and eight images as intermediate states for the phase transition process from m-GaTe to t-GaTe and from t-GaTe to h-GaTe, respectively. The results are shown in Fig.3. Both m-GaTe and h-GaTe have a layered structure,which means that the phase transformation occurs within the layers. The first step is the phase transition from m-GaTe to t-GaTe. In this process,the Ga–Ga bonds parallel to the layers are reversed and transformed into positions perpendicular to the layers. The process is accompanied by the breakage of the original Ga–Te bonds and the generation of new Ga–Te bonds.The transition state structure of the first step corresponds to the structure whose Ga–Te bonds are between the bond breaking and bond formation processes. The second step is the movement of the entire layer of Te atoms, resulting in the phase transition from t-GaTe to h-GaTe. The transition state structure of the second step corresponds to the structure whose Te atoms move to the intermediate critical positions between the Ga atoms. The barrier of the first process is 199 meV/formula and that of the second process is 288 meV/formula. Previous studies have shown that the phase transition barrier of~300 meV/formula is sufficiently large to demonstrate the stability of the phase transition product of indium selenide and tungsten ditelluride.[43,44]Therefore, the relatively high energy barriers ensure that the phase transition of GaTe is irreversible. We note that the phase transition from m-GaTe to t-GaTe is accompanied by bond formation and bond breaking,but the barrier is lower than that of the phase transition from t-GaTe to h-GaTe. This is due to the considerable atom movement in the t-GaTe to h-GaTe transition process, even half of the Te atoms are involved in the movement.

    Fig.3. Phase transition barriers from m-GaTe to h-GaTe and schematic representation of the bond and atom rearrangement in the phase transition process.

    Fig.4. (a),(b)Calculated orbital projected electronic band structures for m-GaTe(a)and h-GaTe(b). Red and blue colors represent projections onto constituting orbital species Te p and Ga p. (c) Calculated bandgap results by using HSE06 + SOC functional. (d) Calculated effective masses of electron(m*e)and hole(m*h).

    Figures 5(a) and 5(b) show the calculated phonon dispersion curves of m-GaTe and h-GaTe, which exhibit no imaginary modes in the whole Brillouin region, thus indicating that the two phases are kinetically stable. Figures 5(c) and 5(d) show our calculated Raman spectra, and the corresponding experimental data from previous works. The most active two peaks are 109.04 cm-1and 114.85 cm-1for m-GaTe in our calculation. They are in good agreement with the experimental measurements of 109 cm-1and 115 cm-1for freshly cleaved GaTe(Exp.1).[48]Due to oxidization,the m-GaTe Raman peaks decrease whereas the new peaks at wavenumbers 123 cm-1and 140 cm-1become prominent over time under ambient condition (Exp. 2).[49]However, previous works insisted on the two peaks belonging to intrinsic Raman peaks of h-GaTe.[20,49,50]In our calculated results for h-GaTe,the most active peak is 96.75 cm-1. The Raman spectra need more experimental and theoretical approaches for further clarification.

    Fig. 5. Calculated phonon dispersion and Raman spectra of (a), (c) m-GaTe and (b), (d) h-GaTe. Here theory is our result, compared with experiment results from previous reports(Exp.1,[48] Exp.2,[49] Exp.[20]).

    4. Conclusion and perspectives

    By using first-principles energetic and phonon calculations within the quasi-harmonic approximation framework,we investigated the temperature-induced phase transition process in two-dimensional semiconductor GaTe. We predicted that the phase transition from h-GaTe to m-GaTe will occur at the temperature decreasing to 216 K. Our results are consistent with the phase transition condition from h-GaTe to m-GaTe observed in the experiments, such as the cooling process during annealing and laser irradiation. Based on the previously reported two-step phase transition process, we used the nudged elastic band method to calculate the phase transition barriers and investigate the corresponding transition state structures. The m-GaTe to t-GaTe phase transition barrier is 199 meV/formula and the t-GaTe to h-GaTe phase transition barrier is 288 meV/formula. The large phase transition barriers demonstrate the irreversible nature of the phase transition. The structure evolution in the phase transition process indicated that the bond broken is responsible for the high energy barriers. The electronic and phonon properties of the two phases were further investigated by comparison with available experimental and theoretical results. The m-GaTe is a direct bandgap semiconductor with a gap of 1.449 eV, which is close to the experimental value. The h-GaTe is an indirect bandgap semiconductor whose fundamental energy bandgap is 0.608 eV (0.48 eV lower than the direct bandgap). Our calculated Raman spectra are in general agreement with the experimentally measured data. This work provides insightful understanding on the process of temperature-induced phase transition of GaTe.

    Acknowledgments

    We acknowledge stimulating discussions with Prof. Xuetao Gan (Northwestern Polytechnical University). Calculations were performed in part at the high-performance computing center of Jilin University.

    猜你喜歡
    王雪
    5200張照片的治愈之旅:抑郁母子逆風(fēng)自救
    終有歲月可回首
    幸福(2023年5期)2023-07-06 05:43:18
    終有歲月可回首
    伴侶(2022年6期)2022-07-14 09:49:19
    安徽省重要農(nóng)業(yè)文化遺產(chǎn)保護(hù)與傳承探究
    走一步,再走一步
    王雪、郁子琦、陳天琪、馬銘哲作品
    例談數(shù)形結(jié)合法的廣泛應(yīng)用
    祖國(guó)(2018年3期)2018-03-26 07:40:36
    吃貨的愛情
    女士(2017年8期)2017-08-08 18:44:31
    Analysis of Characters Shaping in Ring Lardner’s Haircut
    獄中“女兒”叫一聲媽媽淚花流
    女士(2015年6期)2015-05-30 10:48:04
    在线播放国产精品三级| 在线观看舔阴道视频| 欧美最新免费一区二区三区| 国内少妇人妻偷人精品xxx网站| 热99在线观看视频| 校园人妻丝袜中文字幕| 久久久久性生活片| 联通29元200g的流量卡| 人妻夜夜爽99麻豆av| 美女大奶头视频| 色哟哟·www| 色精品久久人妻99蜜桃| 老司机午夜福利在线观看视频| 亚洲中文日韩欧美视频| 国内精品美女久久久久久| 亚洲欧美日韩无卡精品| a级毛片a级免费在线| 免费观看的影片在线观看| 99久国产av精品| 精品久久久久久久人妻蜜臀av| 日本黄色视频三级网站网址| 男女做爰动态图高潮gif福利片| 日韩强制内射视频| 国产日本99.免费观看| 99精品在免费线老司机午夜| 国内少妇人妻偷人精品xxx网站| 天堂动漫精品| av女优亚洲男人天堂| 国产精品一区二区免费欧美| 动漫黄色视频在线观看| 国产男人的电影天堂91| 国产人妻一区二区三区在| 国产高清三级在线| 国产一区二区三区视频了| 日日撸夜夜添| 99久久精品国产国产毛片| 国产av一区在线观看免费| 欧美不卡视频在线免费观看| 最新中文字幕久久久久| 国产精品久久视频播放| 欧洲精品卡2卡3卡4卡5卡区| 欧美日韩瑟瑟在线播放| 亚洲精品在线观看二区| 制服丝袜大香蕉在线| 中文字幕精品亚洲无线码一区| 欧美最黄视频在线播放免费| 国内精品美女久久久久久| 欧美黑人欧美精品刺激| 三级毛片av免费| 国产av麻豆久久久久久久| 国内精品美女久久久久久| 精品午夜福利在线看| 一本久久中文字幕| 日韩大尺度精品在线看网址| 在线观看av片永久免费下载| 哪里可以看免费的av片| 国产中年淑女户外野战色| 美女被艹到高潮喷水动态| 人妻夜夜爽99麻豆av| 亚洲熟妇中文字幕五十中出| 毛片女人毛片| 观看免费一级毛片| 夜夜看夜夜爽夜夜摸| 我的女老师完整版在线观看| www.www免费av| 精品久久久久久成人av| 小说图片视频综合网站| 有码 亚洲区| 亚洲欧美日韩高清专用| 亚洲av中文字字幕乱码综合| 亚洲乱码一区二区免费版| 乱人视频在线观看| 如何舔出高潮| av.在线天堂| 亚洲av免费在线观看| 午夜免费激情av| 乱码一卡2卡4卡精品| 99视频精品全部免费 在线| 一进一出好大好爽视频| a在线观看视频网站| 国产大屁股一区二区在线视频| 精品不卡国产一区二区三区| 九九久久精品国产亚洲av麻豆| 性插视频无遮挡在线免费观看| 九九爱精品视频在线观看| 在线a可以看的网站| 国产精品av视频在线免费观看| 99国产精品一区二区蜜桃av| 美女 人体艺术 gogo| 内地一区二区视频在线| 国产亚洲精品综合一区在线观看| 精品一区二区三区人妻视频| av国产免费在线观看| 最近视频中文字幕2019在线8| 非洲黑人性xxxx精品又粗又长| 欧美高清成人免费视频www| 波多野结衣高清无吗| 欧美性猛交黑人性爽| 美女 人体艺术 gogo| 亚洲无线观看免费| av国产免费在线观看| 色播亚洲综合网| 99热这里只有精品一区| 国产午夜福利久久久久久| 波多野结衣高清作品| 别揉我奶头~嗯~啊~动态视频| 天堂av国产一区二区熟女人妻| 99国产极品粉嫩在线观看| 免费大片18禁| 人妻久久中文字幕网| 伦理电影大哥的女人| 草草在线视频免费看| 嫩草影院入口| 男女那种视频在线观看| 国产爱豆传媒在线观看| 一个人免费在线观看电影| 老司机福利观看| 国产精品不卡视频一区二区| 一级a爱片免费观看的视频| 免费搜索国产男女视频| 欧美最黄视频在线播放免费| 亚洲精品在线观看二区| 国模一区二区三区四区视频| 色综合婷婷激情| 免费在线观看影片大全网站| 国产精品女同一区二区软件 | 亚洲成人中文字幕在线播放| 日韩高清综合在线| 黄色欧美视频在线观看| 村上凉子中文字幕在线| 97热精品久久久久久| 亚洲欧美日韩东京热| 欧美+亚洲+日韩+国产| 久久久久久久午夜电影| 精品99又大又爽又粗少妇毛片 | 一区二区三区免费毛片| 日本在线视频免费播放| 久久精品人妻少妇| 两个人视频免费观看高清| 级片在线观看| 一进一出抽搐gif免费好疼| 亚州av有码| 亚洲国产色片| 久久久久免费精品人妻一区二区| 国产私拍福利视频在线观看| 美女 人体艺术 gogo| 搞女人的毛片| 在线免费观看的www视频| 久99久视频精品免费| 欧美日韩国产亚洲二区| 国产精品,欧美在线| 国产真实乱freesex| 中国美白少妇内射xxxbb| 少妇人妻一区二区三区视频| 一边摸一边抽搐一进一小说| 中文字幕久久专区| 精品久久久久久久久亚洲 | 精品人妻偷拍中文字幕| 国产高清有码在线观看视频| 黄色欧美视频在线观看| 日本与韩国留学比较| 69av精品久久久久久| 午夜久久久久精精品| 99久久久亚洲精品蜜臀av| 听说在线观看完整版免费高清| 欧美色欧美亚洲另类二区| 亚洲va日本ⅴa欧美va伊人久久| 男人舔女人下体高潮全视频| 美女 人体艺术 gogo| 日本熟妇午夜| 免费高清视频大片| 又爽又黄无遮挡网站| 亚洲av二区三区四区| 亚洲18禁久久av| 中文字幕精品亚洲无线码一区| 婷婷亚洲欧美| 成人特级av手机在线观看| 亚洲精品456在线播放app | 午夜激情福利司机影院| 色综合色国产| 亚洲无线在线观看| 老师上课跳d突然被开到最大视频| 日韩一本色道免费dvd| 天美传媒精品一区二区| 国产精品野战在线观看| 九九久久精品国产亚洲av麻豆| 在线免费十八禁| 免费看光身美女| 高清日韩中文字幕在线| 国产单亲对白刺激| 悠悠久久av| 日本爱情动作片www.在线观看 | 中文亚洲av片在线观看爽| 亚洲精品粉嫩美女一区| 蜜桃久久精品国产亚洲av| 两个人的视频大全免费| 欧美黑人巨大hd| 欧美一级a爱片免费观看看| 亚洲真实伦在线观看| 在线观看午夜福利视频| 亚洲欧美日韩东京热| 国产男人的电影天堂91| 九九爱精品视频在线观看| 12—13女人毛片做爰片一| 午夜亚洲福利在线播放| 午夜视频国产福利| 香蕉av资源在线| 三级毛片av免费| 国产精品98久久久久久宅男小说| 极品教师在线免费播放| 老师上课跳d突然被开到最大视频| 午夜福利在线在线| 久9热在线精品视频| 欧美+日韩+精品| 国产精品,欧美在线| 最新在线观看一区二区三区| 欧美一区二区精品小视频在线| 免费看美女性在线毛片视频| 午夜精品一区二区三区免费看| 美女大奶头视频| 亚洲欧美日韩高清专用| 小说图片视频综合网站| 久久久国产成人免费| 小蜜桃在线观看免费完整版高清| 久久久久久伊人网av| 别揉我奶头~嗯~啊~动态视频| 成人国产综合亚洲| 欧美一区二区亚洲| 窝窝影院91人妻| 欧美bdsm另类| 两人在一起打扑克的视频| 亚洲国产高清在线一区二区三| 免费大片18禁| 亚洲中文日韩欧美视频| 长腿黑丝高跟| 99久久成人亚洲精品观看| 成人国产一区最新在线观看| 久久国内精品自在自线图片| 免费看光身美女| 有码 亚洲区| 国产精品永久免费网站| 18禁黄网站禁片免费观看直播| 高清毛片免费观看视频网站| 久久久久国产精品人妻aⅴ院| 久久精品影院6| 国产精品久久电影中文字幕| 国产三级在线视频| 人妻少妇偷人精品九色| 小说图片视频综合网站| 色播亚洲综合网| 在线国产一区二区在线| 欧美精品国产亚洲| 亚洲第一电影网av| 午夜福利欧美成人| 美女高潮的动态| 永久网站在线| 日本 欧美在线| 国产亚洲精品综合一区在线观看| 变态另类丝袜制服| 老女人水多毛片| 国产午夜精品久久久久久一区二区三区 | 亚洲国产精品sss在线观看| 99在线视频只有这里精品首页| 网址你懂的国产日韩在线| 狂野欧美激情性xxxx在线观看| 亚洲天堂国产精品一区在线| 男女做爰动态图高潮gif福利片| 色视频www国产| 12—13女人毛片做爰片一| 久久午夜福利片| 亚洲性久久影院| 国产男人的电影天堂91| av在线老鸭窝| 黄色女人牲交| 成人亚洲精品av一区二区| 22中文网久久字幕| 在现免费观看毛片| 中文亚洲av片在线观看爽| 欧美zozozo另类| 欧美日本视频| a级毛片免费高清观看在线播放| 日韩欧美国产在线观看| 日韩精品有码人妻一区| 欧美日韩亚洲国产一区二区在线观看| 此物有八面人人有两片| bbb黄色大片| 国产精品亚洲一级av第二区| а√天堂www在线а√下载| 成人精品一区二区免费| 国产精品,欧美在线| 欧美极品一区二区三区四区| 无遮挡黄片免费观看| 给我免费播放毛片高清在线观看| 老女人水多毛片| 一个人看视频在线观看www免费| 欧美精品国产亚洲| 亚洲人成网站在线播| 国产精品一区二区三区四区免费观看 | 亚洲乱码一区二区免费版| 亚洲四区av| 欧美激情久久久久久爽电影| 日本免费a在线| 少妇的逼水好多| 国产精品一及| 又爽又黄a免费视频| 18禁黄网站禁片免费观看直播| 免费在线观看成人毛片| 999久久久精品免费观看国产| 校园人妻丝袜中文字幕| 欧美绝顶高潮抽搐喷水| 国产黄色小视频在线观看| 看片在线看免费视频| 国产男人的电影天堂91| 人妻丰满熟妇av一区二区三区| 黄色女人牲交| 中文字幕免费在线视频6| 日韩欧美精品v在线| 国产精品一区www在线观看 | 午夜激情欧美在线| 22中文网久久字幕| bbb黄色大片| 国产免费一级a男人的天堂| 一边摸一边抽搐一进一小说| 欧美日韩综合久久久久久 | 中文字幕高清在线视频| 国产高清视频在线观看网站| 亚洲av成人精品一区久久| 国内揄拍国产精品人妻在线| 亚洲av电影不卡..在线观看| 亚洲欧美日韩无卡精品| 国产v大片淫在线免费观看| 国产三级在线视频| 亚洲一区高清亚洲精品| 亚洲美女黄片视频| 久久精品国产亚洲网站| 一区二区三区高清视频在线| 国产精品久久久久久av不卡| 在线观看66精品国产| 欧美zozozo另类| 天天一区二区日本电影三级| 国产精品女同一区二区软件 | 国产精品久久视频播放| 女同久久另类99精品国产91| 亚洲五月天丁香| 国产精品一区二区三区四区免费观看 | 国模一区二区三区四区视频| 在线观看免费视频日本深夜| 在线观看午夜福利视频| 久久精品91蜜桃| 春色校园在线视频观看| 不卡一级毛片| 久99久视频精品免费| 国产高潮美女av| 国模一区二区三区四区视频| 亚洲中文字幕日韩| videossex国产| 国产黄片美女视频| 99久久无色码亚洲精品果冻| 一级黄色大片毛片| 亚洲欧美清纯卡通| 国产极品精品免费视频能看的| 国模一区二区三区四区视频| av.在线天堂| 毛片女人毛片| 国产高潮美女av| av女优亚洲男人天堂| 九九在线视频观看精品| 床上黄色一级片| 精品久久久久久成人av| 久久精品国产亚洲av香蕉五月| 特大巨黑吊av在线直播| 最新中文字幕久久久久| 尤物成人国产欧美一区二区三区| 日日撸夜夜添| 欧美一级a爱片免费观看看| 国产男人的电影天堂91| 国产av麻豆久久久久久久| 亚洲国产欧美人成| 午夜日韩欧美国产| 亚洲无线在线观看| 国产伦在线观看视频一区| 美女xxoo啪啪120秒动态图| 国产成人一区二区在线| 久久6这里有精品| 亚洲av五月六月丁香网| 亚洲精华国产精华精| 变态另类成人亚洲欧美熟女| 国内精品宾馆在线| 悠悠久久av| 可以在线观看的亚洲视频| 久久久久久九九精品二区国产| 乱系列少妇在线播放| 成人国产一区最新在线观看| 美女高潮的动态| 日本色播在线视频| 校园春色视频在线观看| 国产精品久久久久久亚洲av鲁大| 国产亚洲欧美98| 日本色播在线视频| 欧美国产日韩亚洲一区| 日本精品一区二区三区蜜桃| 国产精品电影一区二区三区| 听说在线观看完整版免费高清| 国产亚洲精品av在线| 黄色视频,在线免费观看| 亚洲,欧美,日韩| 国产伦人伦偷精品视频| 欧美不卡视频在线免费观看| 亚洲va在线va天堂va国产| 亚洲成人免费电影在线观看| 毛片女人毛片| 国产精品综合久久久久久久免费| 97超级碰碰碰精品色视频在线观看| 午夜免费成人在线视频| 欧美成人免费av一区二区三区| 精品国产三级普通话版| 国产aⅴ精品一区二区三区波| 免费av毛片视频| 久久久久久久亚洲中文字幕| a级毛片免费高清观看在线播放| 91在线观看av| 91在线精品国自产拍蜜月| 欧美不卡视频在线免费观看| 美女cb高潮喷水在线观看| 不卡一级毛片| 韩国av在线不卡| 精品人妻视频免费看| 99久国产av精品| 男女做爰动态图高潮gif福利片| 国产 一区 欧美 日韩| 99热只有精品国产| 免费一级毛片在线播放高清视频| 国产精品爽爽va在线观看网站| 搡老熟女国产l中国老女人| 亚洲七黄色美女视频| 免费av不卡在线播放| 国产成人影院久久av| 午夜福利在线观看免费完整高清在 | 亚洲综合色惰| 久久久精品大字幕| 久久久精品欧美日韩精品| 日本熟妇午夜| 亚洲欧美清纯卡通| 亚洲精品亚洲一区二区| 色视频www国产| 男女下面进入的视频免费午夜| 亚洲久久久久久中文字幕| 亚洲精品成人久久久久久| 无人区码免费观看不卡| 色哟哟哟哟哟哟| 亚洲va在线va天堂va国产| 人妻制服诱惑在线中文字幕| 少妇的逼好多水| 在线观看66精品国产| 亚洲欧美清纯卡通| 99久久久亚洲精品蜜臀av| xxxwww97欧美| 国产蜜桃级精品一区二区三区| 欧美一级a爱片免费观看看| 久久久久久大精品| 国产毛片a区久久久久| 嫁个100分男人电影在线观看| 亚洲成人久久性| 韩国av在线不卡| av中文乱码字幕在线| 免费看日本二区| 搡女人真爽免费视频火全软件 | 国产精品一区二区免费欧美| 中文字幕熟女人妻在线| 国语自产精品视频在线第100页| 一本久久中文字幕| 久久欧美精品欧美久久欧美| 精品午夜福利视频在线观看一区| 免费不卡的大黄色大毛片视频在线观看 | 小蜜桃在线观看免费完整版高清| 日本爱情动作片www.在线观看 | 久久精品夜夜夜夜夜久久蜜豆| 级片在线观看| 亚洲精品国产成人久久av| 欧美绝顶高潮抽搐喷水| 嫁个100分男人电影在线观看| 国产乱人视频| 国产精品伦人一区二区| 香蕉av资源在线| 亚洲av中文字字幕乱码综合| 99国产精品一区二区蜜桃av| 色哟哟哟哟哟哟| 中文字幕精品亚洲无线码一区| 欧美bdsm另类| 大又大粗又爽又黄少妇毛片口| 淫秽高清视频在线观看| 免费无遮挡裸体视频| 亚洲四区av| 自拍偷自拍亚洲精品老妇| 欧美另类亚洲清纯唯美| 成人三级黄色视频| 日韩欧美国产在线观看| 噜噜噜噜噜久久久久久91| 黄色配什么色好看| 国产亚洲av嫩草精品影院| 精品人妻1区二区| 久久精品国产亚洲av天美| 亚洲国产欧洲综合997久久,| 国产免费男女视频| 俺也久久电影网| 午夜福利在线在线| 国内久久婷婷六月综合欲色啪| 少妇的逼好多水| 日本熟妇午夜| 国产欧美日韩一区二区精品| 亚洲成人中文字幕在线播放| 午夜精品一区二区三区免费看| 超碰av人人做人人爽久久| 亚洲专区国产一区二区| 一进一出抽搐动态| 午夜福利欧美成人| 成人一区二区视频在线观看| 亚洲欧美日韩卡通动漫| 亚洲一区二区三区色噜噜| 久久久国产成人精品二区| 91麻豆精品激情在线观看国产| 精品久久久久久久人妻蜜臀av| 日韩av在线大香蕉| 我的老师免费观看完整版| 啦啦啦啦在线视频资源| 日日撸夜夜添| 久久久久免费精品人妻一区二区| 国模一区二区三区四区视频| 亚洲专区中文字幕在线| 亚洲精品乱码久久久v下载方式| 99在线人妻在线中文字幕| 日韩,欧美,国产一区二区三区 | 91av网一区二区| 九色国产91popny在线| 91久久精品国产一区二区三区| 精品福利观看| 1024手机看黄色片| 无遮挡黄片免费观看| 亚洲av成人精品一区久久| 日本免费a在线| 欧美日韩黄片免| 色视频www国产| 免费不卡的大黄色大毛片视频在线观看 | 伊人久久精品亚洲午夜| 一个人观看的视频www高清免费观看| 国产精品一区二区三区四区免费观看 | 久久天躁狠狠躁夜夜2o2o| 国产在线男女| 乱人视频在线观看| 午夜免费男女啪啪视频观看 | 日韩强制内射视频| 尾随美女入室| 精品免费久久久久久久清纯| 欧美激情国产日韩精品一区| 国产伦人伦偷精品视频| 黄色一级大片看看| 一个人免费在线观看电影| 内射极品少妇av片p| 最近中文字幕高清免费大全6 | 日韩中字成人| 亚洲男人的天堂狠狠| 最新中文字幕久久久久| 又爽又黄a免费视频| 亚洲熟妇中文字幕五十中出| 欧美最黄视频在线播放免费| 最近视频中文字幕2019在线8| 一个人看视频在线观看www免费| 少妇猛男粗大的猛烈进出视频 | 免费av毛片视频| 亚洲无线观看免费| 午夜精品在线福利| 男人舔女人下体高潮全视频| 午夜免费男女啪啪视频观看 | 九色国产91popny在线| 偷拍熟女少妇极品色| 国内精品美女久久久久久| 欧美另类亚洲清纯唯美| 淫秽高清视频在线观看| 日韩中文字幕欧美一区二区| 国产69精品久久久久777片| 美女高潮喷水抽搐中文字幕| 欧美日韩瑟瑟在线播放| 国产成人av教育| 国产精品免费一区二区三区在线| 日本熟妇午夜| 国产麻豆成人av免费视频| 国产91精品成人一区二区三区| 一个人看视频在线观看www免费| 成人性生交大片免费视频hd| 丰满的人妻完整版| 内射极品少妇av片p| 人妻少妇偷人精品九色| 免费av毛片视频| 亚洲va日本ⅴa欧美va伊人久久| 国产精品美女特级片免费视频播放器| 久久婷婷人人爽人人干人人爱| 免费av观看视频| 男插女下体视频免费在线播放| 亚洲精品日韩av片在线观看| 日韩一区二区视频免费看| 精品久久久久久久末码| 无遮挡黄片免费观看| 美女被艹到高潮喷水动态| 久久久久国内视频| 精华霜和精华液先用哪个| a级一级毛片免费在线观看| 色精品久久人妻99蜜桃| 日韩欧美精品v在线| 真人做人爱边吃奶动态| 最后的刺客免费高清国语| 五月伊人婷婷丁香| 国产亚洲精品综合一区在线观看| 久久久色成人| 他把我摸到了高潮在线观看| 亚洲欧美日韩东京热|