• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Theoretical study of the hyperfine interaction constants,Land′e g-factors,and electric quadrupole moments for the low-lying states of the 61Niq+(q=11,12,14,and 15)ions*

    2021-01-21 02:07:10TingXianZhang張婷賢YongHuiZhang張永慧ChengBinLi李承斌andTingYunShi史庭云
    Chinese Physics B 2021年1期

    Ting-Xian Zhang(張婷賢),Yong-Hui Zhang(張永慧), Cheng-Bin Li(李承斌),?, and Ting-Yun Shi(史庭云)

    1State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics,Wuhan Institute of Physics and Mathematics,Innovation Academy for Precision Measurement Science and Technology,Chinese Academy of Sciences,Wuhan 430071,China

    2University of Chinese Academy of Sciences,Beijing 100049,China

    Keywords: hyperfine interaction, Land′e g-factors, electric quadrupole moment, multiconfiguration Dirac–Hartree–Fock(MCDHF)method

    1. Introduction

    The extraordinary precision of optical clocks allows not only for creating improved time standards, but also for looking for changes in fundamental constants over time, measuring gravity red shift, and probing the existence of forces beyond the Standard Model.[1–3]The fractional uncertainties of a few parts in 10-18,even in 10-19,have been achieved in current leading optical clocks, such as the27Al+clock.[4–7]The dominated uncertainty and frequency shift of the clock transition are caused by the perturbations of the external fields,such as blackbody radiation (BBR) and quadratic Zeeman effect. In comparison to neutral atoms and singly charged ions,the highly charged ions(HCIs)possess optical transitions which can be extremely narrow and less sensitive to the external perturbations, since the electronic cloud is shrunk with the increasing of the ion charge.[8–10]Moreover, the sensitivity of optical transitions in HCIs to effects beyond the Standard Model and Einstein’s Theory of Relativity is enhanced by the nuclear charge and ionization degree. Therefore,HCIs are candidates for the novel clock which can improve the accuracy of the optical frequency standards and subsequent researches,such as exploring changes of the fine structure constant α.[11]In recent years, many HCIs have been suggested as the candidates for making ultra-precise optical clocks and exploring new physics beyond the standard model of particle physics.[10]And experimentally, sympathetic cooling and quantum logic spectroscopy of HCIs have been applied for the Ar13+ion,[12,13]which shed light on building the optical clock based on HCIs.

    Several highly charged nickel ions have been proposed for making ultra-precise optical clock with the fractional uncertainties below 10-19level.[9,22,23]The magnetic dipole(M1) transitions between the states belonging to the configuration of the ground state in the61Ni15+and61Ni14+ions were recommended by Yudin et al. The advantages of these ions are the negligible quadrupolar shift,and the simple clock level structures of themself which are benefit to both the theoretical and experimental studies.[9]Soon afterwards,Yu and Sahoo have demonstrated that the projected fractional shift for clock transition 3s23p2Po3/2–2Po1/2 in the61Ni15+ion is below the 10-19level.[22]They also pointed out that the electric quadrupole (E2) transition 3s23p23P0–3P2in58Ni12+ion is suitable for making optical clocks, since the quality factor of this transition is larger than 1015,and the M1 transition 3s23p23P1–3P2can be used for laser cooling.[23]Recently, the six optical clock transitions (in Fig. 1) in four adjacent charge states of highly charged nickel ions, Ni11+, Ni12+, Ni14+,and Ni15+, have been studied both in theory and experiment.Theoretically,the transition energies,transition rates,and enhancement factors for the α-variation for these clock transitions have been calculated by using the multi-configuration Dirac–Hartree–Fock method(MCDHF).Experimentally,with the achievement of producing and extracting the above ions in the low-energy compact Shanghai–Wuhan Electron Beam Ion Trap,[24]the transition wavelengths of four magnetic-dipole(M1) clock transitions have been measured with an accuracy of tens of ppm,which are in agreement with their calculations.

    In this work,using the MCDHF method,we calculate the hyperfine interaction constants, Land′e g-factors, and electric quadrupole moment for the states that are involved in the six optical transitions of61Ni HCIs,as shown in Fig.1.The active space approach is adopted to investigate the effects of electron correlations on the atomic parameters in detail. The above investigations allow us to obtain high-precision atomic parameters,and to evaluate reliable uncertainties for the present results.We expect our calculations could support the experimental investigations about the highly charged nickel ion optical clock.

    Fig.1. Partial level structures and clock transitions for 61Ni11+, 61Ni12+, 61Ni14+,and 61Ni15+ions. Magnetic-dipole(M1)transitions are shown in red and electric-quadrupole (E2) transitions in blue. The wavelengths labeled in this figure are recommended values by NIST database.[25]

    2. Theoretical method

    2.1. MCDHF method

    Atomic state wave functions(ASFs)in this work are generated by using the MCDHF method.[26,29]For an N-electron atomic system,the Dirac–Coulomb Hamiltonian HDCis given by

    where c is the speed of light in vaccum, αiand βiare the 4×4 Dirac matrices, and Vnuc(ri) is the monopole part of the electron–nucleus interaction. In the MCDHF method,an ASF is constructed by configuration state functions(CSFs)|γJMJ〉with the same parity P, total angular momentum J, and its component along the z direction MJ,i.e.,

    Here, ciis the mixing coefficient, and γistands for other appropriate quantum number of the CSF. Every CSF is a linear combination of products of one-electron Dirac orbitals. The mixing coefficients and the orbitals are optimized simultaneously in the self-consistent field(SCF)procedure to minimize energies of levels concerned.Once a set of orbitals is obtained,the relativistic configuration interaction(RCI)calculations can be carried out to capture more electron correlations by optimizing the mixing coefficients.[27,28]The Breit interaction in the low-frequency approximation

    is included in the RCI Hamiltonian in order to give the correct energy level sequence. In addition, QED corrections are divided into vacuum polarization and self-energy correction and both parts are included in the RCI procedure. The vacuum polarization part is described by the Uehling model potential,and the self-energy correction is given as a sum of the oneelectron corrections,which are evaluated by using a screened hydrogenic model.[29,30]

    2.2. Hyperfine interaction

    The hyperfine interaction is caused by the interaction between the electrons and the electromagnetic multipole moments of the nucleus. The corresponding Hamiltonian is in the form of

    The hyperfine interaction couples the electronic angular momentum J and nuclear spin I to a conserved angular momentum F, F =I+J. In the first-order approximation, the hyperfine energy correction is given by

    2.3. Electric quadrupole moment

    Because the atomic charge distribution is not always spherical, there is a deviation from the spherical shape, in which case the atomic state has an electric quadrupole moment.The Hamiltonian for the interaction between the electric quadrupole moment and the electric-field gradient is

    2.4. Zeeman effect of hyperfine level

    The Zeeman interaction of the atom with the magnetic field B can be written as[34,35]For an N-electron atom,the electronic tensor operator is

    Here,gJand gFare Land′e g-factors for the fine and hyperfine states.

    3. Computational model

    For a many-electron atomic system, the description of electron correlations in the computational model plays a key role on the precision of the calculated atomic parameters. The active space approach is utilized to capture the effect of electron correlations systematically.[30,36]In this approach, the CSFs generated through single(S)and double(D)excitations from the occupied orbitals in the single reference(SR)configuration to virtual orbitals capture the first-order electron correlation effects. In order to achieve high accuracy,the higherorder electron correlations beyond the first-order electron correlation also need to be considered. The CSFs generated through SD excitations from the multireference(MR)configurations set can capture the higher-order electron correlation for the complex atomic system,i.e.,MR-SD approach.[37]The MR configurations set is formed by selecting those important CSFs in the first-order ASF. In Table 1, the reference configuration sets, the virtual orbitals, and the number of CSFs corresponding to computational processes of the nickel ions concerned are shown.

    For each ion concerned, the computation starts from the Dirac–Hartree–Fock SCF calculation. In this step, the occupied orbitals in the reference configuration are optimized as spectroscopic orbitals(labeled as DHF).As shown in Table 1,the reference configurations for the Ni11+, Ni12+, Ni14+, and Ni15+ions are 3s23p5,3s23p4,3s23p2,and 3s23p,respectively.The 3s and 3p orbitals are the valence orbitals and others are the core orbitals. In the SCF calculations, the correlation between the valence electrons,VV correlation,and that between the valence electrons and core electrons, CV correlation, are included. The configuration expansions are generated by restricting the SD excitations from the single reference configuration. The restriction to the double excitations is that at most one electron in the core subshell can be substituted at one step. The virtual orbitals are augmented layer by layer up to nmax=12 and lmax=6,nmaxand lmaxare the maximum principal quantum number and the maximum angular quantum number of the virtual orbitals, and only the last added virtual orbitals are variable in one step. The orbital set obtained in this CV computational model is used for the subsequent RCI calculations. The correlations in the core electrons, referred to as CC correlations,are included in the RCI computation by allowing the SD excitations from the core orbitals to all the virtual orbitals. In order to analyze the effects from different core electrons on the physical quantities under investigation,we open up the core subshell successively. Corresponding models are labeled with CC2p, CC2s, and CC1s, respectively,and the subscripts 2p,2s,and 1s mean that the CC correlations between these orbitals are involved. So far,the SD-excitation CSFs from the single reference configuration are all included.It means that all the first-order electron correlations are included in our calculations.

    As mentioned earlier, the higher-order correlations between the valence orbitals and the core orbitals with n=2 are captured by MR-SD approach. We select the dominant CSFs with the weights of|ci|>0.01 in the configuration spaces obtained in the CC1smodel to form the multireference configuration set and show them in Table 1. To control the number of CSFs, the SD excitations are allowed from orbitals with n ≥2 in the MR configurations to the first three layers of virtual orbitals. These computational models are marked as MR.Finally, the Breit interaction and QED corrections are evaluated based on the MR model. In practice, we employ the GRASP2018[38]package to perform present calculations.

    Table 1. The reference configurations sets,the active orbitals(AO)set,and the number of CSFs(NCSF)for the concerned states of the Ni11+,Ni12+,Ni14+,and Ni15+ ions in various correlation models. The active orbitals are labelled by the maximum principal quantum number nmax and orbital angular momentum l.

    4. Results and discussion

    4.1. Hyperfine interaction constants

    Computational uncertainty is caused by the electron correlations neglected in the computational model. In this work all the first-order electron correlations and the dominant higher-order correlations are included. The main uncertainty arises from the neglected higher-order correlations related to the 1s electrons.But these effects should be smaller than those from the outer shells because of the stronger nuclear Coulomb potential in the inner region. Conservatively,we treat the contribution of the higher-order correlations captured in the MR model as the uncertainty due to the neglected higher-order correlations. For example, the contribution of the higher-order correlation captured in the MR model to the Ahfs(2Po1/2) of the61Ni11+ions is 0.48%, and it is treated as the uncertainty caused by the neglected higher-order correlations. Additionally, the truncation uncertainty is estimated according to the convergence trends of the various correlations. For example,the truncation uncertainty of Ahfs(2Po1/2) for the61Ni11+ions is 0.03%. The total uncertainty of Ahfs(2Po1/2)for the61Ni11+ions is 0.51%. Yu and Sahoo have calculated the hyperfine interaction constants of the61Ni15+ions by using the relativistic coupled-cluster (RCC) method.[22]Our calculated results are in excellent agreement with theirs. Using the hyperfine interaction constants of the MR-BQ models, we evaluate the transition frequency corrections of the concerned clock transitions in Fig. 1 and show them in Table 3. Accordingly, the changes of the wavelength caused by the hyperfine interaction are about 0.001 nm for the c and d lines,and 0.01 nm for the other lines in Fig.1.

    Table 2. The hyperfine interaction constants Ahfs and Bhfs (all in MHz)for the concerned states in the 61Ni11+, 61Ni12+, 61Ni14+,and 61Ni15+ions. The numbers in the parentheses are the uncertainties for our results.

    Table 3. The hyperfine interaction corrections of the transition frequency Δfhfs (in MHz)for the clock transitions in Fig.1. Numbers in parentheses stand for the uncertainties.

    4.2. Land′e g-factor

    Table 4. The Land′e g-factors of the concerned states in the 61Ni11+,61Ni12+, 61Ni14+, and 61Ni15+ ions. The numbers in the parentheses are the uncertainties for our results.

    4.3. Electric quadrupole moments

    In Table 5,the electric quadrupole moments of the clock states in the61Ni11+,12+,14+,15+ions are presented. Similar to the cases of the hyperfine interaction constants and Land′e g-factors, the electric quadrupole moments of the states concerned are sensitive to the VV and CV electron correlations as well. The effects of the CC correlations and higher-order correlations on the electric quadrupole moments under investigation are about 1%,and opposite to each other. Thus,to obtain Θ with high precision, both the CC and the higher-order correlation are indispensable. The Θ(3P2)of the Ni12+and Ni14+ions are more sensitive to the Breit interaction and QED effect than other Θ in Table 5. The corrections of the Breit and QED to the Θ(3P2)of the Ni12+ion are 0.95%and 0.06%, respectively,and 3.3%and 0.25%for the Ni14+ion. For other Θ in Table 5, the influences of the Breit and QED effect are less than 0.1% and 0.01%, respectively. Due to the contributions from the neglected higher-order corrections and truncations of the active orbital sets, 1% uncertainties are given for present electric quadrupole moments. Yu and Sahoo[23]have calculated the Θ(3P2) of the Ni12+ion using the DIRAC program that based on Fock space coupled cluster(FSCC)method.Our calculated results agree with their results.

    Table 5. The electric quadrupole moments(in a.u.) of the concerned states in the 61Ni11+, 61Ni12+, 61Ni14+,and 61Ni15+ ions. The numbers in the parentheses are the uncertainties for our results.

    4.4. Electric quadrupole shift

    The electric quadrupole shift caused by the interaction between the electric quadrupole moments of the clock states with the gradient of the electric field is one of the main systematic shifts in the atomic clock. For the isotopes with nonzero nuclear spin, the quadrupole shift can be either eliminated or strongly suppressed by choosing clock transitions between the hyperfine levels which make the 6j symbol in Eq.(14)equal to zero. For the61Ni11+and61Ni15+ions,it is proper to choose the transitions between2Po3/2F =0 and2Po1/2F =1,2. In the61Ni12+and61Ni14+ions,the suitable states are3P0F =3/2,3P1F =1/2, and3P2F =1/2. Since Θ(2)-qis an even-parity operator of rank 2, the electric quadrupole moments of the states with F <1 are zero according to the selection rules.Thus, for the M1 clock transition in61Ni12+,3P1F =1/2–3P2F = 1/2, the quadrupolar shift is zero identically. For the other clock transitions concerned, the electric quadrupolar shifts are suppressed,which are benefited from that the ΘJof the2Po1/2and3P0states are zero. Moreover, the electric quadrupole shift can be canceled by two methods experimentally. Both of them are based on measuring the Zeeman spectrum of the clock transition.[33,39]The averaged value of the transition frequencies that correspond to three magnetic fields with the same magnitude but with mutually perpendicular directions does not contain the electric quadrupole shift. Alternatively,the electric quadrupole shift can be eliminated when an average over all MFis done.

    4.5. Zeeman shift

    The Zeeman shift of the clock transition frequency is caused by the residual magnetic field B of the environment.Generally,it is sufficient to consider only the first and secondorder Zeeman effects on the clock transitions frequency. The first-order Zeeman shift can be canceled by measuring two transitions with opposite magnetic quantum number MFand averaging the frequencies.[40]Indeed,for the clock transitions between the sublevels2Po1/2F = 0 MF= 0 and2Po3/2F =1,2 MF=0 of the61Ni11+,15+ions, the first-order Zeeman shift equals zero. The quadratic Zeeman shift can be evaluated by ΔE(2)m=CM2B2,where CM2~(gJμB-gIμN(yùn))/h2Ahfs.Using the calculated Land′e g-factors and magnetic dipole hyperfine interaction constants,we estimate theCM2for the clock transitions investigated in this work, and the values are listed in the third column of Table 6. Table 6 also gives the transition frequencies of the clock transitions concerned which are~1014Hz. By assuming a small magnetic field B=1 μT,the relative quadratic Zeeman shifts are evaluated. From Table 6,it can be seen that the quadratic Zeeman shifts are nonnegligible for the six clock transitions concerned,and we must identify the shifts precisely. The g-factor plays a key role in the accurate diagnosis of the magnetic field strength,which is necessary for determining the quadratic shift precisely.

    Table 6. The quadratic Zeeman shift coefficients CM2 (in Hz/T2) and the transition frequencies f (in Hz) of the concerned clock transitions in the 61Ni11+, 61Ni12+, 61Ni14+, and 61Ni15+ ions. The relative quadratic Zeeman shifts are evaluated by assuming a small magnetic field B=1 μT.Numbers in square brackets stand for the power of 10.

    5. Conclusion

    In summary,we calculated the hyperfine interaction constants, Land′e g-factors, and electric quadrupole moments of the sates involved in the clock transitions in61Ni11+,61Ni12+,61Ni14+,and61Ni15+ions using the MCDHF method. Based on the active space approach, the effects of the electron correlations, the Breit interaction, and QED effect on the above atomic parameters were discussed. We found that the VV and CV electron correlations make significant contributions to these physical quantities concerned. Moreover, both the CC and higher-order electron correlations should be included in order to acquire high precision atomic parameters. Reliable uncertainties were evaluated by taking into account the contributions from the neglected high-order corrections and truncations effects of the active orbital sets. In addition, we discussed the electric quadrupole shifts and Zeeman shifts of the clock transitions concerned. For the clock transitions under investigation,the electric quadrupole shifts and linear Zeeman shifts can be eliminated or suppressed. While the quadratic Zeeman shifts should be measured precisely for achieving the uncertainty below the 10-19level.

    Acknowledgment

    We would like to thank Li Ji-Guang of Institute of Applied Physics and Computational Mathematics for many useful discussions.

    国产伦在线观看视频一区| 亚洲专区国产一区二区| 国产精品免费视频内射| 美女免费视频网站| 性色av乱码一区二区三区2| 久久久国产成人免费| 一本精品99久久精品77| 国产精品免费视频内射| 他把我摸到了高潮在线观看| 搡老妇女老女人老熟妇| 免费在线观看黄色视频的| 级片在线观看| 欧美成人午夜精品| 国产高清激情床上av| 欧美日韩乱码在线| 在线观看免费午夜福利视频| 亚洲国产中文字幕在线视频| 真人做人爱边吃奶动态| 好看av亚洲va欧美ⅴa在| 欧美精品亚洲一区二区| 亚洲 国产 在线| 欧美在线黄色| 日韩三级视频一区二区三区| 欧美黑人巨大hd| 在线观看免费日韩欧美大片| 久9热在线精品视频| 国产视频内射| 国产av一区在线观看免费| 成人欧美大片| 在线观看66精品国产| 日韩欧美国产一区二区入口| 久久中文看片网| videosex国产| 国产黄色小视频在线观看| 中国美女看黄片| 最近在线观看免费完整版| 在线av久久热| 日日夜夜操网爽| 又黄又粗又硬又大视频| 欧美三级亚洲精品| 神马国产精品三级电影在线观看 | 精品高清国产在线一区| 黑人巨大精品欧美一区二区mp4| 国产午夜福利久久久久久| 免费看a级黄色片| 欧美+亚洲+日韩+国产| 国产精品1区2区在线观看.| 少妇 在线观看| 亚洲午夜精品一区,二区,三区| 999精品在线视频| 亚洲国产毛片av蜜桃av| 免费高清视频大片| 精品国产乱码久久久久久男人| av超薄肉色丝袜交足视频| 国产麻豆成人av免费视频| 久久香蕉激情| 亚洲欧美精品综合久久99| 最近最新中文字幕大全电影3 | 久久久久免费精品人妻一区二区 | 国产又黄又爽又无遮挡在线| 99久久99久久久精品蜜桃| 国产精品一区二区精品视频观看| 久久久久亚洲av毛片大全| 国内揄拍国产精品人妻在线 | 国产成人精品久久二区二区91| 在线观看午夜福利视频| 国产v大片淫在线免费观看| 亚洲男人的天堂狠狠| 国产99久久九九免费精品| 老熟妇乱子伦视频在线观看| 波多野结衣高清无吗| 欧美激情 高清一区二区三区| 在线免费观看的www视频| 日韩视频一区二区在线观看| 搡老妇女老女人老熟妇| 满18在线观看网站| 精品一区二区三区四区五区乱码| 午夜免费鲁丝| 亚洲国产精品合色在线| 波多野结衣高清无吗| 欧美午夜高清在线| 亚洲精品中文字幕一二三四区| 亚洲成av人片免费观看| 亚洲国产中文字幕在线视频| 搞女人的毛片| 18禁观看日本| 99在线人妻在线中文字幕| 日日干狠狠操夜夜爽| 1024视频免费在线观看| 美女 人体艺术 gogo| 亚洲国产精品久久男人天堂| 久久精品国产综合久久久| 侵犯人妻中文字幕一二三四区| 国产精品久久久久久亚洲av鲁大| 91麻豆精品激情在线观看国产| 国产av一区二区精品久久| 成人亚洲精品一区在线观看| 一个人免费在线观看的高清视频| 99精品久久久久人妻精品| 国产成人啪精品午夜网站| 99精品在免费线老司机午夜| 亚洲专区国产一区二区| 婷婷六月久久综合丁香| 黄频高清免费视频| 亚洲欧美激情综合另类| 国产激情偷乱视频一区二区| 悠悠久久av| 久久精品国产亚洲av香蕉五月| 日韩视频一区二区在线观看| 国产熟女午夜一区二区三区| 久久国产精品人妻蜜桃| 黄色成人免费大全| 日韩成人在线观看一区二区三区| 欧美日韩中文字幕国产精品一区二区三区| 丝袜人妻中文字幕| 亚洲成国产人片在线观看| 精品久久久久久久久久免费视频| 国产乱人伦免费视频| 自线自在国产av| 他把我摸到了高潮在线观看| 99国产精品一区二区蜜桃av| 欧美日韩福利视频一区二区| 午夜成年电影在线免费观看| 亚洲自偷自拍图片 自拍| 18禁黄网站禁片免费观看直播| 黄网站色视频无遮挡免费观看| 一区二区三区高清视频在线| 精华霜和精华液先用哪个| 久久人妻福利社区极品人妻图片| www.精华液| av免费在线观看网站| 亚洲自拍偷在线| 免费高清在线观看日韩| 美女扒开内裤让男人捅视频| 变态另类成人亚洲欧美熟女| 国产一区二区激情短视频| 99精品久久久久人妻精品| 精品久久久久久久久久免费视频| 日本免费一区二区三区高清不卡| 免费观看人在逋| 欧美成人免费av一区二区三区| 一级a爱视频在线免费观看| 久久精品aⅴ一区二区三区四区| a级毛片在线看网站| 亚洲天堂国产精品一区在线| av天堂在线播放| 国内毛片毛片毛片毛片毛片| 中文字幕最新亚洲高清| 999久久久国产精品视频| 亚洲性夜色夜夜综合| 国产单亲对白刺激| 亚洲国产高清在线一区二区三 | 给我免费播放毛片高清在线观看| av片东京热男人的天堂| 亚洲精品一卡2卡三卡4卡5卡| 免费电影在线观看免费观看| 老司机午夜十八禁免费视频| 久热爱精品视频在线9| 日韩欧美三级三区| 在线观看免费午夜福利视频| 婷婷亚洲欧美| 岛国视频午夜一区免费看| 久久香蕉激情| 777久久人妻少妇嫩草av网站| 88av欧美| 可以免费在线观看a视频的电影网站| 免费无遮挡裸体视频| 久久亚洲精品不卡| 国产麻豆成人av免费视频| 亚洲一区二区三区不卡视频| 免费电影在线观看免费观看| 首页视频小说图片口味搜索| 在线观看www视频免费| 变态另类丝袜制服| 久久久国产成人精品二区| 一二三四在线观看免费中文在| 男女床上黄色一级片免费看| 国产成人av教育| 不卡av一区二区三区| 国产蜜桃级精品一区二区三区| a在线观看视频网站| 日韩大尺度精品在线看网址| 美女午夜性视频免费| www.www免费av| 久久 成人 亚洲| 中文字幕人成人乱码亚洲影| 最近在线观看免费完整版| 麻豆一二三区av精品| 国产成人系列免费观看| 丝袜人妻中文字幕| 一本大道久久a久久精品| 日韩欧美一区视频在线观看| 久久久精品国产亚洲av高清涩受| 一区二区三区激情视频| 午夜亚洲福利在线播放| 看免费av毛片| 草草在线视频免费看| 真人一进一出gif抽搐免费| 国产熟女xx| 两个人免费观看高清视频| 久久香蕉激情| 麻豆成人av在线观看| 日韩三级视频一区二区三区| 久久久久精品国产欧美久久久| 一区二区三区高清视频在线| 视频在线观看一区二区三区| 一本综合久久免费| 亚洲精品美女久久久久99蜜臀| 国产日本99.免费观看| 777久久人妻少妇嫩草av网站| 亚洲精品粉嫩美女一区| 欧美国产日韩亚洲一区| 国产亚洲精品第一综合不卡| 制服诱惑二区| 成年版毛片免费区| 亚洲狠狠婷婷综合久久图片| 人人澡人人妻人| 国产野战对白在线观看| 制服诱惑二区| 亚洲专区国产一区二区| 男女之事视频高清在线观看| 免费在线观看日本一区| 国产免费av片在线观看野外av| 精品熟女少妇八av免费久了| 亚洲五月色婷婷综合| 国产精品爽爽va在线观看网站 | 18禁观看日本| 亚洲精品久久国产高清桃花| 国产精品乱码一区二三区的特点| АⅤ资源中文在线天堂| 久久伊人香网站| 嫩草影视91久久| 老鸭窝网址在线观看| 日日爽夜夜爽网站| 亚洲激情在线av| 日韩一卡2卡3卡4卡2021年| 国产精品1区2区在线观看.| 久久天堂一区二区三区四区| 熟女少妇亚洲综合色aaa.| 每晚都被弄得嗷嗷叫到高潮| 久久精品成人免费网站| 天天一区二区日本电影三级| 天天添夜夜摸| 亚洲 欧美一区二区三区| 精华霜和精华液先用哪个| 亚洲人成电影免费在线| 亚洲中文字幕一区二区三区有码在线看 | 久久午夜综合久久蜜桃| 国产一区在线观看成人免费| 日韩一卡2卡3卡4卡2021年| 日本黄色视频三级网站网址| 啪啪无遮挡十八禁网站| 香蕉久久夜色| 亚洲,欧美精品.| 久久久国产成人免费| 国产1区2区3区精品| 此物有八面人人有两片| 90打野战视频偷拍视频| 欧美色欧美亚洲另类二区| 国产熟女xx| 亚洲成av片中文字幕在线观看| 老司机福利观看| 91字幕亚洲| 免费看十八禁软件| 亚洲色图av天堂| 亚洲精品粉嫩美女一区| 欧美一级a爱片免费观看看 | 久久精品成人免费网站| www日本在线高清视频| av有码第一页| 精品一区二区三区av网在线观看| 国内揄拍国产精品人妻在线 | 黑人巨大精品欧美一区二区mp4| 久久久久久大精品| 人妻丰满熟妇av一区二区三区| 日韩 欧美 亚洲 中文字幕| 欧美乱妇无乱码| 国产精品国产高清国产av| 女生性感内裤真人,穿戴方法视频| 国产v大片淫在线免费观看| 一进一出抽搐gif免费好疼| 欧美黑人巨大hd| netflix在线观看网站| 免费在线观看完整版高清| 99久久综合精品五月天人人| 欧美日本亚洲视频在线播放| 一进一出抽搐动态| 亚洲国产欧美日韩在线播放| 禁无遮挡网站| 亚洲国产高清在线一区二区三 | 午夜日韩欧美国产| 国产午夜精品久久久久久| 国产片内射在线| 美女大奶头视频| 日本一区二区免费在线视频| 老汉色∧v一级毛片| 一级片免费观看大全| 在线观看舔阴道视频| 国产精品二区激情视频| 国产精品永久免费网站| 久久精品国产亚洲av香蕉五月| 国产亚洲欧美98| 日韩欧美 国产精品| 18美女黄网站色大片免费观看| 久久精品亚洲精品国产色婷小说| 19禁男女啪啪无遮挡网站| 国产人伦9x9x在线观看| 久久婷婷人人爽人人干人人爱| 国产亚洲欧美98| 久久精品人妻少妇| 99久久国产精品久久久| 欧美+亚洲+日韩+国产| 欧美乱妇无乱码| 国产亚洲av高清不卡| 久久精品国产亚洲av高清一级| 精品国产国语对白av| 十八禁网站免费在线| 最新美女视频免费是黄的| 天天躁狠狠躁夜夜躁狠狠躁| e午夜精品久久久久久久| 欧美一区二区精品小视频在线| 18禁裸乳无遮挡免费网站照片 | 免费看美女性在线毛片视频| 9191精品国产免费久久| 国产精品一区二区三区四区久久 | 亚洲欧美日韩无卡精品| 午夜激情福利司机影院| 好男人电影高清在线观看| 香蕉国产在线看| 精品少妇一区二区三区视频日本电影| 色精品久久人妻99蜜桃| 黑人巨大精品欧美一区二区mp4| 国产精品久久久久久人妻精品电影| av电影中文网址| videosex国产| 日日夜夜操网爽| 免费在线观看完整版高清| 级片在线观看| 他把我摸到了高潮在线观看| 亚洲欧洲精品一区二区精品久久久| 中文字幕人成人乱码亚洲影| 欧美中文综合在线视频| 一区二区日韩欧美中文字幕| 久久久久精品国产欧美久久久| 久热这里只有精品99| 美女扒开内裤让男人捅视频| 黄色女人牲交| 伦理电影免费视频| 国产精品久久久久久精品电影 | 成人免费观看视频高清| 亚洲午夜理论影院| 极品教师在线免费播放| 无限看片的www在线观看| 免费看美女性在线毛片视频| 不卡av一区二区三区| 国产伦人伦偷精品视频| 日本熟妇午夜| 国产成人精品久久二区二区91| 成人永久免费在线观看视频| 香蕉丝袜av| 国产亚洲精品av在线| 嫩草影院精品99| 久久久久久久久中文| 91成年电影在线观看| 日日摸夜夜添夜夜添小说| 长腿黑丝高跟| 日日爽夜夜爽网站| 免费高清在线观看日韩| 欧美绝顶高潮抽搐喷水| 亚洲一码二码三码区别大吗| 成年版毛片免费区| 丝袜人妻中文字幕| 身体一侧抽搐| 在线观看免费午夜福利视频| av天堂在线播放| e午夜精品久久久久久久| 国产亚洲精品第一综合不卡| 特大巨黑吊av在线直播 | 免费观看精品视频网站| 久久久国产精品麻豆| 亚洲av中文字字幕乱码综合 | 色老头精品视频在线观看| 91av网站免费观看| 亚洲最大成人中文| 国产精品久久视频播放| 亚洲三区欧美一区| 中文字幕人妻熟女乱码| 伊人久久大香线蕉亚洲五| x7x7x7水蜜桃| 91成人精品电影| 在线av久久热| av在线播放免费不卡| 美女扒开内裤让男人捅视频| 18禁国产床啪视频网站| 午夜免费鲁丝| 国产黄a三级三级三级人| 国产精品电影一区二区三区| 成人亚洲精品一区在线观看| 免费在线观看视频国产中文字幕亚洲| 母亲3免费完整高清在线观看| 欧美日韩精品网址| 男人的好看免费观看在线视频 | 哪里可以看免费的av片| 99国产精品99久久久久| 国产亚洲精品久久久久5区| 欧美 亚洲 国产 日韩一| 男女之事视频高清在线观看| 国产精品98久久久久久宅男小说| 一本久久中文字幕| 12—13女人毛片做爰片一| 在线观看免费午夜福利视频| 午夜影院日韩av| 99久久综合精品五月天人人| 一进一出好大好爽视频| 啦啦啦韩国在线观看视频| 国产一区二区在线av高清观看| 国产1区2区3区精品| 日韩视频一区二区在线观看| 久久久久免费精品人妻一区二区 | 人人妻人人看人人澡| 免费高清在线观看日韩| 又黄又爽又免费观看的视频| 桃红色精品国产亚洲av| 午夜视频精品福利| xxxwww97欧美| 久久精品aⅴ一区二区三区四区| 中文在线观看免费www的网站 | 久99久视频精品免费| 久久欧美精品欧美久久欧美| 亚洲成国产人片在线观看| 亚洲欧美日韩高清在线视频| 亚洲第一欧美日韩一区二区三区| 亚洲欧美日韩高清在线视频| 国产免费av片在线观看野外av| 丰满人妻熟妇乱又伦精品不卡| 丁香欧美五月| 欧美色视频一区免费| 色哟哟哟哟哟哟| 亚洲国产精品成人综合色| 日本熟妇午夜| 国产精品一区二区三区四区久久 | xxx96com| 国产欧美日韩一区二区三| 91麻豆av在线| www.自偷自拍.com| 久久九九热精品免费| 变态另类成人亚洲欧美熟女| 老鸭窝网址在线观看| 欧美性长视频在线观看| 免费高清在线观看日韩| 黄色毛片三级朝国网站| 欧美激情 高清一区二区三区| 人妻久久中文字幕网| 欧美又色又爽又黄视频| 男人操女人黄网站| 亚洲最大成人中文| 桃色一区二区三区在线观看| 婷婷亚洲欧美| 国产一区二区三区在线臀色熟女| 免费在线观看成人毛片| 亚洲精品国产区一区二| 欧美日韩乱码在线| 中文字幕久久专区| 18禁观看日本| 国产精品久久久久久人妻精品电影| netflix在线观看网站| 免费av毛片视频| 美女扒开内裤让男人捅视频| 国产三级在线视频| 中文字幕精品亚洲无线码一区 | 国产精品久久久久久精品电影 | 中文字幕人成人乱码亚洲影| 国产在线精品亚洲第一网站| 极品教师在线免费播放| 在线观看66精品国产| 中文字幕人妻熟女乱码| 啦啦啦免费观看视频1| 久久国产精品人妻蜜桃| a级毛片a级免费在线| 又黄又爽又免费观看的视频| tocl精华| 亚洲美女黄片视频| 最新美女视频免费是黄的| 视频区欧美日本亚洲| 老司机深夜福利视频在线观看| 最近最新免费中文字幕在线| 国产精品综合久久久久久久免费| 成人国语在线视频| 亚洲第一青青草原| 欧美乱码精品一区二区三区| 国产精品 国内视频| 一区二区三区高清视频在线| 亚洲欧美精品综合久久99| 国产一卡二卡三卡精品| 99国产精品99久久久久| 99久久无色码亚洲精品果冻| 麻豆久久精品国产亚洲av| 亚洲欧美激情综合另类| 草草在线视频免费看| 可以在线观看毛片的网站| 免费观看人在逋| 亚洲成人免费电影在线观看| 97超级碰碰碰精品色视频在线观看| 日韩欧美一区视频在线观看| 看片在线看免费视频| 亚洲aⅴ乱码一区二区在线播放 | 欧美日韩中文字幕国产精品一区二区三区| 日韩精品中文字幕看吧| 亚洲色图 男人天堂 中文字幕| 亚洲美女黄片视频| 国产在线精品亚洲第一网站| 欧美激情高清一区二区三区| 亚洲五月色婷婷综合| 精品无人区乱码1区二区| 欧美黑人精品巨大| 波多野结衣巨乳人妻| 欧美成人性av电影在线观看| 国产99白浆流出| 亚洲成国产人片在线观看| 在线免费观看的www视频| netflix在线观看网站| 1024视频免费在线观看| 午夜福利在线在线| 高清在线国产一区| 久久久国产精品麻豆| 欧美日韩精品网址| 国产成人av教育| 两个人免费观看高清视频| 波多野结衣巨乳人妻| 一级片免费观看大全| 91字幕亚洲| 欧美国产日韩亚洲一区| 亚洲狠狠婷婷综合久久图片| 午夜两性在线视频| 欧美中文日本在线观看视频| 久久久久久久久久黄片| 在线观看舔阴道视频| a在线观看视频网站| 人人妻人人澡欧美一区二区| 欧美久久黑人一区二区| 国产精品av久久久久免费| 在线观看免费视频日本深夜| 免费在线观看成人毛片| 国产一卡二卡三卡精品| 国产伦一二天堂av在线观看| 午夜免费激情av| 人人妻人人澡欧美一区二区| 国产精品一区二区免费欧美| 日本a在线网址| 999精品在线视频| www国产在线视频色| 老汉色av国产亚洲站长工具| 激情在线观看视频在线高清| 人人妻人人澡人人看| 色综合亚洲欧美另类图片| 中文字幕高清在线视频| 十八禁人妻一区二区| 精品人妻1区二区| xxx96com| 丝袜美腿诱惑在线| 精品国产亚洲在线| 欧美成人免费av一区二区三区| 国产黄a三级三级三级人| 国产黄片美女视频| 国产成人一区二区三区免费视频网站| 91麻豆精品激情在线观看国产| 91在线观看av| 一区二区三区精品91| 18禁观看日本| 午夜成年电影在线免费观看| 亚洲无线在线观看| 亚洲五月色婷婷综合| 首页视频小说图片口味搜索| 久久精品影院6| 日韩精品中文字幕看吧| 国产成人一区二区三区免费视频网站| 1024香蕉在线观看| 不卡av一区二区三区| 可以在线观看的亚洲视频| 欧美黑人精品巨大| 久久久久免费精品人妻一区二区 | 一级黄色大片毛片| 99久久精品国产亚洲精品| 日本精品一区二区三区蜜桃| 欧美国产精品va在线观看不卡| 香蕉国产在线看| 村上凉子中文字幕在线| 50天的宝宝边吃奶边哭怎么回事| 日韩av在线大香蕉| 韩国精品一区二区三区| 欧美大码av| 满18在线观看网站| 波多野结衣高清无吗| 男女那种视频在线观看| 69av精品久久久久久| 成人国产一区最新在线观看| xxx96com| 国产精品久久久久久人妻精品电影| 欧美又色又爽又黄视频| 欧美一级a爱片免费观看看 | 91大片在线观看| 免费女性裸体啪啪无遮挡网站| 悠悠久久av| 久久伊人香网站| 久久久精品欧美日韩精品| 曰老女人黄片| 欧美日韩福利视频一区二区| 91麻豆精品激情在线观看国产| 欧美国产精品va在线观看不卡| 久久久精品国产亚洲av高清涩受| 美女高潮喷水抽搐中文字幕| 欧美日韩瑟瑟在线播放| 无人区码免费观看不卡| 欧美激情 高清一区二区三区| 国产精品国产高清国产av|