• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Experimental Study on Dwell-fatigue of Titanium Alloy Ti-6AL-4V for Offshore Structures

    2018-10-12 06:28:00
    船舶力學(xué) 2018年9期

    (School of Naval Architecture and Ocean Eng,Jiangsu University of Science and Technology,Zhenjiang 212003,China)

    Abstract:The fatigue peak holding load has an obvious influence on the crack growth rate of titanium alloy Ti-6Al-4V at room temperature.Therefore,the fatigue and dwell-fatigue test of titanium alloy Ti-6Al-4V under room temperature are studied in this paper,and based on the prediction model of dwell-fatigue crack growth rate,the fatigue and dwell-fatigue crack growth rate of this material are predicted as well.The results show that the stress peak holding load for 60s significantly accelerated the fatigue crack growth rate of titanium alloy Ti-6Al-4V,which is consistent with other research results of materials at home and abroad;The difference between the dwell-fatigue crack growth rate and the fatigue crack growth rate increases with the increase of stress intensity factor range.That is to say,the effect of holding load on crack growth rate increases under high stress intensity factor.The fatigue and dwell-fatigue crack growth rate of titanium alloy Ti-6Al-4V are predicted based on the prediction model that research group put forward,the predicted results are in good agreement with the experimental results.

    Key words:titanium alloy;fatigue;crack growth rate;holding time

    0 Introduction

    The results of application and basic research at home and abroad show that Titanium alloys not only have high specific strength,local and uniform corrosion resistance in seawater,high fatigue performance and corrosion fatigue limit,but also have high fracture toughness and resistance to seawater stress corrosion cracking.It is an excellent marine material[-2].The research of α+ β titanium alloy Ti-6Al-4V is relatively mature,its dosage is more than half of all titanium alloys,ultra-low interstitial alloy Ti-6Al-4V has attracted wide attention.The U-nited States applies the Ti-6Al-4V to the horizontal tail shaft of the F-16 fighter.Titanium alloy Ti-6Al-4V is also used in the structure of pressure-resistant shell of deep-sea submersible.Japan’s ‘Deepwater 6 500’ uses the Titanium alloy Ti-6Al-4V,its depth of diving is 6 500 m.The Ti-6Al-4V titanium alloy is also used in the pressure resistant shell structure of‘Jiaolong’ in China,Its depth of diving is 7 062 m[3].The failure of these submersibles during service is mainly fatigue failure.In the course of actual work,the pressure-resistant shell structure bears in addition to floating and submerged load,the structure also bears the load of the working process under sea.That is,the fatigue problem of the pressure-resistant shell structure is actually a dwell-fatigue problem.

    Many studies have shown that dwell-fatigue at room temperature has a certain effect on fatigue crack growth behavior of titanium alloy.The general fatigue crack growth rate increases with the increase of maximum stress level and holding time of load,therefore,the life of dwellfatigue structure is obviously lower than that of fatigue life.Researchers at home and abroad have given many explanations for the causes of these phenomena,for example,peak stress,holding time,microstructure,temperature and hydrogen content can affect the sensitivity of titanium alloy to dwell-fatigue.This is still an inconclusive research hotspot.Therefore,it is of great engineering significance to carry out the dwell-fatigue test of titanium alloy materials.

    1 Study on prediction method of fatigue crack growth behavior

    Domestic and foreign researchers have done a lot of research on fatigue life prediction of offshore structures using fatigue crack propagation theory.Many prediction models of fatigue crack growth rate are proposed.Based on the exponential power law of fatigue crack growth rate(Paris formula)put forward by Paris in 1963,some new crack growth theories are put forward in combination with experiments by McEvily.Aiming at the limitation of Paris formula,McEvily formula is proposed,which can explain more fatigue phenomena,as Eq.(1):

    where ΔKeffthis the effective range of the stress intensity factor at the threshold level,ΔKeffis the effective range of the stress intensity factor,MPa

    On the basis of a large number of related experiments,the McEvily crack growth prediction model based on fatigue crack growth theory can not only predict the fatigue growth behavior of long cracks,but also be applicable to the fatigue small crack propagation behavior,as Eqs.(2)-(4):

    where da/dN is fatigue crack growth rate,m/cycle;KCis the plane stress fracture toughness of the material,σmaxis the maximum stress,MPa;Kmaxis the maximum stress intensity factor under cyclic fatigue loading,R is the stress ratio;Kopmaxis the maximum stress intensity factor of macroscopic long crack at crack opening level,k is the parameters of crack closure level varying with crack length;reis the material inherent defect size;σYis the yield strength of materials;Y(a)is the geometric correction coefficients related to the shape and position of cracks.

    Although the McEvily crack propagation rate model can explain many phenomena in fatigue tests,it can be used not only for macroscopic long cracks but also for physical small cracks.But the model can only be used in the near threshold region and ideal elastic-plastic materials.It can not reflect the phenomenon of crack instability and can not predict the loadpreserving fatigue process.The results of dwell-fatigue tests[4-5]at home and abroad show that the dwell-fatigue life of titanium alloy decreases significantly compared with the fatigue life of titanium alloy when the peak stress is introduced for a period of time.The cause of this effect is still a hot research topic,but it is generally agreed that stress and loading time have great influence on crack growth behavior of titanium alloy at room temperature according to the domestic and foreign research results.Therefore,it is no longer suitable to predict the life of titanium alloy material for pressure-resistant shell of submersible only by traditional method.In order to ensure the safety of the pressure resistant structure of the submersible,it is necessary to predict the fatigue crack propagation behavior of titanium alloy at room temperature more accurately[13].In 1980,Munz innovatively divided the load-preserving and fatigue processes into load preservation processes with peak stress peaks and pure fatigue load processes with load holding time.Therefore,there are two terms in its load-preserving fatigue crack growth rate model,one is fatigue term related to cyclic load,the other is load protection term related to peak loading time and load,as Eq.(5):

    Based on the above mentioned series of prediction methods for crack propagation behavior,in order to predict the life of the hull structure of the submersible vehicle more accurately,a prediction model of loading and fatigue crack growth rate considering small crack effect is proposed[7].The prediction model divides the fatigue crack propagation process into fatigue loading process and peak load retention process,that is,the prediction model is divided into two parts:fatigue term associated with cyclic load and time-dependent load protection term.The loading time is introduced into the model,so that the influence of different loading time on the load-keeping fatigue crack growth rate can be considered.as Eqs.(6)-(8):

    where A1is a material and environmentally sensitive constant of dimensions,is the modified crack length,m;m1is a constant representing the slope of the corresponding fatigue crack propagation rate curve;n1is the parameters affecting capacity of fatigue cycle part Kmax/Kmin;Kmaxis the maximum stress intensity factor under cyclic fatigue loading,Kminis the minimum stress intensity factor under cyclic fatigue loading,KCis the plane stress fracture toughness of the material,F is the crack tip elastoplastic correction factor;A2is the material and environmental constants related to the load-preserving part,MPa-mm1-m/2;m2is a constant of slope of crack growth rate curve related to load-preserving part;n2is a parameters that affect the capacity of the dwell-fatigue part Kmax/Kmin;tholdis the holding time under maximum stress.

    2 Experimental study on fatigue crack growth rate

    2.1 Test materials

    Due to the strength,plasticity,corrosion resistance and biocompatibility of titanium alloy Ti-6Al-4V are good,Ti-6Al-4V becomes the ace alloy in the titanium alloy industry.Many other types of titanium alloys can be considered as modification of titanium alloy Ti-6Al-4V.In recent years,the development of titanium alloys in China has become more and more rapid,and a set of titanium alloy system which is more suitable for the application and development of titanium alloys in China has been gradually formed.According to national standards GB/T 3620.1-2007,the standard chemical constituents of titanium alloy Ti-6Al-4V in China are listed in Tab.1.

    Tab.1 Chemical constituents of Ti-6Al-4V

    The density of titanium alloy Ti-6Al-4V is generally 4.5 g/cm3,60%of steel only;The standard yield strength of titanium alloy after Ti-6Al-4V annealing is also higher,which is 930 MPa,the ratio of fracture strength to density is about 210.Therefore,titanium alloy Ti-6Al-4V has the advantages of light material and high strength.In this paper,titanium alloy Ti-6Al-4V(TC4)forgings are used for dwell-fatigue crack growth rate test,and the chemical composition is shown in Tab.2.

    Tab.2 Chemical constituents of Ti-6Al-4V(TC4)(mass fraction,%)

    2.2 Fracture toughness test

    In fracture mechanics,the criterion of stress intensity factor K is widely used.The socalled K criterion is that when the stress intensity factor K of the crack reaches the fracture toughness KC,the crack will be unstable and propagate.Because the fracture toughness KCis difficult to be measured,the plane strain fracture toughness KICof the material is generally replaced.

    In the process of preparing and testing the plane strain fracture toughness KIC,it is necessary to preform the crack on the standard test piece first,and then to gradually increase the load during the loading process until the specimen breaks.The curve(P-V)between the load and the opening displacement of the crack nozzle should be recorded during the test.The standard specifies that the PQand KQare defined by using the intersection of the cut line and the curve that deviates from the curve tangent 5%(Conditional fracture toughness).The theoretical basis of the experiment is linear elastic fracture mechanics(LEFM).Therefore,the size and results of the specimen should meet the applicable range of LEFM.

    Fig.1 Tensile specimen standard

    Standard compact tensile specimen(CT test sample)were machined according to the GB/T 4161-2007 Plane Strain Fracture Toughness Test Method of Metallic Materials.The specific dimensions are shown in Fig.1.W=50 mm,B=12.5 mm,H=60 mm,S=62.5 mm,force hole diameter D=12.6 mm.

    The fracture toughness test samples of titanium alloy Ti-6Al-4V are 4 and the effective samples are 3.Marked A-1,A-2,A-3,respectively.Therefore,the fracture toughness of titanium alloy Ti-6Al-4V is calculated as the average of three.That is KIC≈76.5

    2.3 Fatigue/dwell-fatigue crack growth rate test

    The testing of crack growth rate is generally divided into two categories:one is crack propagation in elastic range;the other is crack propagation in plastic range.The zero member with high cycle and low load belongs to the former category,while the zero member with low cycle and high load belongs to the latter class.This paper focuses on a test of fatigue and dwell-fatigue crack growth rate in elastic range.A compact tensile specimen with severe stress concentration was used in the test(CT test sample).The sample has the advantages of small volume,light weight and long crack propagation distance.Empirical formula of stress intensity factor at crack tip of CT specimenas Eqs.(9)~(10):

    Before carrying out fatigue and load fatigue tests,the test specimens are uniformly prefabricated and tested.The IST 8802 type high and low temperature fatigue testing machine is adopted in the test.According to the requirements of relevant codes,the constant K method is adopted in the test.On the basis of 3-5 group pre-tests,K value is determined to be 18.6 in order to ensure the loading cycle number of precast crack is about 20 000,the best prefabrication effect can be achieved.The initial crack length is 22.5 mm,and the prefabricated crack length is 2 mm.The crack length of finished sample is 24.5 mm.

    Fig.2 Loading diagram

    Fig.3 Connection diagram between test machine and CT specimen

    IST 8802 high and low temperature fatigue testing machine is used in the fatigue crack growth rate test system.The dynamic and static load capacity of the testing machine is equal to that of the sampling rate of 10 kHz.Creep fatigue testing system is used for dwell-fatigue crack growth rate.The test process was carried out according to GB/T 6398-2000 The Fatigue Crack Growth Rate Test Method of Metal Materials[15].The load spectrum used in fatigue and dwellfatigue tests[8]is shown in Fig.2.The maximum load is set at 8 kN and the stress ratio R is 0.03.Means of connection between test equipment and CT specimens and fixtures are shown in Fig.3.The precision of testing machine and extensometer are all up to the national standard GB/T 6398-2000 The Fatigue Crack Growth Rate Test Method of Metal Materials and American standard ASTME647 Standard Test Method for Measurement of Fatigue Crack Growth Rates.

    3 Results and analysis

    Based on the theoretical knowledge of compliance method,the length of crack propagation a is measured,and the corresponding cycle number N is determined,that is the a-N curve is obtained.By using the seven point incremental polynomial method to process the experimental data,the double logarithmic da/dN curves of fatigue and dwellfatigue crack growth rate of titanium alloy Ti-6Al-4V were made according to the treated data.The curves are shown in Figs.4-6.

    Fig.4 Experimental results of fatigue crack growth rate of titanium alloy Ti-6Al-4V

    The curve of Ti-6Al-4V fatigue crack growth rate test for titanium alloy is shown in Fig.4.It can be seen from the figure that the fatigue crack growth rate test has two sets of valid data,marked as 1#,2#,respectively.The coincidence between the two groups of test data is high.From the point of view of test,it can be considered that the test data of fatigue crack growth rate is more reliable.With the increase of the range of stress intensity factor,the growth rate of fatigue crack in both groups shows an increasing trend,and in the region with larger stress intensity factor,the increasing rate of crack growth rate is faster.Fracture occurred at the fracture toughness of 76.5.

    Fig.5 is the test data of dwell-fatigue test for 30 s and 60 s.There are two valid groups of data for each group,marked as 1#,2#,respectively.It can be seen from the diagram that the two groups of data have good coincidence and strong reliability.From the da/dN-ΔK logarithmic curves in the diagram,it is shown that the crack growth rate da/dN increases with the increase of the stress intensity ΔK factor range.For the crack growth rate after the loading time is introduced,the crack growth is stable in the range of stress intensity factor ΔK<45and the rate is increasing slowly.When the range of stress intensity factor ΔK reaches 76.5it is in the stage of instability and propagation,and the crack growth rate accelerates obviously in this stage.

    Fig.5 Experimental results of Ti-6Al-4V dwell-fatigue crack growth rate for titanium alloys

    Fig.6 Summary of fatigue and dwell-fatigue crack growth rate of titanium alloy Ti-6Al-4V

    In order to compare and analyze the effect of different holding time on fatigue crack growth rate of titanium alloy Ti-6Al-4V,the double logarithmic curves da/dN-ΔK of Ti-6Al-4V fatigue and dwell-fatigue crack growth rate of titanium alloy under holding time of 30 s and 60 s are given in Fig.6.It is found from Fig.6 that the holding time has a significant effect on the fatigue crack growth rate of titanium alloy Ti-6Al-4V.The dwell-fatigue crack growth rate at 30 s and 60 s is higher than that of fatigue crack propagation.When holding time is introduced,with the increasing of holding time,the dwell-fatigue crack growth rate increases linearly in the same stress intensity factor range.With the increase of the range of stress intensity factor,the difference between fatigue and dwell-fatigue crack growth rate under holding time increases gradually.It is found that the material has lower resistance to dwell-fatigue crack propagation.That is,under the same stress intensity factor ΔK,the fatigue crack growth rate of the holding time 30 s and 60 s is higher than that of the fatigue crack growth rate.In the whole stress intensity factor range,the dwell-fatigue crack growth rate is about 4-5 times higher than that of fatigue crack growth rate.Therefore,this experiment can reflect the effect of dwell-fatigue on fatigue crack growth rate.

    4 Reliability verification of prediction model for dwell-fatigue crack growth behavior

    The fatigue crack growth rate test of titanium alloy Ti-6Al-4V under different holding time is predicted by using the dwell-fatigue crack growth rate prediction model mentioned above,and the predicted crack growth rate is compared with the experimental results.The corresponding prediction model parameters[16]are shown in Tab.3.The double logarithmic curves da/dN-ΔK of forecast result and test result based on forecast model,as shown in Fig.7.

    Tab.3 Model parameters

    Fig.7 Comparison of fatigue and dwell-fatigue crack growth rates of titanium alloy Ti-6Al-4V under different holding times

    It can be seen from Fig.7 that the prediction results of Ti-6AL-4V dwell-fatigue of titanium alloy by using the dwell-fatigue crack growth rate prediction model are in good agreement with the corresponding experimental results,and the experimental values are all distributed in the predicted values.With the increase of the stress intensity factor range,the fatigue crack growth rate also increases.When the range of stress intensity factor exceeds 50the prediction results of fatigue crack growth rate are in good agreement with the experimental results.When the stress intensity factor is larger than 50the experimental results are slightly different from the predicted ones.The reason may be that the crack growth rate is in the stage of unstable growth in the middle and late stage of the experiment,and the crack growth rate fluctuates slightly,which leads to a slight deviation from the predicted results.

    With the increase of holding time,the dwell-fatigue crack propagation rate of the material increases obviously.The test results and forecast results at 60 s are higher than those when holding time is 30 s.Compared with the results of two groups of dwell-fatigue prediction,the difference between the predicted values of 60 s and 30 s is about 1.5 to 2 times.Under the same stress intensity factor range,the difference between the experimental values of 60 s and 30 s of dwell-fatigue is about 1.7 to 2.5 times.In general,the prediction formula can be used to predict the dwell-fatigue crack growth rate of Ti-6Al-4V.

    5 Conclusions

    The fatigue problem of pressure-resistant shell structure is a hot topic in recent years.In this paper,the fatigue and dwell-fatigue crack propagation rate of titanium alloy Ti-6Al-4V has been studied experimentally and predicted.The fatigue of titanium alloy Ti-6Al-4V and the holding time of 30 s and 60 s were studied.The data are classified,calculated and analyzed after the test.And the forecasting model was put forward by our research group.The prediction value of the model is compared with the test value.The following conclusions are obtained:

    (1)The fatigue and dwell-fatigue of titanium alloy Ti-6Al-4V materials were studied.The holding time of dwell-fatigue was 30 s and 60 s,respectively.According to the experimental results,with the increase of the stress intensity factor range,the fatigue and dwell-fatigue crack growth rate increased in the same trend,and in the region with larger stress intensity factor,the increasing rate of crack growth rate is faster.Fracture occurred at the fracture toughness of 76.5;

    (2)The crack propagation rate curves of fatigue and dwell-fatigue were compared and analyzed.It is known that the dwell-fatigue crack growth rate is higher than the fatigue crack growth rate under the same stress intensity factor ΔK,in the whole stress intensity factor range,the dwell-fatigue crack growth rate is about 4-5 times higher than that of fatigue crack growth rate.With the increase of holding time,the crack growth rate increases obviously.The results show that the dwell has a significant effect on the fatigue crack growth rate of titanium alloy Ti-6Al-4V;

    (3)Based on the prediction model of dwell-fatigue crack propagation proposed by our group,the dwell-fatigue crack propagation behavior of titanium alloy Ti-6Al-4V was predicted and compared with the experimental results.It is found that with the increase of holding time,the Ti-6Al-4V dwell effect of titanium alloy is obvious.The predicted crack growth rate of titanium alloy Ti-6Al-4V is in good agreement with the experimental data,which indicates that the prediction model has a good ability to predict the dwell-fatigue crack growth behavior of titanium alloy Ti-6Al-4V.Therefore,the dwell-fatigue crack growth rate prediction model proposed in this paper,considering the dwell effect,has a strong ability to predict the crack growth rate of titanium alloy Ti-6Al-4V under dwell-fatigue condition.It provides a theoretical basis for studying the fatigue life prediction of marine structures under cyclic dwell-loading.

    色94色欧美一区二区| 最近手机中文字幕大全| 永久免费av网站大全| 曰老女人黄片| 精品久久久久久电影网| 2022亚洲国产成人精品| 麻豆精品久久久久久蜜桃| 欧美日韩精品成人综合77777| 亚洲丝袜综合中文字幕| a 毛片基地| 一本—道久久a久久精品蜜桃钙片| 波野结衣二区三区在线| 精品亚洲成国产av| 18禁在线播放成人免费| 国产欧美亚洲国产| videossex国产| 亚洲av成人精品一二三区| 成年人免费黄色播放视频| 欧美丝袜亚洲另类| 18禁在线播放成人免费| 国产精品一国产av| 十八禁网站网址无遮挡| 亚洲精品成人av观看孕妇| 青春草亚洲视频在线观看| 亚洲av欧美aⅴ国产| 欧美人与善性xxx| 久久久久久人妻| a级毛片黄视频| 免费av中文字幕在线| 亚洲伊人久久精品综合| 欧美精品一区二区免费开放| 日本免费在线观看一区| 日韩电影二区| 国产在线一区二区三区精| 国产亚洲一区二区精品| av不卡在线播放| 99九九线精品视频在线观看视频| 国产精品国产三级国产av玫瑰| 国产成人精品无人区| 国产成人精品福利久久| 中文字幕免费在线视频6| 狂野欧美激情性bbbbbb| 性色avwww在线观看| 免费av中文字幕在线| 中国三级夫妇交换| 观看av在线不卡| 亚洲av欧美aⅴ国产| 黑丝袜美女国产一区| 成人综合一区亚洲| 婷婷色av中文字幕| 老司机影院成人| 欧美日韩视频高清一区二区三区二| 女人精品久久久久毛片| 肉色欧美久久久久久久蜜桃| 国产高清三级在线| 99热全是精品| 最近手机中文字幕大全| 视频中文字幕在线观看| 黄片无遮挡物在线观看| 国产精品蜜桃在线观看| 五月天丁香电影| 亚洲色图综合在线观看| 欧美国产精品一级二级三级| 草草在线视频免费看| 国产精品国产三级专区第一集| 亚洲成色77777| av专区在线播放| 成年人午夜在线观看视频| 欧美精品国产亚洲| av播播在线观看一区| 国产精品一区二区三区四区免费观看| 少妇人妻精品综合一区二区| 成年女人在线观看亚洲视频| 中文字幕人妻熟人妻熟丝袜美| 尾随美女入室| 丝袜脚勾引网站| 午夜激情久久久久久久| av播播在线观看一区| 欧美激情极品国产一区二区三区 | 国产精品国产三级国产av玫瑰| 最新的欧美精品一区二区| 成人亚洲精品一区在线观看| 亚洲欧美色中文字幕在线| 国产免费又黄又爽又色| 精品久久久噜噜| 亚洲精品456在线播放app| 王馨瑶露胸无遮挡在线观看| 在线观看国产h片| 啦啦啦在线观看免费高清www| 日本与韩国留学比较| 午夜福利在线观看免费完整高清在| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 国产69精品久久久久777片| 人妻人人澡人人爽人人| 国产高清有码在线观看视频| 欧美国产精品一级二级三级| 五月玫瑰六月丁香| 极品人妻少妇av视频| 久久久久精品久久久久真实原创| 最黄视频免费看| 免费播放大片免费观看视频在线观看| 日本色播在线视频| 成人手机av| 国产黄色免费在线视频| 母亲3免费完整高清在线观看 | 91国产中文字幕| 亚洲精品日韩在线中文字幕| 满18在线观看网站| 一级毛片黄色毛片免费观看视频| 免费高清在线观看日韩| 国产高清不卡午夜福利| 女人久久www免费人成看片| 五月开心婷婷网| 免费大片黄手机在线观看| kizo精华| a级片在线免费高清观看视频| 午夜视频国产福利| 久久久精品免费免费高清| 国产成人精品一,二区| 亚洲少妇的诱惑av| 久久久久久久久久久丰满| 国产亚洲精品第一综合不卡 | 国产精品久久久久久精品古装| 青春草国产在线视频| 亚洲av综合色区一区| 欧美日韩av久久| 日本欧美国产在线视频| 精品久久久精品久久久| 一区二区三区免费毛片| 嫩草影院入口| 高清不卡的av网站| 少妇猛男粗大的猛烈进出视频| 亚洲色图综合在线观看| 亚洲精品av麻豆狂野| 国产av国产精品国产| 青青草视频在线视频观看| 久久综合国产亚洲精品| 免费大片18禁| 青春草亚洲视频在线观看| 18禁在线播放成人免费| 精品人妻在线不人妻| 天天影视国产精品| 欧美97在线视频| 少妇被粗大的猛进出69影院 | 视频中文字幕在线观看| 黄片播放在线免费| 日本爱情动作片www.在线观看| 国产成人av激情在线播放 | 老司机亚洲免费影院| 国产精品嫩草影院av在线观看| 国产精品久久久久成人av| 亚洲欧美中文字幕日韩二区| 国产成人aa在线观看| 99热这里只有是精品在线观看| 99热6这里只有精品| 人妻系列 视频| 亚洲精品第二区| 国产精品久久久久久精品古装| 中文字幕免费在线视频6| 97在线人人人人妻| videos熟女内射| 亚洲av成人精品一区久久| 精品一品国产午夜福利视频| av专区在线播放| 人人妻人人爽人人添夜夜欢视频| 亚洲在久久综合| 免费高清在线观看日韩| 永久网站在线| 母亲3免费完整高清在线观看 | 亚洲一级一片aⅴ在线观看| 国产成人免费观看mmmm| 十分钟在线观看高清视频www| 国产欧美另类精品又又久久亚洲欧美| 国产免费视频播放在线视频| 日本黄色片子视频| 嘟嘟电影网在线观看| 99热这里只有精品一区| 黄色欧美视频在线观看| 欧美变态另类bdsm刘玥| kizo精华| 成人亚洲精品一区在线观看| 亚洲成人av在线免费| 大话2 男鬼变身卡| 欧美xxⅹ黑人| 午夜福利网站1000一区二区三区| 亚洲av欧美aⅴ国产| 免费人妻精品一区二区三区视频| 久久99蜜桃精品久久| 久久久午夜欧美精品| 亚洲av中文av极速乱| 亚洲av中文av极速乱| 国产精品成人在线| 日韩中字成人| 菩萨蛮人人尽说江南好唐韦庄| 一区在线观看完整版| av在线观看视频网站免费| 免费人妻精品一区二区三区视频| 国产精品国产三级专区第一集| 日韩av在线免费看完整版不卡| 汤姆久久久久久久影院中文字幕| 18在线观看网站| 久久久亚洲精品成人影院| 伊人亚洲综合成人网| 亚洲激情五月婷婷啪啪| 日韩一本色道免费dvd| 久久人妻熟女aⅴ| 久久久久久久久久久久大奶| 久久免费观看电影| 久久99蜜桃精品久久| 看非洲黑人一级黄片| 精品国产一区二区久久| 各种免费的搞黄视频| 欧美国产精品一级二级三级| 国产成人av激情在线播放 | 欧美丝袜亚洲另类| 国产深夜福利视频在线观看| 午夜福利视频在线观看免费| 精品一区二区三卡| 尾随美女入室| 免费高清在线观看日韩| 国产精品 国内视频| 欧美日韩精品成人综合77777| 草草在线视频免费看| 国产一区亚洲一区在线观看| 制服人妻中文乱码| 热re99久久国产66热| 午夜激情av网站| 飞空精品影院首页| 久久久久久久亚洲中文字幕| 少妇被粗大的猛进出69影院 | 一区二区三区四区激情视频| 丰满少妇做爰视频| 国产黄色视频一区二区在线观看| 欧美3d第一页| 又黄又爽又刺激的免费视频.| 久久av网站| 老司机影院毛片| 久久热精品热| 少妇被粗大猛烈的视频| 极品人妻少妇av视频| 99热国产这里只有精品6| 一边亲一边摸免费视频| 一级二级三级毛片免费看| 国产免费一区二区三区四区乱码| av女优亚洲男人天堂| 国产精品久久久久久久久免| 国产日韩欧美在线精品| 欧美人与善性xxx| av.在线天堂| 制服诱惑二区| 在线观看三级黄色| 久久97久久精品| 久久精品夜色国产| videos熟女内射| 伦精品一区二区三区| 制服丝袜香蕉在线| 成人国产麻豆网| 又粗又硬又长又爽又黄的视频| 亚洲精品av麻豆狂野| 下体分泌物呈黄色| 欧美成人午夜免费资源| 免费看不卡的av| 国产av精品麻豆| 亚洲av国产av综合av卡| 成人国产av品久久久| 九九爱精品视频在线观看| av在线老鸭窝| 久久精品人人爽人人爽视色| 成人毛片a级毛片在线播放| 只有这里有精品99| 色婷婷av一区二区三区视频| 狂野欧美激情性xxxx在线观看| 亚洲精品国产av成人精品| 免费黄色在线免费观看| 国产色爽女视频免费观看| 在线精品无人区一区二区三| 亚洲天堂av无毛| 啦啦啦在线观看免费高清www| 成人漫画全彩无遮挡| 精品久久久精品久久久| 国产日韩欧美视频二区| 新久久久久国产一级毛片| 精品人妻熟女毛片av久久网站| 成年美女黄网站色视频大全免费 | 日本欧美国产在线视频| 亚洲人成网站在线播| 色5月婷婷丁香| 成人毛片60女人毛片免费| www.色视频.com| 青青草视频在线视频观看| 亚洲四区av| 高清毛片免费看| 国产av一区二区精品久久| 国产免费现黄频在线看| 亚洲av.av天堂| 啦啦啦视频在线资源免费观看| 亚洲人与动物交配视频| 亚洲欧美色中文字幕在线| 久久久久久久久久久免费av| 国产 一区精品| 免费久久久久久久精品成人欧美视频 | 亚洲人与动物交配视频| 老熟女久久久| 在线播放无遮挡| 国产白丝娇喘喷水9色精品| 国产精品国产三级国产专区5o| 亚洲国产精品专区欧美| 国产精品蜜桃在线观看| 男女边摸边吃奶| 国产精品蜜桃在线观看| 国产免费又黄又爽又色| 免费av不卡在线播放| 免费播放大片免费观看视频在线观看| 色视频在线一区二区三区| 99热这里只有是精品在线观看| 欧美一级a爱片免费观看看| 亚洲成人av在线免费| 亚洲国产av新网站| 国产免费一区二区三区四区乱码| 国产精品久久久久久久久免| 久久av网站| 久久99精品国语久久久| 成人影院久久| 大香蕉97超碰在线| 日日啪夜夜爽| 国产探花极品一区二区| 日本av免费视频播放| 天堂8中文在线网| 久久精品夜色国产| 亚洲精华国产精华液的使用体验| 亚洲精品日韩在线中文字幕| 国产片内射在线| 欧美精品亚洲一区二区| 精品人妻在线不人妻| 日韩av不卡免费在线播放| 国产精品三级大全| 少妇 在线观看| av视频免费观看在线观看| 一级,二级,三级黄色视频| av一本久久久久| 欧美精品亚洲一区二区| 考比视频在线观看| a级毛片在线看网站| 黑人猛操日本美女一级片| 国产日韩欧美视频二区| 久久精品国产亚洲av涩爱| 久久热精品热| 一级毛片电影观看| 欧美国产精品一级二级三级| av天堂久久9| 另类精品久久| 伊人久久精品亚洲午夜| 成人黄色视频免费在线看| 久久青草综合色| 高清毛片免费看| 国产高清不卡午夜福利| 我的女老师完整版在线观看| 能在线免费看毛片的网站| 99热这里只有精品一区| 免费av不卡在线播放| 最近最新中文字幕免费大全7| 王馨瑶露胸无遮挡在线观看| 精品亚洲成a人片在线观看| 亚洲第一区二区三区不卡| 国产欧美另类精品又又久久亚洲欧美| 一本大道久久a久久精品| 男人添女人高潮全过程视频| 国产永久视频网站| 青春草亚洲视频在线观看| 欧美丝袜亚洲另类| 九草在线视频观看| 精品国产一区二区久久| 一区二区三区乱码不卡18| 久久国产精品男人的天堂亚洲 | 精品国产一区二区三区久久久樱花| 一区二区av电影网| 亚洲综合精品二区| 国产一区有黄有色的免费视频| 母亲3免费完整高清在线观看 | 少妇 在线观看| 18+在线观看网站| 欧美精品一区二区免费开放| 一二三四中文在线观看免费高清| 国产在线一区二区三区精| 在线看a的网站| 成人国产av品久久久| 一级毛片aaaaaa免费看小| 大话2 男鬼变身卡| 国产男女内射视频| 国产黄色视频一区二区在线观看| 久久久国产精品麻豆| 精品久久久久久久久av| 国内精品宾馆在线| 男女无遮挡免费网站观看| 亚洲精品乱码久久久久久按摩| 18禁在线播放成人免费| 久热久热在线精品观看| 国产白丝娇喘喷水9色精品| 99热网站在线观看| 亚洲av免费高清在线观看| 久久久精品免费免费高清| 国产精品国产三级专区第一集| 久久99热这里只频精品6学生| 特大巨黑吊av在线直播| 色94色欧美一区二区| 一区二区av电影网| 99久国产av精品国产电影| 精品久久久噜噜| 中文天堂在线官网| 国产精品三级大全| 国产日韩欧美视频二区| 日韩,欧美,国产一区二区三区| 精品国产一区二区久久| 国内精品宾馆在线| 国产成人午夜福利电影在线观看| 国产 一区精品| 午夜91福利影院| 精品人妻在线不人妻| 亚洲精品日韩av片在线观看| 性色avwww在线观看| 久热这里只有精品99| 欧美日韩视频精品一区| 国模一区二区三区四区视频| 精品人妻在线不人妻| 3wmmmm亚洲av在线观看| 国精品久久久久久国模美| 日本欧美视频一区| 欧美精品一区二区免费开放| 午夜91福利影院| kizo精华| 七月丁香在线播放| 秋霞在线观看毛片| 亚洲中文av在线| 一本—道久久a久久精品蜜桃钙片| 国产 精品1| 女性生殖器流出的白浆| 国产成人精品婷婷| 国产欧美日韩一区二区三区在线 | 美女福利国产在线| 大又大粗又爽又黄少妇毛片口| 蜜臀久久99精品久久宅男| 亚洲婷婷狠狠爱综合网| 日韩一区二区视频免费看| 久久精品国产自在天天线| av不卡在线播放| 中国美白少妇内射xxxbb| 日韩精品有码人妻一区| 简卡轻食公司| 成人亚洲精品一区在线观看| 日本猛色少妇xxxxx猛交久久| 亚洲精品456在线播放app| 欧美xxⅹ黑人| 91在线精品国自产拍蜜月| 夜夜爽夜夜爽视频| 精品国产乱码久久久久久小说| 国产片特级美女逼逼视频| 伦理电影大哥的女人| 九色成人免费人妻av| 丝袜脚勾引网站| 成人亚洲精品一区在线观看| 色哟哟·www| 久久久久久久久久久丰满| 久久久亚洲精品成人影院| 王馨瑶露胸无遮挡在线观看| 18+在线观看网站| 99久久中文字幕三级久久日本| 欧美3d第一页| 两个人的视频大全免费| 欧美日韩成人在线一区二区| 制服人妻中文乱码| 97在线人人人人妻| 久久久午夜欧美精品| 夜夜骑夜夜射夜夜干| 精品人妻熟女毛片av久久网站| 亚洲综合色网址| 亚洲图色成人| 只有这里有精品99| 精品国产国语对白av| 另类亚洲欧美激情| 我的女老师完整版在线观看| 热re99久久精品国产66热6| 成年美女黄网站色视频大全免费 | 亚洲人成网站在线观看播放| 国产伦精品一区二区三区视频9| 国产乱来视频区| 欧美xxⅹ黑人| 国产成人免费无遮挡视频| 免费看不卡的av| 成人国产av品久久久| 欧美成人午夜免费资源| 边亲边吃奶的免费视频| 91精品国产国语对白视频| 97超碰精品成人国产| 国产男人的电影天堂91| 亚洲图色成人| 成人手机av| 午夜激情av网站| 成人亚洲精品一区在线观看| 国产亚洲最大av| 高清毛片免费看| 久久99精品国语久久久| 亚洲欧美中文字幕日韩二区| 午夜福利,免费看| 777米奇影视久久| 国产精品蜜桃在线观看| 亚洲av中文av极速乱| 2021少妇久久久久久久久久久| 亚洲国产日韩一区二区| 男女国产视频网站| 国产色爽女视频免费观看| 国产精品国产三级专区第一集| 大香蕉97超碰在线| 女性生殖器流出的白浆| 伦理电影免费视频| 亚洲国产毛片av蜜桃av| 精品久久久久久久久亚洲| 久久精品夜色国产| 肉色欧美久久久久久久蜜桃| 日日爽夜夜爽网站| 欧美老熟妇乱子伦牲交| 有码 亚洲区| 午夜免费观看性视频| 美女国产视频在线观看| 亚洲人与动物交配视频| 狠狠婷婷综合久久久久久88av| av国产精品久久久久影院| 少妇被粗大的猛进出69影院 | 黄色配什么色好看| 在线观看国产h片| 美女中出高潮动态图| 精品一区二区免费观看| 狠狠精品人妻久久久久久综合| 久久99精品国语久久久| 久久久久国产精品人妻一区二区| 在线看a的网站| 性色avwww在线观看| 久久女婷五月综合色啪小说| 久久精品久久精品一区二区三区| 日日摸夜夜添夜夜添av毛片| 亚洲欧洲日产国产| 精品久久久噜噜| 免费不卡的大黄色大毛片视频在线观看| 国产深夜福利视频在线观看| 久久精品久久久久久噜噜老黄| 人妻系列 视频| 91午夜精品亚洲一区二区三区| 亚洲精品国产av成人精品| 免费高清在线观看日韩| 美女福利国产在线| 九草在线视频观看| 日本av手机在线免费观看| 18+在线观看网站| 国产精品三级大全| 亚洲丝袜综合中文字幕| 精品午夜福利在线看| av在线老鸭窝| 日韩三级伦理在线观看| 亚洲国产毛片av蜜桃av| 中国三级夫妇交换| 日日啪夜夜爽| 久久久久久伊人网av| 亚洲人成网站在线播| 成人黄色视频免费在线看| 妹子高潮喷水视频| 制服诱惑二区| 亚洲精品中文字幕在线视频| 午夜av观看不卡| 婷婷成人精品国产| 精品久久久久久久久亚洲| 成人二区视频| 国产精品无大码| 成人二区视频| 婷婷色综合大香蕉| 久久久久久久大尺度免费视频| 亚洲色图 男人天堂 中文字幕 | 日韩强制内射视频| 日韩欧美一区视频在线观看| 欧美国产精品一级二级三级| 国产av一区二区精品久久| 国国产精品蜜臀av免费| 国产av一区二区精品久久| 欧美少妇被猛烈插入视频| 欧美变态另类bdsm刘玥| 国产片内射在线| 日韩成人伦理影院| 国产精品女同一区二区软件| 欧美人与善性xxx| 黄片播放在线免费| 亚洲无线观看免费| 观看美女的网站| 国产一区二区三区综合在线观看 | 多毛熟女@视频| 久久久精品免费免费高清| 国产成人精品婷婷| 日韩精品免费视频一区二区三区 | 国产免费福利视频在线观看| av不卡在线播放| 边亲边吃奶的免费视频| 老司机影院成人| 22中文网久久字幕| 熟女人妻精品中文字幕| 久久久午夜欧美精品| 免费看av在线观看网站| 成人黄色视频免费在线看| 亚洲成人一二三区av| 日韩中字成人| 黑人巨大精品欧美一区二区蜜桃 | 日韩制服骚丝袜av| 又黄又爽又刺激的免费视频.| 精品午夜福利在线看| 成人午夜精彩视频在线观看| 国产视频首页在线观看| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 亚洲欧美中文字幕日韩二区| 一级,二级,三级黄色视频|