• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Controlling the light wavefront through a scattering medium based on direct digital frequency synthesis technology*

    2021-01-21 02:11:00YuanYuan袁園MinYuanSun孫敏遠(yuǎn)YongBi畢勇WeiNanGao高偉男ShuoZhang張碩andWenPingZhang張文平
    Chinese Physics B 2021年1期
    關(guān)鍵詞:高偉

    Yuan Yuan(袁園), Min-Yuan Sun(孫敏遠(yuǎn)), Yong Bi(畢勇),?, Wei-Nan Gao(高偉男),Shuo Zhang(張碩),2, and Wen-Ping Zhang(張文平)

    1Center of Applied Laser,Technical Institute of Physics and Chemistry,Chinese Academy of Sciences,Beijing 100190,China

    2University of Chinese Academy of Sciences,Beijing 100190,China

    Keywords: optical transmission matrix, direct digital frequency synthesis technology, phase modulation,wavefront optimization

    1. Introduction

    Since the invention of the optical lens, the field of optics has not only had an impact on daily life but also in almost all areas of science and technology. With a conventional lens, typically made of transparent refractive materials, one can easily manipulate light with a large degree of freedom.However, it is difficult to control the optical near field after turbid media, where conventional optical components fail to access. The propagation of waves in the multiple-scattering regime is a very fundamental problem of physics with numerous applications ranging from solid-state physics and optics,to acoustics and electromagnetism.[1]

    A deeper approach to the study of complex media lies in the transmission matrix (TM) retrieval. This matrix is a subpart of the usual scattering matrix as defined in Ref. [2] for instance. The knowledge of the TM brings more fundamental insight into the medium. One can for instance extract from the TM the single and the multiple-scattering components,[3]the backscattering cone,and the field–field correlations.[4]Experimentally,the TM can encapsulate the experimental imperfections induced by optical misalignment,surface curvature,lens aberrations, and non-uniform laser illumination. Measuring the TM of a turbid medium has shown potential in focusing,delivering images, controlling transmitted energy, subwavelength imaging,[5–18]and customizing speckle statistics.[19–21]Especially, the optimized wavefront of an illumination beam calibrated by the TM method generates a focus through random scattering media.If this technology is utilized in the laser TV, the light efficiency from the diffuser into the optical engine will be largely improved.

    In the literature of measuring the TM, iterative approaches, like successive displays of Hadamard patterns or canonical patterns on a spatial light modulation (SLM), are usually adopted. The frequency-based focus optimization technique is one of the methods using canonical patterns,where each SLM phase element is modulated at a unique angular frequency and all the phase elements go through a 2π phase variation. By this method, different high-quality foci are obtained through a scattering medium. However, how to precisely generate successive phase patterns on a SLM with predefined frequency (i.e., the process of phase modulation)to fit the characteristics of the SLM device has not been illustrated in detail. An effective phase modulation technology is important for obtaining a correct result. As known, the SLM is an 8-bit digital device, and the gray values have a range from 0 to 255. The minimum increment of the phase both in each pixel and in adjacent pixels is 1 graylevel. Different from Hadamard patterns and four phases method,[5,22,23]the frequency-based focus optimization technique makes the increment of each phase element be decimals, varying with the frequency on each SLM element, and the phase values increase with an iterative process. If these decimals are not properly truncated with non-fitting values cropped,the deviation will gradually accumulate with the iterative process and finally fail to obtain the correct result. To avoid cumbersome truncation rules for huge phase values in the experiment, we introduce the direct digital frequency synthesis (DDS) technology to modulate each SLM phase element.

    In this paper,we illustrate the principle of the DDS technology and its application in SLM phase modulation. Based on full-field interference and the DDS technology, we determine the required wavefront through a Fourier transform of the detected signal and obtain a high-quality focus of coherent light through a 2 mm thick 120 grit diffuser. We expect this wavefront shaping method alongside the DDS technology to reduce speckle and power consumption in laser TV or laser holographic display in our further study.

    2. Method

    2.1. Procedure to measure a transmission matrix

    where smis the complex amplitude of the optical field used as a reference in the mthoutput mode. The phase φnis modulated at an angular frequency ωnand goes through a 2π phase variation, resulting in Imvarying. When one phase pattern is loaded onto the SLM,then projected onto the scattering sample, the corresponding output of the sample is imaged by the CCD. When a series of output intensity Imat the target position is recorded and Fourier transformed, the third term in Eq. (2) can be decoupled from the others and the optimized phase pattern is determined. Then we address the optimized phase pattern onto the SLM,a clear focus can be obtained.

    We divide the procedure of measuring the TM into three steps. Assuming the SLM consists of a K×L array of pixels,the SLM pixels are divided into two groups, one group modulates the impinging wavefront (signal beam) with the DDS technology,while the other part remains fixed in order to provide controlled reference beams.

    In step 1, each SLM phase element corresponding to the signal beam is modulated at a unique frequency,ω1,ω2,ω3,...,ωn,...,ωN, resulting in each SLM phaseshifted by φ1,φ2,φ3,...,φn,...,φN. The SLM frame is successively updated and loaded onto the SLM constantly, and finally,4N speckle patterns are recorded by the CCD.The detected target signal is Fourier transformed,and the phase values at the corresponding frequencies are determined.In step 2,after the phase corresponding to the first group is determined,the other group is modulated while the first group is maintained at the newly determined phase values. In the same way,we obtain 4(K×L-N)speckle patterns by the CCD.The detected target signal is Fourier transformed,and the phase value at the corresponding frequencies in the second group is determined. In step 3, with the measured phase profile in the first two steps loaded onto the SLM, a bright round focus will be observed on the CCD at the target position.

    2.2. Direct digital frequency synthesis technology

    We exploit the DDS technology to modulate the SLM phase element.[24]The frequency obtained by DDS technology is expressed as

    where k ranges from 1 to L (L=4N). Different frequency control word Mnwill cause different phase increments of the SLM pixel(i.e.,having different modulation frequency fn). It should be noted that φnkis cropped into the range of[0, 255]before it is shown on the SLM. Figure 2 simulates the phase modulation result using the DDS technology.Figure 2(a)illustrates the phase modulation on the first pixel of 4N successive SLM patterns. Figure 2(b)shows the magnification of the first 10 periods. With the DDS technology,the SLM phase is accurately and fully modulated in the range of[0,255].

    Fig.1. The basic principle diagram of the DDS applicate to the SLM.

    Fig.2. Simulation of phase modulation with the DDS technology.

    3. Experimental setup and results

    3.1. Experimental setup

    In our experimental setup,illustrated in Fig.3,a linearly polarized monochromatic laser beam with a wavelength of λ =632.8 nm is expanded and uniformly illuminates a phaseonly reflective SLM(Holoeye Pluto-2). The modulated beam from the SLM goes through a 4-f system and is projected onto a surface of a diffuser via an objective lens(100×,NA=0.85,Nikon, Japan). A 2 mm thick 120 grit ground glass diffuser(Thorlabs, DG10-120) is used to randomly scatter the light before it reaches the focal plane. The diffusing surface faces the 0.45 NA objective lens. The light-transmitting through the diffuser is collected using an objective lens(20×,NA=0.45,Nikon,Japan)and then projected on a camera(Manta G201B).Experimentally, we record the speckle pattern well above the Nyquist limit per speckle grain along each axis.

    To avoid cross-talk between neighboring SLM pixels,20×20 pixels are grouped to form one macropixel. We use a square array of 30×30 macropixels in the central part of the phase modulating region of the SLM. We vary, with a z-axis translation base,the position of the first objective to obtain the highest intensity enhancement, with respect to the 0.45 NA objective kept at a fixed position. The calculated phase by Fourier transform of the detected signal on the CCD is feedback to the SLM by programming instructions. In addition,owing to imperfections in the pixels of the SLM,a correction pattern is superimposed onto the optimized wavefront to allow pixel shifting.

    Fig. 3. Schematic of the apparatus. BS: beam splitter; P: polarizer;L1–L4: lens;obj1,obj2: objective len.

    3.2. Results and discussion

    Firstly, some of the varying intensity values on the first CCD pixel are tracked in Fig. 4, which helps to identify the response of the SLM device. When the effective oscillating intensity is Fourier transformed, the optimum wavefront can be obtained. Figure 5(a) is the pattern that is transmitted when a plane wave is focused onto the sample, a 2 mm thick 120 grit ground glass diffuser. The light forms a typical random speckle pattern. Based on the optical setup and the algorithm described above, we measure the TM of the sample. The row and column of the conjugated TM are the output and input channels, which correspond to the pixel indexes of the CCD and SLM. Figure 5(b) shows the reshaped 2-D optimized phase map of the 4950throw of the conjugated TM,i.e., compensating for the random phase through the sample to focus the transmitted light at (50, 50) on CCD, as shown in Fig. 5(d). Subsequently, we retrieve the phase map from the 1920thand 7980throws of the conjugated TM. Then we measure a clear focus at (20, 20) and (80, 80) on the CCD plane, separately, in Figs.5(c)and 5(d). In fact, by adjusting the target optimal phase map used as feedback, it is possible to observe a bright round focus at any target position.

    Fig.4. Varying intensity on the first pixel recorded by the CCD.

    We estimate the experimental SNR defined by the ratio of the intensity at the focus to the mean intensity of the speckle outside. In Figs.5(c)–5(e),the result of focusing on the single spot shows SNR=51, 48, and 51. From a theoretical point of view, monochromatic phase conjugation focusing through a multiple-scattering medium has been studied in Ref. [22].The general formulation for the enhancement of the focus is SNR ≈Ngrains, the total number of “information grains”, or degrees of freedom. In our experiment, Ngrainsis the number of pixels characterized by modulation frequency in the central region of the SLM,i.e., Ngrains=450. Using the theoretical formalism developed in Refs. [5,24], the effective SNR,caused by the effect of the reference beam,can be written as

    where the dominating ratio γ is 50%,denoting that the fraction of the SLM used to be modulated. (1-γ)/γ is the effect of the reference beam which contributes as the noise at the focal spot. The experimental SNR of the focus in Figs.4(c)–4(e)is 28%, 27%, and 28% of SNRref. We attribute this difference to the inhomogeneous voltage-phase response function of the SLM pixels,phase digitization due to the 8-bit depth of SLM,and the intensity nonuniform.

    Fig.5. (a)Random speckle with a flat phase profile displayed on the SLM,(b-d) focus profile with the measured phase pattern displayed on SLM,(e)Fourier transform determined phase pattern.

    Figure 6 illustrates that the full width at half maximum(FWHM) of the focus at (50, 50) is ~10 pixels of the CCD,or 44 μm, no matter on the horizontal X-axis or the vertical Y-axis. We also demonstrate that the size of the focus is independent of the number of the SLM pixels in use. In addition,although the SNR is significantly high,the sidelobes appear beside the central peak.These results from an incomplete control of the light. The number of the SLM pixels used is much lower than the number of modes that propagate through a scattering media. The uncontrolled modes generate a speckled background.

    Fig.6. The FWHM of the focus at the center on the horizontal X-axis and the vertical Y-axis.

    4. Conclusion and perspectives

    To conclude,a DDS technology alongside a full-field interferometric method is demonstrated to have the excellent ability to focus the transmitted light through a 2 mm thick diffuser. It is the first time that the DDS technology is applied to modulating the SLM phase element,which skillfully modulates the SLM phase,minimizes the experimental error/noise,and finally makes the procedure of the TM simple time-saving and accurate. Using this algorithm, a relatively accurate TM is measured, resulting in the SNR of the focus nearly 50 and the FWHM about 44 μm. The total time for reconstructing the focus is 800 s. The results show that the proposed method has the potential in improving the light efficiency and compensation for the phase of speckle-noise on image or video in laser display and holographic display,where similar diffusers were inserted in Refs.[25,26]. In addition, this method can be applied in ghost imaging, customizing statistics of speckle, and biomedical adaptive optics.

    Acknowledgment

    The authors thank Jinhai Bai for valuable discussions and insightful suggestions.

    猜你喜歡
    高偉
    Runaway electron dynamics in Experimental Advanced Superconducting Tokamak helium plasmas
    Current sensor based on diamond nitrogen-vacancy color center
    Effect of a static pedestrian as an exit obstacle on evacuation
    High-fidelity resonant tunneling passage in three-waveguide system
    我是“隱形人”
    江蘇教育(2021年59期)2021-12-02 18:35:17
    我是“隱形人”
    Analysis of asymmetry of the Dα emission spectra under the Zeeman effect in boundary region for D–D experiment on EAST tokamak?
    運(yùn)動(dòng)達(dá)人傾情環(huán)保5 年撿40000 余個(gè)廢瓶子
    北廣人物(2020年46期)2020-12-11 07:09:40
    秋天的風(fēng)
    金山(2020年3期)2020-04-15 03:56:36
    爬山虎
    一进一出抽搐gif免费好疼| 中文字幕人妻熟人妻熟丝袜美| 国产精品嫩草影院av在线观看 | 三级男女做爰猛烈吃奶摸视频| 中文字幕av在线有码专区| 最近最新中文字幕大全电影3| 别揉我奶头 嗯啊视频| 午夜激情福利司机影院| 久久久久国内视频| a在线观看视频网站| 听说在线观看完整版免费高清| 深夜a级毛片| 日本 av在线| 欧美黑人欧美精品刺激| 少妇裸体淫交视频免费看高清| 久久精品综合一区二区三区| 久久久久久国产a免费观看| 亚洲,欧美精品.| 色吧在线观看| 久久精品影院6| 成人特级av手机在线观看| 欧美性猛交╳xxx乱大交人| 免费看美女性在线毛片视频| 日本免费a在线| 在线观看美女被高潮喷水网站 | 亚洲精品456在线播放app | 日本在线视频免费播放| 久久精品影院6| 国产亚洲欧美在线一区二区| 国产一区二区激情短视频| 国产精品日韩av在线免费观看| 有码 亚洲区| 亚洲av日韩精品久久久久久密| a级毛片a级免费在线| 18禁在线播放成人免费| 少妇裸体淫交视频免费看高清| 亚洲欧美日韩卡通动漫| 久久6这里有精品| 久久天躁狠狠躁夜夜2o2o| 亚洲精品久久国产高清桃花| 97热精品久久久久久| 性色avwww在线观看| 最近在线观看免费完整版| 无人区码免费观看不卡| 久久99热6这里只有精品| 欧美丝袜亚洲另类 | 蜜桃久久精品国产亚洲av| 精品99又大又爽又粗少妇毛片 | 天堂影院成人在线观看| 国产探花在线观看一区二区| 日日摸夜夜添夜夜添小说| 欧美日本视频| 黄色配什么色好看| 国产毛片a区久久久久| 91狼人影院| 国产精品国产高清国产av| 激情在线观看视频在线高清| 午夜两性在线视频| 成年女人看的毛片在线观看| 欧美一区二区精品小视频在线| 亚洲精品在线观看二区| 亚洲美女黄片视频| 国产不卡一卡二| 宅男免费午夜| 久久久久久国产a免费观看| 国产精品爽爽va在线观看网站| 国内毛片毛片毛片毛片毛片| 毛片一级片免费看久久久久 | 欧美一区二区国产精品久久精品| 90打野战视频偷拍视频| 男女之事视频高清在线观看| 午夜福利在线观看吧| 一边摸一边抽搐一进一小说| 日韩欧美精品免费久久 | 欧美+亚洲+日韩+国产| 3wmmmm亚洲av在线观看| 国产成年人精品一区二区| 搡老妇女老女人老熟妇| 嫁个100分男人电影在线观看| 一本久久中文字幕| 亚洲成av人片免费观看| 欧美色视频一区免费| 色精品久久人妻99蜜桃| 午夜福利在线观看吧| 日韩av在线大香蕉| 1024手机看黄色片| 欧美zozozo另类| 国内毛片毛片毛片毛片毛片| 国产一区二区亚洲精品在线观看| 国产精品自产拍在线观看55亚洲| 精品午夜福利在线看| av视频在线观看入口| 狂野欧美白嫩少妇大欣赏| 久久99热这里只有精品18| 欧美一区二区国产精品久久精品| 午夜免费激情av| 欧美日韩亚洲国产一区二区在线观看| 成熟少妇高潮喷水视频| 亚洲精品成人久久久久久| 悠悠久久av| 日韩欧美 国产精品| 免费av不卡在线播放| 一本综合久久免费| 欧美日韩瑟瑟在线播放| 黄色日韩在线| 女同久久另类99精品国产91| 又黄又爽又免费观看的视频| 成年版毛片免费区| 一级黄色大片毛片| 国产一级毛片七仙女欲春2| 亚洲美女黄片视频| 亚洲精品色激情综合| 亚洲精华国产精华精| 欧美黄色淫秽网站| 午夜精品一区二区三区免费看| 久久久久国产精品人妻aⅴ院| 午夜免费成人在线视频| 一二三四社区在线视频社区8| 在线观看午夜福利视频| 首页视频小说图片口味搜索| 高潮久久久久久久久久久不卡| 久久香蕉精品热| 亚洲欧美日韩无卡精品| 久久久久久国产a免费观看| www.www免费av| 欧美日韩亚洲国产一区二区在线观看| 波多野结衣巨乳人妻| 午夜两性在线视频| 18禁裸乳无遮挡免费网站照片| 国产91精品成人一区二区三区| 丁香欧美五月| 淫秽高清视频在线观看| 久久久久国内视频| x7x7x7水蜜桃| 可以在线观看毛片的网站| 一个人看的www免费观看视频| 男人舔奶头视频| 国产高清视频在线观看网站| 免费人成视频x8x8入口观看| 一进一出抽搐动态| 久久久精品大字幕| 精品一区二区三区视频在线观看免费| 此物有八面人人有两片| 亚洲18禁久久av| 久久亚洲真实| 国产单亲对白刺激| 波多野结衣巨乳人妻| 国产高潮美女av| 91麻豆精品激情在线观看国产| 91在线精品国自产拍蜜月| 很黄的视频免费| 欧美一级a爱片免费观看看| 欧美激情国产日韩精品一区| 999久久久精品免费观看国产| 久久精品国产亚洲av香蕉五月| 亚洲性夜色夜夜综合| 日韩高清综合在线| 免费黄网站久久成人精品 | 人人妻人人澡欧美一区二区| 亚洲国产欧洲综合997久久,| 国产精品久久久久久人妻精品电影| 99精品久久久久人妻精品| 国产色爽女视频免费观看| av天堂中文字幕网| 婷婷六月久久综合丁香| 日韩欧美免费精品| 欧美丝袜亚洲另类 | netflix在线观看网站| 夜夜看夜夜爽夜夜摸| 香蕉av资源在线| 久久亚洲真实| 老司机福利观看| 久久久久久久久久成人| 在线观看av片永久免费下载| 美女黄网站色视频| 午夜老司机福利剧场| 国产精品亚洲av一区麻豆| 伊人久久精品亚洲午夜| 日本五十路高清| 少妇的逼好多水| 好男人在线观看高清免费视频| 国产高清三级在线| 欧美区成人在线视频| 亚洲美女视频黄频| 亚洲黑人精品在线| 亚洲久久久久久中文字幕| 一级黄色大片毛片| 美女黄网站色视频| 一本久久中文字幕| 日韩欧美国产在线观看| 在线a可以看的网站| 香蕉av资源在线| 午夜免费激情av| av黄色大香蕉| 欧美区成人在线视频| 欧美午夜高清在线| 亚洲最大成人手机在线| 麻豆av噜噜一区二区三区| 天堂av国产一区二区熟女人妻| 国产视频一区二区在线看| 国产主播在线观看一区二区| 深爱激情五月婷婷| 国产69精品久久久久777片| 久久久久久久久中文| 看黄色毛片网站| 好看av亚洲va欧美ⅴa在| 日韩欧美国产一区二区入口| 露出奶头的视频| 国产精品伦人一区二区| 精品国内亚洲2022精品成人| 每晚都被弄得嗷嗷叫到高潮| 国产精品一区二区三区四区久久| 久久九九热精品免费| 国产精品电影一区二区三区| 一进一出抽搐gif免费好疼| 亚洲精品色激情综合| 欧美色视频一区免费| 日日摸夜夜添夜夜添小说| 国产乱人视频| 色哟哟·www| 嫁个100分男人电影在线观看| 久久国产精品人妻蜜桃| 三级国产精品欧美在线观看| 九色成人免费人妻av| bbb黄色大片| 日日摸夜夜添夜夜添av毛片 | 午夜a级毛片| 女人十人毛片免费观看3o分钟| 又爽又黄无遮挡网站| 国内精品一区二区在线观看| 亚洲成人精品中文字幕电影| 18禁在线播放成人免费| 99久国产av精品| 欧美精品啪啪一区二区三区| 免费av毛片视频| 青草久久国产| 波多野结衣巨乳人妻| 亚洲成人中文字幕在线播放| 欧美成人性av电影在线观看| 亚洲不卡免费看| 精品一区二区三区视频在线观看免费| 天堂动漫精品| 日韩有码中文字幕| 免费人成在线观看视频色| 国产高清视频在线播放一区| 90打野战视频偷拍视频| 很黄的视频免费| 在线十欧美十亚洲十日本专区| www日本黄色视频网| 观看免费一级毛片| 成人国产综合亚洲| 热99在线观看视频| 夜夜爽天天搞| 又爽又黄a免费视频| av在线蜜桃| 色综合站精品国产| 欧美3d第一页| 国产探花极品一区二区| av在线观看视频网站免费| 99国产精品一区二区蜜桃av| 国产成人啪精品午夜网站| 全区人妻精品视频| 久久精品影院6| 国产麻豆成人av免费视频| 9191精品国产免费久久| av在线观看视频网站免费| 亚洲黑人精品在线| 九色国产91popny在线| 每晚都被弄得嗷嗷叫到高潮| 久久久久久大精品| 亚洲精品456在线播放app | 成年版毛片免费区| 免费看a级黄色片| 国产精品久久久久久精品电影| 久久天躁狠狠躁夜夜2o2o| 国产高清三级在线| 此物有八面人人有两片| 免费看美女性在线毛片视频| 亚洲人成网站在线播| 女同久久另类99精品国产91| 亚洲,欧美精品.| 国产精品美女特级片免费视频播放器| 赤兔流量卡办理| 国产av在哪里看| 69av精品久久久久久| 亚洲人成网站在线播| 欧美激情久久久久久爽电影| 日韩欧美精品v在线| 嫩草影院入口| 国产成人aa在线观看| 亚洲欧美日韩东京热| 亚洲综合色惰| 久久久国产成人免费| 日日摸夜夜添夜夜添av毛片 | 男女下面进入的视频免费午夜| 国产成人影院久久av| 天堂网av新在线| 久久久久亚洲av毛片大全| 国产黄色小视频在线观看| 黄色丝袜av网址大全| 悠悠久久av| 亚洲av第一区精品v没综合| 亚洲天堂国产精品一区在线| 国产免费一级a男人的天堂| a级毛片a级免费在线| 国产v大片淫在线免费观看| 婷婷亚洲欧美| 97超视频在线观看视频| 亚洲国产色片| 在线观看舔阴道视频| 亚洲美女视频黄频| 97热精品久久久久久| 欧美最黄视频在线播放免费| 亚洲精品在线观看二区| 一区二区三区四区激情视频 | 好看av亚洲va欧美ⅴa在| 久久精品国产亚洲av香蕉五月| 1024手机看黄色片| 国产午夜精品论理片| 久久这里只有精品中国| 一区二区三区免费毛片| 别揉我奶头 嗯啊视频| 91字幕亚洲| 亚洲av第一区精品v没综合| 国产探花在线观看一区二区| 搡老岳熟女国产| 别揉我奶头~嗯~啊~动态视频| 日日摸夜夜添夜夜添av毛片 | 久久精品国产亚洲av香蕉五月| av女优亚洲男人天堂| 国产免费男女视频| 久久中文看片网| 一级黄片播放器| 搞女人的毛片| 丁香欧美五月| 嫁个100分男人电影在线观看| 亚洲无线观看免费| 香蕉av资源在线| 欧美色欧美亚洲另类二区| 国产老妇女一区| 久久久久久大精品| 日韩欧美在线二视频| 国产精品综合久久久久久久免费| 日韩欧美免费精品| 一本精品99久久精品77| 国产乱人视频| 久久久久久久精品吃奶| 免费人成在线观看视频色| avwww免费| 亚洲国产色片| 日本熟妇午夜| 精品午夜福利在线看| 免费看日本二区| 午夜福利在线观看免费完整高清在 | 国产 一区 欧美 日韩| 日本与韩国留学比较| 午夜老司机福利剧场| 亚洲三级黄色毛片| 亚洲乱码一区二区免费版| 日本一二三区视频观看| 亚洲一区二区三区不卡视频| 免费电影在线观看免费观看| 最新在线观看一区二区三区| 亚洲专区国产一区二区| 亚洲狠狠婷婷综合久久图片| 久久伊人香网站| av中文乱码字幕在线| 亚洲成av人片免费观看| 欧美日韩瑟瑟在线播放| 精品午夜福利在线看| 国产69精品久久久久777片| 999久久久精品免费观看国产| 一个人免费在线观看电影| 国产视频内射| 国产极品精品免费视频能看的| 黄片小视频在线播放| 一级av片app| 一区二区三区高清视频在线| 偷拍熟女少妇极品色| 欧美最黄视频在线播放免费| www.色视频.com| 又爽又黄无遮挡网站| 免费在线观看影片大全网站| 91在线精品国自产拍蜜月| 成人一区二区视频在线观看| 永久网站在线| 51午夜福利影视在线观看| 看片在线看免费视频| 黄色女人牲交| 欧美中文日本在线观看视频| 动漫黄色视频在线观看| 免费看美女性在线毛片视频| 国产又黄又爽又无遮挡在线| 亚洲美女黄片视频| av女优亚洲男人天堂| 欧美日韩综合久久久久久 | 高清日韩中文字幕在线| 日本撒尿小便嘘嘘汇集6| 中文亚洲av片在线观看爽| 一夜夜www| 丁香六月欧美| 亚洲av.av天堂| 国产成人av教育| 99视频精品全部免费 在线| 日日干狠狠操夜夜爽| 免费一级毛片在线播放高清视频| www.色视频.com| 欧美色视频一区免费| 欧美激情久久久久久爽电影| 十八禁网站免费在线| 欧美中文日本在线观看视频| 成人特级黄色片久久久久久久| 日本a在线网址| 精品国内亚洲2022精品成人| 九九久久精品国产亚洲av麻豆| 成人性生交大片免费视频hd| av天堂中文字幕网| 日韩欧美免费精品| 波多野结衣巨乳人妻| 精品午夜福利在线看| 亚洲美女搞黄在线观看 | 男插女下体视频免费在线播放| 少妇的逼水好多| 国产精品一及| 老司机福利观看| 99国产极品粉嫩在线观看| 亚洲五月婷婷丁香| 亚洲欧美日韩东京热| 国产三级黄色录像| 国产又黄又爽又无遮挡在线| 美女大奶头视频| 1024手机看黄色片| 在线播放无遮挡| 自拍偷自拍亚洲精品老妇| 久久久色成人| 欧美绝顶高潮抽搐喷水| АⅤ资源中文在线天堂| 亚洲不卡免费看| 97人妻精品一区二区三区麻豆| 真人一进一出gif抽搐免费| 一级黄色大片毛片| 日日干狠狠操夜夜爽| 久久精品国产99精品国产亚洲性色| av专区在线播放| 亚洲国产欧洲综合997久久,| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 麻豆国产97在线/欧美| 真实男女啪啪啪动态图| 在线观看一区二区三区| 国产亚洲欧美98| 老熟妇仑乱视频hdxx| 亚洲最大成人手机在线| 免费av不卡在线播放| 亚洲av熟女| 搡老熟女国产l中国老女人| 精品久久国产蜜桃| 99久久成人亚洲精品观看| 亚洲在线自拍视频| 国产精品久久久久久亚洲av鲁大| 一个人免费在线观看的高清视频| 亚洲人成网站高清观看| 国产蜜桃级精品一区二区三区| 99久国产av精品| 精品人妻偷拍中文字幕| 99在线视频只有这里精品首页| 久久国产精品影院| 亚洲精品影视一区二区三区av| 色5月婷婷丁香| 国产精品免费一区二区三区在线| 国产精品久久久久久久久免 | 我要看日韩黄色一级片| 欧美最黄视频在线播放免费| 免费电影在线观看免费观看| 午夜福利成人在线免费观看| 自拍偷自拍亚洲精品老妇| 51国产日韩欧美| 国内少妇人妻偷人精品xxx网站| 亚洲欧美清纯卡通| 黄色日韩在线| 国产高清有码在线观看视频| 欧美日韩国产亚洲二区| 久久久久久国产a免费观看| 人妻丰满熟妇av一区二区三区| 久久久成人免费电影| 欧美极品一区二区三区四区| 丁香欧美五月| 国产视频内射| 婷婷精品国产亚洲av在线| bbb黄色大片| 成人av一区二区三区在线看| 国产精品嫩草影院av在线观看 | 国产成+人综合+亚洲专区| 久久久精品欧美日韩精品| 日韩欧美在线乱码| 国产一区二区亚洲精品在线观看| 怎么达到女性高潮| 天堂动漫精品| 十八禁国产超污无遮挡网站| 日韩欧美一区二区三区在线观看| 一卡2卡三卡四卡精品乱码亚洲| 亚洲精品成人久久久久久| 美女高潮的动态| 国产av在哪里看| 在线看三级毛片| 亚洲专区中文字幕在线| 久久久国产成人免费| 不卡一级毛片| 国产亚洲精品久久久com| 亚洲精品在线美女| 久久九九热精品免费| 不卡一级毛片| 最近在线观看免费完整版| 国产精品一区二区性色av| 男人和女人高潮做爰伦理| 国产极品精品免费视频能看的| 亚洲成av人片免费观看| 亚洲精品在线美女| 欧美日韩乱码在线| 久久久久免费精品人妻一区二区| a级毛片a级免费在线| 国产欧美日韩精品一区二区| 午夜福利高清视频| 一级作爱视频免费观看| 国产精品综合久久久久久久免费| 别揉我奶头~嗯~啊~动态视频| 久久久久久九九精品二区国产| 午夜精品在线福利| 色哟哟哟哟哟哟| 国产成人aa在线观看| 日韩免费av在线播放| 免费在线观看亚洲国产| 日本a在线网址| 日韩精品中文字幕看吧| 99久久无色码亚洲精品果冻| 亚洲经典国产精华液单 | 婷婷精品国产亚洲av| 亚洲精品久久国产高清桃花| 一级黄色大片毛片| 亚洲欧美清纯卡通| 色哟哟哟哟哟哟| 男人和女人高潮做爰伦理| 两个人的视频大全免费| 简卡轻食公司| 午夜免费成人在线视频| 成人鲁丝片一二三区免费| 国产不卡一卡二| 国产成人啪精品午夜网站| 亚洲av.av天堂| 国产精品一区二区免费欧美| 日韩欧美三级三区| 国产精品电影一区二区三区| a级毛片免费高清观看在线播放| 少妇的逼水好多| 美女xxoo啪啪120秒动态图 | 一个人免费在线观看电影| 级片在线观看| 国产精品一区二区三区四区久久| 日韩大尺度精品在线看网址| 国产三级黄色录像| 国产伦在线观看视频一区| 亚洲欧美日韩卡通动漫| 国产老妇女一区| 亚洲av免费高清在线观看| 在线观看av片永久免费下载| 中文字幕精品亚洲无线码一区| 国产真实伦视频高清在线观看 | 亚洲欧美精品综合久久99| 亚洲片人在线观看| 日本在线视频免费播放| 88av欧美| 中文字幕av在线有码专区| 超碰av人人做人人爽久久| 国内精品一区二区在线观看| 午夜福利在线观看吧| 亚洲电影在线观看av| 真人一进一出gif抽搐免费| 97碰自拍视频| 久久草成人影院| 男女做爰动态图高潮gif福利片| 级片在线观看| 久久人人爽人人爽人人片va | 亚洲电影在线观看av| 成人性生交大片免费视频hd| 波多野结衣高清无吗| 亚洲av不卡在线观看| 3wmmmm亚洲av在线观看| 国产在视频线在精品| АⅤ资源中文在线天堂| 小蜜桃在线观看免费完整版高清| 亚洲av.av天堂| 脱女人内裤的视频| 国产一区二区在线av高清观看| 久久人妻av系列| 精品午夜福利在线看| 天堂av国产一区二区熟女人妻| 亚洲av免费在线观看| 看黄色毛片网站| 久久6这里有精品| 亚洲中文字幕日韩| 午夜激情福利司机影院| 婷婷色综合大香蕉| 日韩欧美国产在线观看| 亚洲av日韩精品久久久久久密| 天天一区二区日本电影三级| 99riav亚洲国产免费| 成人av一区二区三区在线看| 成年免费大片在线观看| 亚洲美女视频黄频| 脱女人内裤的视频| 超碰av人人做人人爽久久| av福利片在线观看| 别揉我奶头~嗯~啊~动态视频| 自拍偷自拍亚洲精品老妇| 高清在线国产一区| 女生性感内裤真人,穿戴方法视频|