• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Broadband and efficient second harmonic generation in LiNbO3-LiTaO3 composite ridge waveguides at telecom-band

    2021-01-21 02:07:36XinTongZhang張欣桐
    Chinese Physics B 2021年1期

    Xin-Tong Zhang(張欣桐)

    Department of Optics and Optical Engineering,University of Science and Technology of China,Hefei 230026,China

    Keywords: second harmonic generation,lithium niobate ridge waveguide,dispersion manipulation

    1. Introduction

    Second-order nonlinearity χ(2)is crucial for nonlinear optical parametric processes, such as second harmonic generation (SHG), sum and difference-frequency generation(SFG/DFG). These dynamical processes are most prominent approaches to achieve modern nonlinear optical applications, including optical parametric oscillators,[1]wavelength division multiplexing,[2]super-continuum generation[3]and quantum information processing.[4]The quasi-phase-matched(QPM) wavelength conversion engineering based on periodically poled lithium niobate(PPLN)waveguides is widely employed for these applications, owing to their transparency to signal format and ultrafast interaction speed. Lithium niobate(LiNbO3) crystal is a suitable χ(2)material choice for wavelength conversion because of its large second order nonlinear coefficients (d33= 25 pm/V), wide transparency range from UV to mid-IR and high refractive index. Due to these remarkable features, LiNbO3(LN) crystal becomes an efficient and prevail routine in a variety of optical and photonic applications.

    Efficient wavelength conversion is essential for a range of optical applications, such as quantum storage[5]and optical frequency comb.[6]Since the nonlinear frequency conversion efficiency is related to the intensity of optical waves inside devices, LiNbO3waveguides with tight optical confinement were widely used to enhance the nonlinear interaction strength. Recently, some outstanding works based on lithium niobate thin films have been demonstrated. Peak normalized SHG efficiency of 160%W-1·cm-2has been achieved in PPLN waveguides on silicon nitride thin-film LN platforms.[7]Ultra-high wavelength conversion efficiency of 2600%W-1·cm-2has been realized by Wang using PPLNOI waveguides.[8]Luo et al. experimentally demonstrated a significant SHG-spectrum-tuning slope of 0.84 nm/K with a nonlinear conversion efficiency of 4.7%W-1·cm-2in a lithium niobate nano-photonic waveguide.[9]It is indicated that lithium niobate waveguides are a promising candidate for future integrated wavelength conversion systems.

    Meanwhile, broad frequency conversion bandwidth is also highly desirable in many applications such as ultrafast optical signal processing, frequency tunable lasers, and optical telecommunications.[10–12]However, due to the groupvelocity mismatching between interaction waves, acceptance bandwidth of highly efficient PPLN frequency conversion process is generally narrow, typically ~50 GHz(~0.4 nm),[13]which limits its applications in ultra-shortpulse compression,[14]frequency tunable lasers[15]and optical telecommunications.[16]Several approaches have been demonstrated to broaden the acceptance bandwidth of SHG,including aperiodic domain inverted gratings[17,18]and chirping periodically poled crystals.[19,20]However, the performance of these method is usually limited by the noticeable ripples response,fabrication difficulties,additional production costs and efficiency fluctuations.[21]

    Highly efficient and simultaneously broadband second harmonic generation is of vital importance for optical applications. Ultra-broadband and efficient SHG has been realized through dispersion engineering at 2 μm wavelength,[22]whereas the specifically designed waveguide with low dispersion at 2 μm may not be applicable for dispersion properties at telecom-band. In this study, we theoretically demonstrate a broadband and efficient second harmonic generator at telecom-band,which is made of a LiNbO3ridge waveguide on a LiTaO3(LT) substrate. Through achieving simultaneously group velocity and quasi phase matching,the acceptance SHG bandwidth of >2.5 THz(~20 nm)was achieved in a 10-mmlong ridge-waveguide sample,with a conversion efficiency of>25%W-1·cm-2.

    2. Designed waveguide structure

    Figure 1 gives a schematic view showing the overall layout of the designed waveguide structure. The LiNbO3film layer was bonded on the top of the LiTaO3substrate, both the LN film and the LT substrate were diced to form a ridge with depth of 10 μm. The LiNbO3core thickness was modulated from 2.25 μm to 3 μm for different waveguide configurations. Optical wave was restricted in the top LN layer because of the higher refractive index of LN. LiTaO3was used as the substrate material in our device because the refractive index difference between LiNbO3(ne=2.13, no=2.21 at 1.55 μm) and LiTaO3(ne=2.12, no=2.11 at 1.55 μm)was quite small, which effectively reduced the waveguide dispersion and contributed to a large SHG acceptance bandwidth, at telecom-band. Additionally, as the thermal expansion coefficient of LiTaO3(α = 14×10-6?C-1)and LiNbO3(α = 16×10-6?C-1) were similar, the nonlinear performance degradation and structural instability induced by thermal stress between two layers may be prevented by using the LiTaO3substrate. The solid-source MOCVD[23]and direct hetero bonding(D-HEB)[24]method were proved to be capable of fabricating a high quality single-crystal LiNbO3film on the LiTaO3substrate for waveguide applications. The fabrication of low-loss ridged LiNbO3waveguides with ultra-smooth sidewalls has been demonstrated using the optical-grade dicing method.[25–27]The above experiments proved that our device was experimentally accessible.

    Fig. 1. Schematic diagram of the Z-cut LiNbO3 ridge waveguide and the LiTaO3 substrate.

    3. SHG with birefringent phase matching

    Firstly, second harmonic generation (SHG) properties,such as efficiency and acceptance bandwidth, in our device were investigated under birefringent phase matching (BPM)condition. In our simulations,the sample length was assumed to be 10 mm. The refractive index and dispersion information used in the simulation were obtained numerically from the Sellmeier equation published.[28,29]The initial pump wavelength was fixed at 1.55 μm. The temperature was tuned in a reasonable range from 20?C to 220?C.The designed width of the ridge waveguide was adjusted from 2 μm to 4 μm,while the LiNbO3core thickness varied from 2.25 μm to 3 μm(see Table 1). The optical guiding modes and effective indices were calculated using the FDE Eigen-mode solver simulations(Mode Solution, Lumerical Corp). Birefringent phase matching between orthogonal polarizations (o+o →e, type-I modal interaction) was employed here. Although the nonlinear coefficient(d31= 4.3 pm/V)is not comparable to that of type-0(e+e →e,d33= 25 pm/V)interactions,the wavevector mismatch varies slowly with fundamental wavelengths under type-I interaction,which provides a broader SHG output spectrum in contrast to traditional type-0 interaction.[30,31]As shown in Fig.2,the type-I birefringent phase matching condition was achieved in four waveguides successfully within the temperature range tunable.

    No high-order modes satisfying phase matching conditions were found within the preset waveguide geometry. The fundamental transverse electric mode(TE0 for no)was phase matched with the fundamental transverse magnetic mode(TM0 for ne). The normalized conversion efficiency was calculated using the following equation:

    Table 1. Details of waveguide 1 to waveguide 4.

    Fig.2. Effective indices as a function of temperature under BPM conditions at the wavelength of 1550 nm in(a)WG1,(b)WG2,(c)WG3,(d)WG4(for specific parameters see Table 1). Inset shows the modal profiles of the pump(TE0)and SH(TM0)waves.

    WG1(geometry size of upper LN layer: width=3,thickness=2) was utilized as an example in the following simulations. The SHG acceptance bandwidth of WG1 was investigated by calculating the normalized conversion efficiency.The output SHG power was proportional to phase mismatch factor given by

    where Δk was phase mismatch factor, and L was the sample length. Figure 3 illustrates the normalized SHG spectrum in WG1. A dual SHG wavelength peak was achieved. The calculated phase mismatch factor as a function of pump wavelengths was also presented. The phase match condition was satisfied (Δk = 0) under both 1520 nm and 1558 nm, at the temperature of 146.2?C. The full width at half maximum(FWHM) of two SHG peaks were both 9 nm with the sample length of 10 mm.

    Fig.3. SHG acceptance spectrum and mismatch factor in waveguide 1 at 146.2 ?C.

    The simulation results verify that the designed device shows well performance in both efficiency and spectrum responses. In WG1, the SHG efficiency is as high as 57%W-1·cm-2, with a broad spectrum bandwidth of 9 nm(the length of waveguide is 10 mm). The bandwidth performance is promoted compared with former high efficient SHG experiments.[7,9]It is attributed to the fact that the mismatch factor varies gently versus wavelengths in our designed device,and this character results in a wide spectrum phase matching.Additionally, in order to further broaden the SHG response bandwidth, group velocity matching is introduced in the following simulations.

    4. Group velocity matching with QPM

    Group-velocity mismatching results in a narrow nonlinear interaction spectrum bandwidth, because during interaction,the pump wave and SH wave walk away from each other due to the mismatch of group velocity.[32]Group-velocity matching(GVM) usually cannot be satisfied under birefringent phase matching regime, as shown in Fig. 3, the phase matching wavelengths are 1.52 μm and 1.558 μm,but the group velocity matching was satisfied under the wavelength of 1.54 μm(dΔk/dω = 0). To eliminate walk-off effect and achieve a broader SHG acceptance band, quasi-phase match (QPM)was implemented to compensate for the phase mismatch under group velocity matching condition.[13,31]The mismatch factor is defined as ΔkQPM= Δk-K, where K is the QPM grating vector, given by K = 2π/Λ, Λ = λ/2(n2ω-nω) is the period of inverted domain. The expansion term of the phase mismatch is expressed as

    Fig. 4. (a) Acceptance bandwidth of the PPLN sample (waveguide 1)under 25 ?C; (b) group-velocity mismatch and phase mismatch factor of WG1 as a function of wavelength.

    The normalized QPM SHG conversion efficiency versus wavelength in WG1 with group velocity matching is illustrated in Fig. 4(a). The simulation was carried out at the room temperature(25?C).The zero-group-velocity dispersion wavelength is 1.49 μm, where the wave-vector mismatching takes the extremum [see Fig. 4(b)]. The QPM polarization period is calculated to be 133 μm. It should be noted that the nonlinear coefficient is modulated by ±deffin the QPM scheme, thus the effective nonlinear susceptibility in Eq. (1)is replaced by dQPM=2d31/π = 3 pm/V.The simulation results indicate that our device achieves a large SHG bandwidth of 24 nm (~3 THz) while maintains a high conversion efficiency of 25%W-1·cm-2, which is beneficial for wavelength conversion applications in integrated optics platforms. Meanwhile, the effects of the sample length on the SHG efficiency and the acceptance bandwidth are also investigated, as listed in Table 2.

    Table 2. SHG efficiency and bandwidth related to sample length.

    There is a trade-off between efficiency and bandwidth,because efficiency grows with the waveguide length as L2,[33]while the bandwidth narrows because different wavelengths can accumulate different phase mismatchs (ΔkL) as L grows,according to Eq.(3). In fact, the bandwidth is decided inherently by dispersion properties of Δk,rather than the length L.Essentially,we design the waveguide to reduce the dispersion effect of Δk and to achieve a broad bandwidth, so the sample length is fixed at 10 mm in our work.

    The polarization inverted voltage and electric resistance of LiNbO3decrease dramatically with magnesium oxide(MgO)doped,which is beneficial for the nonlinear characteristics and commercial applications of LiNbO3. Thus,simulations were performed using the MgO-doped LiNbO3sample.The refractive index and dispersion are described by the Sellmeier equation of MgO-doped LN.[34]The calculated GVM wavelength of MgO-doped WG1 is 1.455 μm, with a conversion efficiency of 26.8%W-1·cm-2at room temperature.The calculated bandwidth is 23 nm with a grating period of 65 μm. The GVM wavelength is altered to communication wavelength of 1.548 μm as temperature increases to 61?C,as illustrated by Fig. 5(a). The 3-dB acceptance bandwidth is broadened to 26 nm, at the cost of reduction in efficiency(23.8%W-1·cm-2). The calculated inverted domain period is 174 μm. It could be concluded that MgO-doping has little impact on SHG output features. However,it is worth noting that the crystal properties,such as non-linearity and electro-optical characteristics,will be largely promoted with MgO-doping in practical applications.

    In order to investigate the SHG properties in waveguides with different geometrical parameters,the size of ridge waveguide is enlarged on the basis of WG1 (LN waveguide size:width=3 μm, thickness=2 μm). As depicted in Fig. 5(b)(green line), with the thickness of LiNbO3core increasing from 2 μm to 3 μm, the GVM wavelength is altered to 1.471 μm,at room temperature. The central wavelength conversion efficiency is 19%W-1·cm-2with acceptance bandwidth (ABW) of 25 nm. Next, the LN waveguide cross section area is further enlarged to 4×4 μm2, the GVM wavelength becomes 1.506 μm and the acceptance bandwidth is broadened to 27 nm while the conversion efficiency decreases to 10.6%W-1·cm-2. With temperature altered to 40?C (red curve in Fig. 5(b)), the GVM wavelength of the 4×4 μm2cross-section waveguide is shifted to 1.545 μm. The acceptance bandwidth is as large as 28.4 nm with a grating period of 38 μm,while the conversion efficiency further decreases to 10%W-1·cm-2. Furthermore, as the device temperature increases, the GVM wavelength shifts with a tuning slope of 3.08 nm/?C, as shown in Fig. 5(c). Under 85?C, the GVM wavelength is 1.69 μm, the acceptance bandwidth increases to 35 nm,due to the decrease in material dispersion at longer wavelengths.

    It is concluded that as the waveguide geometry grows larger, the SHG efficiency decreases, but the bandwidth is broadened. Once the QPM and GVM are both satisfied(Δk(ω0) = 0,Δk′(ω0) = 0),the mismatch and bandwidth are dominated by higher(second)order dispersion

    Here Δk′′is induced by group velocity dispersion mismatch between fundamental wave and second harmonic wave. The second order mismatch Δk′′at GVM wavelength is calculated as listed in Table 3. Δk′′of the bulk material is also calculated for comparison.

    The dispersion in waveguide devices is comprised of material dispersion and waveguide dispersion. Table 2 indicates that as the waveguide becomes more compact, the tight optical confinement introduces a stronger waveguide dispersion,which results in a narrower SHG bandwidth in our device.

    Fig. 5. (a) Normalized SHG efficiency versus wavelengths under 61 ?C in MgO doped WG1;(b)GVM wavelength evolution and SHG acceptance bandwidth (ABW) of different waveguides (W: width, T: thickness); (c)GVM wavelength versus temperature in waveguide with 4×4 μm2 cross section.

    Table 3. Dispersion properties of different waveguides under GVM conditions.

    Simulations were also performed with type-0 QPM configuration (e+e →e) to characterize the highest conversion efficiency by utilizing the largest non-linearity component:(dQPM= 2d33/π = 16 pm/V, d33= 25 pm/V). The GVM wavelength for type-0 QPM is above 2.5 μm, far away from waveband of 1550 nm. Here, the pump wavelength is set to be 1550 nm, with the temperature of 25?C. The simulation results are depicted in Fig. 6. Owing to the low index difference between LiNbO3(ne= 2.13 at 1.55 μm)waveguide and the LiTaO3(ne= 2.12 at 1.55 μm) substrate layer, the fundamental TM mode can only be supported in the waveguide with large LiNbO3core sizes(4×4 μm2). The conversion efficiency as high as 303%W-1·cm-2is achieved theoretically,with a grating period of 15.58 μm.The SHG acceptance bandwidth is only 0.41 nm, about 50 times lower than the type-I QPM interaction.

    Fig. 6. SHG spectrum of type-0 interaction under wavelength of 1550 nm at 25 ?C.

    5. Conclusion

    We have theoretically demonstrated a new type of optical waveguide composed of LiNbO3and LiTaO3materials that can be used for broadband, high-conversion-efficiency SHG at telecommunication band. By optimizing simultaneously the group-velocity and quasi-phase matching conditions in this ridge waveguide, the 3-dB acceptance bandwidth of pump wavelength can be broadened to 24 nm in a 10-mmlong sample, and the conversion efficiency can be as high as 25%W-1·cm-2. We also demonstrate that several parameters of the SHG process in this waveguide, including the spectral bandwidth,conversion efficiency and central wavelength,can be tuned by adjusting the size and temperature of the waveguide. Since the LiNbO3crystal and the LiTaO3substrate have similar thermal-expansion coefficients,the waveguide structure demonstrated here has largely reduced built-in stress as the device temperature varies,allowing stable nonlinearity performance and good structure robustness.

    Acknowledgment

    X.T.Zhang appreciates Professor Meng Pang(Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences)for his helpful advice.

    亚洲一卡2卡3卡4卡5卡精品中文| 12—13女人毛片做爰片一| 国产又爽黄色视频| 丝袜美腿诱惑在线| 久久久国产成人免费| 精品久久久久久成人av| 色老头精品视频在线观看| 日韩精品青青久久久久久| 长腿黑丝高跟| 制服诱惑二区| 脱女人内裤的视频| 丝袜在线中文字幕| 午夜福利,免费看| 大陆偷拍与自拍| 18禁裸乳无遮挡免费网站照片 | 亚洲成av人片免费观看| 久久久久精品国产欧美久久久| 99国产精品一区二区三区| 神马国产精品三级电影在线观看 | 国产不卡一卡二| 久久人妻福利社区极品人妻图片| 狂野欧美激情性xxxx| 99久久99久久久精品蜜桃| 一区二区三区高清视频在线| 国产一区二区激情短视频| 后天国语完整版免费观看| 国产aⅴ精品一区二区三区波| 亚洲色图av天堂| 搡老岳熟女国产| av在线天堂中文字幕| 人人妻人人澡人人看| 人妻丰满熟妇av一区二区三区| 一区二区三区激情视频| 99国产精品免费福利视频| 日韩大码丰满熟妇| 午夜免费鲁丝| 韩国精品一区二区三区| 精品国产乱码久久久久久男人| 国产麻豆69| 伦理电影免费视频| 成人特级黄色片久久久久久久| 少妇被粗大的猛进出69影院| 桃红色精品国产亚洲av| 国内精品久久久久精免费| 精品一区二区三区视频在线观看免费| 美女高潮到喷水免费观看| 在线观看日韩欧美| 欧美日本视频| 国产三级在线视频| 黄频高清免费视频| 成人18禁在线播放| 国产精品免费视频内射| av视频免费观看在线观看| 久久亚洲真实| 九色国产91popny在线| 亚洲中文字幕日韩| 亚洲精品粉嫩美女一区| 老司机午夜十八禁免费视频| 久久精品亚洲熟妇少妇任你| 欧美黑人精品巨大| 国产精品 国内视频| 亚洲男人的天堂狠狠| 不卡av一区二区三区| 精品久久久久久,| 香蕉丝袜av| 久久久国产成人精品二区| 老司机深夜福利视频在线观看| 国产野战对白在线观看| 99国产精品一区二区蜜桃av| 高清在线国产一区| 国产高清视频在线播放一区| 在线天堂中文资源库| 国产熟女午夜一区二区三区| 久久精品国产综合久久久| 国产男靠女视频免费网站| 日韩欧美免费精品| svipshipincom国产片| 在线观看66精品国产| 久久婷婷人人爽人人干人人爱 | 亚洲全国av大片| 琪琪午夜伦伦电影理论片6080| 精品国产一区二区久久| 亚洲国产日韩欧美精品在线观看 | 亚洲七黄色美女视频| 婷婷丁香在线五月| 亚洲欧美日韩另类电影网站| 黄片小视频在线播放| 两性夫妻黄色片| 亚洲在线自拍视频| 欧美精品啪啪一区二区三区| 一区二区三区高清视频在线| 国产成人系列免费观看| 黄色女人牲交| 免费高清视频大片| 男女之事视频高清在线观看| 亚洲五月婷婷丁香| 精品久久久久久成人av| 亚洲国产欧美网| 好看av亚洲va欧美ⅴa在| 亚洲欧美精品综合一区二区三区| 每晚都被弄得嗷嗷叫到高潮| 久久国产乱子伦精品免费另类| 午夜福利,免费看| 国产一区二区在线av高清观看| 国产精品爽爽va在线观看网站 | 亚洲久久久国产精品| 国产免费av片在线观看野外av| cao死你这个sao货| 夜夜躁狠狠躁天天躁| 悠悠久久av| 女生性感内裤真人,穿戴方法视频| 久久香蕉激情| 99国产精品一区二区三区| 国产主播在线观看一区二区| 两性夫妻黄色片| 黄色毛片三级朝国网站| 国产精品久久久av美女十八| 嫁个100分男人电影在线观看| 中文字幕久久专区| 美女大奶头视频| 亚洲aⅴ乱码一区二区在线播放 | 久久国产精品人妻蜜桃| 欧美+亚洲+日韩+国产| 国产精品自产拍在线观看55亚洲| 级片在线观看| 自线自在国产av| 黑丝袜美女国产一区| 国产单亲对白刺激| 不卡一级毛片| 满18在线观看网站| 成年女人毛片免费观看观看9| 日韩精品中文字幕看吧| 久久香蕉国产精品| 婷婷丁香在线五月| 黄色 视频免费看| 国产精品九九99| 桃色一区二区三区在线观看| 曰老女人黄片| 欧美激情极品国产一区二区三区| 大码成人一级视频| 亚洲一卡2卡3卡4卡5卡精品中文| 岛国在线观看网站| АⅤ资源中文在线天堂| 久久久久国产一级毛片高清牌| 手机成人av网站| 国产一卡二卡三卡精品| 亚洲人成电影免费在线| 亚洲一区中文字幕在线| 亚洲精品粉嫩美女一区| 亚洲精品国产一区二区精华液| 久久香蕉精品热| 久久久久久国产a免费观看| 少妇的丰满在线观看| 成年版毛片免费区| 欧美黑人欧美精品刺激| 亚洲第一欧美日韩一区二区三区| 国产午夜福利久久久久久| 一个人免费在线观看的高清视频| 亚洲欧洲精品一区二区精品久久久| 12—13女人毛片做爰片一| 叶爱在线成人免费视频播放| 久久人妻av系列| 精品电影一区二区在线| 亚洲国产欧美一区二区综合| 色播在线永久视频| 91麻豆精品激情在线观看国产| 99香蕉大伊视频| 国产免费男女视频| 天堂动漫精品| 欧美另类亚洲清纯唯美| 一进一出抽搐gif免费好疼| 欧美午夜高清在线| 大香蕉久久成人网| 国产亚洲精品av在线| 国产亚洲精品一区二区www| 日韩中文字幕欧美一区二区| 午夜a级毛片| 欧美老熟妇乱子伦牲交| 免费女性裸体啪啪无遮挡网站| 两人在一起打扑克的视频| 精品久久久久久久久久免费视频| 免费无遮挡裸体视频| 伦理电影免费视频| 在线播放国产精品三级| 亚洲欧美日韩另类电影网站| 丰满的人妻完整版| 久久久久久久精品吃奶| e午夜精品久久久久久久| 我的亚洲天堂| 黄色成人免费大全| 国产成人系列免费观看| 19禁男女啪啪无遮挡网站| 一个人观看的视频www高清免费观看 | 精品国产国语对白av| 中文亚洲av片在线观看爽| 成人三级黄色视频| 51午夜福利影视在线观看| 国产xxxxx性猛交| 少妇粗大呻吟视频| 国产亚洲欧美在线一区二区| 无人区码免费观看不卡| 国内久久婷婷六月综合欲色啪| 亚洲人成网站在线播放欧美日韩| 一进一出好大好爽视频| av网站免费在线观看视频| 久久久久久国产a免费观看| 久久人人精品亚洲av| 成人免费观看视频高清| 日韩有码中文字幕| 国产1区2区3区精品| 老司机靠b影院| 国产成年人精品一区二区| 一区二区三区精品91| 丰满人妻熟妇乱又伦精品不卡| 97人妻天天添夜夜摸| 两个人免费观看高清视频| av超薄肉色丝袜交足视频| 美女扒开内裤让男人捅视频| 亚洲一区中文字幕在线| 美女午夜性视频免费| 最近最新免费中文字幕在线| 亚洲欧洲精品一区二区精品久久久| 黑人巨大精品欧美一区二区mp4| 久久精品国产清高在天天线| 久久精品人人爽人人爽视色| 动漫黄色视频在线观看| 久久精品国产亚洲av香蕉五月| a在线观看视频网站| 亚洲欧洲精品一区二区精品久久久| 欧美激情久久久久久爽电影 | 亚洲成av人片免费观看| 九色国产91popny在线| 亚洲欧美激情在线| 欧美在线黄色| 久久久久久久精品吃奶| 精品久久蜜臀av无| 亚洲天堂国产精品一区在线| 亚洲专区国产一区二区| 日韩欧美一区视频在线观看| av视频在线观看入口| 人妻久久中文字幕网| 欧美不卡视频在线免费观看 | 搡老熟女国产l中国老女人| 国产私拍福利视频在线观看| 免费久久久久久久精品成人欧美视频| av天堂在线播放| 99riav亚洲国产免费| 不卡av一区二区三区| 国产精品九九99| 国产高清videossex| 日本五十路高清| 18禁裸乳无遮挡免费网站照片 | 亚洲中文字幕日韩| 中亚洲国语对白在线视频| 色播在线永久视频| 国产精品九九99| 国产精品一区二区在线不卡| 午夜福利欧美成人| 性欧美人与动物交配| 亚洲成人久久性| 久久精品成人免费网站| 亚洲色图av天堂| 国产精品精品国产色婷婷| 精品国产乱子伦一区二区三区| 久久狼人影院| 欧美一级毛片孕妇| 精品久久久久久,| 操出白浆在线播放| 黄色 视频免费看| 久久天躁狠狠躁夜夜2o2o| 9191精品国产免费久久| 日韩三级视频一区二区三区| 夜夜躁狠狠躁天天躁| 久热这里只有精品99| 首页视频小说图片口味搜索| 男女午夜视频在线观看| 精品无人区乱码1区二区| 999久久久精品免费观看国产| 免费人成视频x8x8入口观看| 无限看片的www在线观看| 国产精品九九99| 久久热在线av| 色综合亚洲欧美另类图片| 成人国语在线视频| 久久欧美精品欧美久久欧美| 女警被强在线播放| 老汉色∧v一级毛片| 中亚洲国语对白在线视频| 超碰成人久久| 色综合站精品国产| 91精品国产国语对白视频| 国产一卡二卡三卡精品| 亚洲精品国产色婷婷电影| 亚洲国产毛片av蜜桃av| 日本vs欧美在线观看视频| 丝袜在线中文字幕| 欧美色视频一区免费| 国产亚洲av高清不卡| 久久久久久久精品吃奶| 一边摸一边抽搐一进一出视频| 俄罗斯特黄特色一大片| 中文字幕高清在线视频| www.999成人在线观看| 级片在线观看| 在线观看免费视频网站a站| 老司机午夜十八禁免费视频| 婷婷精品国产亚洲av在线| 欧美日韩一级在线毛片| ponron亚洲| 国产色视频综合| 精品福利观看| 啪啪无遮挡十八禁网站| 亚洲一区中文字幕在线| 国产成人精品无人区| 亚洲国产日韩欧美精品在线观看 | 欧美色欧美亚洲另类二区 | 老司机午夜福利在线观看视频| 亚洲精品在线观看二区| 精品国产一区二区久久| 国产精品影院久久| 亚洲欧美激情综合另类| 免费看a级黄色片| 日韩有码中文字幕| 18禁观看日本| 国产精品美女特级片免费视频播放器 | 亚洲av电影在线进入| 一级毛片精品| 88av欧美| 91老司机精品| 国产精品二区激情视频| 一级毛片女人18水好多| 亚洲精品国产精品久久久不卡| 亚洲在线自拍视频| 天堂√8在线中文| 天堂影院成人在线观看| 亚洲,欧美精品.| 黄色丝袜av网址大全| 国产不卡一卡二| 自拍欧美九色日韩亚洲蝌蚪91| 精品人妻1区二区| 在线观看免费午夜福利视频| 日本免费一区二区三区高清不卡 | 亚洲自拍偷在线| 免费在线观看亚洲国产| 亚洲美女黄片视频| 中出人妻视频一区二区| 男人舔女人下体高潮全视频| 人妻久久中文字幕网| 美女免费视频网站| 美女扒开内裤让男人捅视频| 午夜福利一区二区在线看| 亚洲欧美精品综合久久99| 国产在线观看jvid| 欧美另类亚洲清纯唯美| 少妇被粗大的猛进出69影院| 国产aⅴ精品一区二区三区波| 国产欧美日韩一区二区三| 法律面前人人平等表现在哪些方面| 国产又色又爽无遮挡免费看| 国产精品永久免费网站| 欧美老熟妇乱子伦牲交| 50天的宝宝边吃奶边哭怎么回事| 91精品三级在线观看| 欧美一级a爱片免费观看看 | 日韩欧美三级三区| 50天的宝宝边吃奶边哭怎么回事| 深夜精品福利| 国产精品野战在线观看| 久久久久久久午夜电影| 91在线观看av| 精品免费久久久久久久清纯| 美女国产高潮福利片在线看| 中亚洲国语对白在线视频| 少妇 在线观看| 母亲3免费完整高清在线观看| 亚洲自偷自拍图片 自拍| 叶爱在线成人免费视频播放| 好看av亚洲va欧美ⅴa在| 亚洲,欧美精品.| 成人三级做爰电影| 一级a爱片免费观看的视频| 国产色视频综合| 天天一区二区日本电影三级 | 夜夜看夜夜爽夜夜摸| 日韩大码丰满熟妇| 日本黄色视频三级网站网址| 久久性视频一级片| 在线国产一区二区在线| 91av网站免费观看| 亚洲色图av天堂| 久久天躁狠狠躁夜夜2o2o| 在线观看免费视频日本深夜| 男人操女人黄网站| 天天躁夜夜躁狠狠躁躁| 在线av久久热| 丁香欧美五月| 欧洲精品卡2卡3卡4卡5卡区| 国产高清激情床上av| 欧美中文综合在线视频| 日韩欧美一区二区三区在线观看| 午夜久久久久精精品| 久久天堂一区二区三区四区| 看免费av毛片| 国产一区二区三区在线臀色熟女| 久久精品亚洲熟妇少妇任你| 麻豆av在线久日| 一区二区三区激情视频| 女警被强在线播放| 欧美av亚洲av综合av国产av| 精品久久久久久成人av| 午夜福利,免费看| 99精品在免费线老司机午夜| 亚洲无线在线观看| 精品高清国产在线一区| 免费观看人在逋| 亚洲自偷自拍图片 自拍| 男女下面插进去视频免费观看| 日韩精品中文字幕看吧| 桃红色精品国产亚洲av| 午夜激情av网站| 亚洲av日韩精品久久久久久密| 欧美国产日韩亚洲一区| 97碰自拍视频| 成人手机av| 怎么达到女性高潮| 久久精品aⅴ一区二区三区四区| e午夜精品久久久久久久| 一区二区三区激情视频| 免费看美女性在线毛片视频| 免费在线观看日本一区| 国产av一区二区精品久久| 免费在线观看亚洲国产| 麻豆久久精品国产亚洲av| 在线观看午夜福利视频| 在线十欧美十亚洲十日本专区| 久久精品人人爽人人爽视色| 淫妇啪啪啪对白视频| av视频免费观看在线观看| 亚洲第一欧美日韩一区二区三区| 久久欧美精品欧美久久欧美| 国产欧美日韩一区二区精品| 午夜两性在线视频| 人成视频在线观看免费观看| 亚洲专区字幕在线| 久久久久久国产a免费观看| 亚洲欧美日韩高清在线视频| 国产欧美日韩一区二区三| 亚洲av电影不卡..在线观看| 久久人人97超碰香蕉20202| 久久午夜亚洲精品久久| 丝袜美腿诱惑在线| 两性午夜刺激爽爽歪歪视频在线观看 | 久久久久亚洲av毛片大全| 国产成人欧美在线观看| 日韩欧美一区二区三区在线观看| 窝窝影院91人妻| 久久中文字幕人妻熟女| 一边摸一边抽搐一进一出视频| 十八禁人妻一区二区| 老汉色∧v一级毛片| 性少妇av在线| 久久婷婷人人爽人人干人人爱 | 日本免费a在线| 欧美精品亚洲一区二区| 久久午夜亚洲精品久久| 国产野战对白在线观看| 久久久久精品国产欧美久久久| 国产欧美日韩精品亚洲av| 韩国av一区二区三区四区| cao死你这个sao货| 丝袜在线中文字幕| 亚洲成国产人片在线观看| 国产精品久久久人人做人人爽| 精品国内亚洲2022精品成人| 黄频高清免费视频| 日本黄色视频三级网站网址| 日本vs欧美在线观看视频| av欧美777| 我的亚洲天堂| 中文字幕另类日韩欧美亚洲嫩草| 精品不卡国产一区二区三区| 99久久国产精品久久久| 国产又爽黄色视频| 国产成人av激情在线播放| 嫩草影院精品99| 777久久人妻少妇嫩草av网站| 精品欧美国产一区二区三| 久久久久亚洲av毛片大全| 免费久久久久久久精品成人欧美视频| 国产欧美日韩精品亚洲av| 午夜福利影视在线免费观看| 一级,二级,三级黄色视频| 国产高清视频在线播放一区| 老司机午夜福利在线观看视频| 久久中文看片网| 亚洲国产欧美网| 母亲3免费完整高清在线观看| 老司机靠b影院| 国产单亲对白刺激| 美女高潮喷水抽搐中文字幕| 精品国产国语对白av| 日本 欧美在线| 免费在线观看影片大全网站| 欧美一级毛片孕妇| 亚洲精品美女久久久久99蜜臀| 亚洲av成人一区二区三| 久久精品91无色码中文字幕| 韩国精品一区二区三区| 午夜成年电影在线免费观看| 国产黄a三级三级三级人| 欧美乱色亚洲激情| 99riav亚洲国产免费| 久久欧美精品欧美久久欧美| 国产片内射在线| 女生性感内裤真人,穿戴方法视频| 欧美精品啪啪一区二区三区| 欧美色视频一区免费| 国产成人系列免费观看| 夜夜躁狠狠躁天天躁| 少妇裸体淫交视频免费看高清 | 久久青草综合色| 欧美激情高清一区二区三区| 亚洲欧美激情在线| 亚洲免费av在线视频| 91麻豆精品激情在线观看国产| 9191精品国产免费久久| 这个男人来自地球电影免费观看| 精品人妻1区二区| 日韩欧美国产在线观看| 淫秽高清视频在线观看| 侵犯人妻中文字幕一二三四区| 久久这里只有精品19| 巨乳人妻的诱惑在线观看| 午夜成年电影在线免费观看| 在线永久观看黄色视频| 人妻久久中文字幕网| 久久婷婷人人爽人人干人人爱 | 国产三级在线视频| 老司机午夜福利在线观看视频| 国产主播在线观看一区二区| 高清在线国产一区| 国产精品,欧美在线| 91老司机精品| 国产午夜精品久久久久久| 国产激情欧美一区二区| videosex国产| 波多野结衣巨乳人妻| 亚洲精品粉嫩美女一区| 9色porny在线观看| 十八禁网站免费在线| 久久 成人 亚洲| 黄色视频不卡| 窝窝影院91人妻| 久久久国产精品麻豆| 99久久99久久久精品蜜桃| 亚洲性夜色夜夜综合| 99久久99久久久精品蜜桃| 国内毛片毛片毛片毛片毛片| 国产亚洲精品一区二区www| av视频在线观看入口| 国产乱人伦免费视频| 麻豆av在线久日| 夜夜看夜夜爽夜夜摸| 国产亚洲av嫩草精品影院| 色哟哟哟哟哟哟| 久久香蕉激情| 此物有八面人人有两片| 在线av久久热| 日韩 欧美 亚洲 中文字幕| 法律面前人人平等表现在哪些方面| 久久精品国产亚洲av香蕉五月| av天堂久久9| 国产精品一区二区三区四区久久 | 伦理电影免费视频| 免费看美女性在线毛片视频| 麻豆久久精品国产亚洲av| 熟女少妇亚洲综合色aaa.| 国产精品九九99| 亚洲欧美日韩另类电影网站| 欧美丝袜亚洲另类 | 免费在线观看日本一区| 国产精品久久久久久人妻精品电影| 97碰自拍视频| 久久热在线av| 久久久久久久精品吃奶| 国产精品影院久久| 国产成人av激情在线播放| 亚洲aⅴ乱码一区二区在线播放 | 免费在线观看影片大全网站| 法律面前人人平等表现在哪些方面| 免费高清在线观看日韩| 欧美日韩黄片免| 亚洲精品国产一区二区精华液| 99在线人妻在线中文字幕| 国产伦一二天堂av在线观看| 免费搜索国产男女视频| 9热在线视频观看99| 日韩成人在线观看一区二区三区| 日本a在线网址| 精品不卡国产一区二区三区| 午夜免费激情av| 老熟妇乱子伦视频在线观看| 在线观看免费午夜福利视频| 日韩中文字幕欧美一区二区| 一级作爱视频免费观看| 亚洲欧美日韩无卡精品| 91大片在线观看| 久久香蕉国产精品| 亚洲自偷自拍图片 自拍| 99riav亚洲国产免费| av中文乱码字幕在线| 伦理电影免费视频| 免费高清视频大片| 超碰成人久久| 午夜精品在线福利|