• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    WRKY72 Negatively Regulates Seed Germination Through Interfering Gibberellin Pathway in Rice

    2021-01-13 07:29:40WANGHuimei,HOUYuxuan,WANGShuang
    Rice Science 2021年1期

    Letter

    WRKY72 Negatively Regulates Seed Germination Through Interfering Gibberellin Pathway in Rice

    Seed germination is associated with grain yield and quality in crop production. Gibberellic acid (GA) serves as a major phytohormone in the promotion of seed germination. It is synthesized in the embryos and transmitted to the aleurone layers, where GA triggers the synthesis and secretion of a set of hydrolases, especially α-amylase. Subsequently, the storage nutrients such as starch in the endosperm are digested by these hydrolases and absorbed by the embryo to sustain seed germination and early seedling establishment (Kaneko et al, 2002). The detailed GA biosynthesis process has been well studied and thoroughly reviewed in several literatures (Sakamoto et al, 2004; Reinecke et al, 2013). Briefly, geranylgeranyl diphosphate (GGDP) is turned into-kaurene by two terpene synthases,-copalyl diphosphate synthase (CPS) and-kaurene synthase (KS). Subsequently, the conversion of GA precursor-kaurene to-kaurenoic acid is catalyzed by-kaurene oxidase (KO), and that from-kaurenoic acid to GA12is catalyzed by-kaurenoic acid oxidase (KAO). Ultimately, GA12is converted to various GA intermediates and bioactive GAs by GA20-oxidase (GA20ox) and GA3-oxidase (GA3ox), respectively.

    WRKY transcription factors (TFs), one of the largest TF families in higher plants, usually bind to the W-box motif (T)(T)TGAC(C/T) in the promoter of the downstream target genes (Eulgem et al, 2000; Ulker and Somssich, 2004). Several WRKY family members have been reported to participate in GA-mediated seed germination in the past decade. In, AtWRKY27, which is directly regulated by GA signaling component RGA, is involved in GA-mediated seed germination (Zentella et al, 2007). Rushton et al (1995) reported that AfWRKY1 and AfWRKY2 inhibit the expression of α-amylase, therefore delay seed germination in. OsWRKY51 and OsWRKY71, which are homologous of AfWRKY1 and AfWRKY2, function as heterologous dimers and interact with GA signal positive regulator GAMYB to inhibit the expression of α-amylase in rice (Zhang et al, 2004; Xie et al, 2006). Here we report that WRKY72 acts as a negative regulator in rice seed germination by restricting GA accumulation through modulating ‘’ pathway, which would provide novel insights into the finely regulated mechanism of WRKY72-mediated seed germination in rice.

    Previous studies have shown thatis predominantly expressed in rice developing seeds, especially in aleurone layers, indicating it can participate in the regulation of seed maturation or germination (Xie et al, 2005; Hou et al, 2019). In this study, we mainly focused on the role ofin rice seed germination process. Firstly,over-expression lines () andmutants () were generated. Two independentover-expression lines (and) showed about 90-fold higher transcript level compared with the wild type (WT) (Fig. S1-A). Twomutants (and) harbored a G insertion and a T insertion in the 1st exon ofrespectively, which shifted the open reading frame, though the transcript level ofremained unchanged (Fig. S1-B to -D). Seeds of T2generation from bothandlines were subjected to seed germination assay. The germination rates oflines were significantly lower than that of the WT (Fig. 1-A). In consistent with the retarded seed germination, the seedling heights oflines were also lower than that of the WT (Fig. 1-B and -C). However, the germination rates and seedling growths oflines were similar to the WT, possibly due to its functional redundancy with other WRKY family members (Fig. 1-A to -C). As GA is a major activating phytohormone in seed germination, the retarded seed germination ofseeds intrigued us to measure the endogenous GA level inas well as the WT. The results showed that the GA3content was significantly reduced in thegerminating embryos, indicating thatdefected in GA accumulation, rather than GA signaling (Fig. 1-D). As expected, the retarded germination rates and seedling growths oflines were restored to the same level as the WT when 1.5 μmol/L exogenous GA3was applied (Fig. 1-E to -G). Hence, the suggestion is that WRKY72 inhibits seed germination at least partly by blocking GA accumulation.

    Fig. 1. Seed germination characteristics of overexpression linesand mutant lines.

    A,Germination time courses of the wild type (WT), overexpression linesand mutant lines, respectively. B, Germination phenotypes of the WT,andgrown on 1/2 Murashige and Skoog (MS) medium for 4 d. Scale bars, 1 cm.C, Seedling heights of the WT,andin accordance to B. D,GA3content in the germinating embryos of the WT and. E, Germination time courses of the WT andunder mock or 1.5 μmol/L GA3treatment. F, Germination phenotypes of the WT andunder mock or GA3treatment for 4 d. Scale bars, 2 cm. G, Seedling heights of the WT andlines in accordance to F. Error bars indicate SD with triple biological replicates (each replicate containing 50 seeds) in A andE, 50 biological replicates in C andG, and triple biological replicates in D. Asterisks indicate the significant differences between the WT and transgenic lines as determined by the Student’stest analysis. **,< 0.01.

    Germinating embryos ofand the WT grown on half-strength Murashige and Skoog(MS) medium for 2 d were collected for RNA-sequencing (RNA-seq)assay to clarify the regulatory mechanism underlying the WRKY72-governed seed germination. As a result, we totally identified 2457 differentiallyexpressed genes (DEGs), including 727 down-regulated and 1730 up-regulated genes in(|log2 ratio|≥1; False discovery rate <0.01) (Table S1). To validate the transcriptome analysis, 13 DEGs, which are functionally relevant to GA biosynthesis or seed germination, were selected for gene transcript abundance verification (Table S2). As shown in Fig. 2-A, the transcript levels of most of the selected genes were consistent with the RNA-seq results, suggesting the high-reliability of the RNA-seq data. Interestingly, among these detected DEGs, several have been reported to be functionally involved in GA biosynthesis or metabolism. For example,(gibberellin 20 oxidase 2, a major GA biosynthesis enzyme) () was down-regulated in, and mutation ofreduces GA biosynthesis and thereby delays seed germination (Ye et al, 2015).(a C2C2-type zinc finger protein) () was also reduced in, and it can interact with OsbZIP58 to promote seed germination through activating the gibberellin biosynthesis gene(Wu et al, 2014).(a leucine-rich repeat receptor-like kinase, LRR-RLKs)() was significantly elevated in, and it represses GA biosynthesis through inhibiting the activity of the GA biosynthesis enzyme OsKO2 (Itoh et al, 2004; Yang et al, 2013). We further analyzed the-element distribution in the promoter region of these selected DEGs using the online tool PlantCARE(http://bioinformatics.psb.ugent.be/webtools/plantcare/html/), and found that onlyandcontain W-box (TTGAC[C/T]) or W-box like (TGAC[C/T])-elements (Fig. S2). Theincreased transcript levelofinindicated thatmight be involved in WRKY72-mediated GA biosynthesis repression(Fig. 2-A). Therefore, we mainly focused on whethercan be the direct target of WRKY72. To test this hypothesis, the EMSA(electrophoresis mobility shift assay) was firstly performed to detect the DNA binding ability of WRKY72 with. As shown in Fig. 2-B and -C, GST-WRKY72 protein can bind to the probe 3 (P3), which contains a conserved W-box motif close to the transcription starting site, andthe shift band signal was gradually weakened by the addition of unlabeled, competitive P3 probe in a dosage-dependentmanner, suggesting that this binding is highly specific (Fig. 2-B and -C). Subsequently, ChIP-qPCR (chromatin immunoprecipitation-quantitative PCR) assay was performed to validate the binding pattern of WRKY72 onpromoter. In consistent with the results of EMSA, WRKY72 was significantly enriched in the P3 region ofpromoter, while there was no significant enrichment in the other fragments, except that P1 region located inpromoter exhibited slightly WRKY72enrichment,strongly suggesting that the W-box in the P3 region acts as a core binding site for WRKY72 (Fig. 2-B and -D).Finally, a dual-luciferase (LUC) transient transcriptional activity assay was performed to determine the regulatory effect of WRKY72 ontranscription (Fig. 2-E and -F). In comparison with the empty effector,drastically elevated the transcript level ofreporter, but such induction was significantly reduced when the W-box in the P3 promoter region ofwas mutated, which was in accordancewith the transcription pattern ofintransgenic lines (Fig. 2-A, -E and -F). Taken together, these experiments clearly demonstrated that WRKY72 specifically binds to thepromoter containing a W-box-element and induces the latter’s transcription.

    Fig. 2. WRKY72 mediates seed germination by WRKY72--pathway.

    A, Real-time PCR (qRT-PCR) validation of the differentially expressed genes (DEGs) revealed by RNA-sequencing (RNA-seq) experiments. cDNA of germinating embryos grown on 1/2 Murashige and Skoog (MS) medium for 2 d was used as templates. B, Probe positions onpromoter and genome. Grey, black and yellow boxes represent untranslational regions, coding sequence and promoter regions, respectively. Transcription starting site (TSS) was set as 0. Numbers indicate the distances (bps) to the TSS. C, Electrophoretic mobility shift assay (EMSA) to show GST-WRKY72 specifically binds with the probe 3 (P3) region on the promoter ofin B. Purified GST, GST-bZIP72 was detected with anti-GST antibody. The 5-, 10- and 100-fold excess non-labeled probes were applied for competition. D, Chromatin immunoprecipitation-quantitative PCR (ChIP-qPCR) assay to show WRKY72 binding to the promoter regions of. P1?P7 represent the regions shown in B detected by ChIP-qPCR, respectively. The enrichment values were normalized to the Input. IgG immunoprecipitated DNA was used as a control. E and F, Luciferase (LUC) transient transcriptional activity assay in rice protoplast., The promoter ofwith G-box mutated. G, qRT-PCR analysis for the transcript accumulation ofingerminating embryos grown on half-strength MS medium for 2 d. H, Germination time courses of the wild type (WT) andunder mock, 3 μmol/L-kaurenoic acid or 10 μmol/L paclobutrazol (PAC) treatments, respectively. I, Germination phenotypes of the WT andunder mock,-kaurenoic acid or PAC treatments for 4 d. Scale bars, 2 cm. J,Seedling heights of the WT andin accordance to I. Data represent Mean ± SD (= 3) in A, D, F and G,= 3 (each replicate containing 50 seeds) in H, and= 50 in J. Asterisks indicate the significant differences as determined by the Student’stest analysis (*,< 0.05; **,< 0.01).

    It is reported thatrestricts rice internode elongation through suppressingand thereby results in reduced endogenous GA level (Yang et al, 2013). OsKO2, a key-kaurene oxidase, promotes GA biosynthesis by catalyzing GA precursor-kaurene intokaurenoic acid, and the mutation ofcauses severe GA deficiency and dwarf phenotype (Itoh et al, 2004). These evidences intrigued us to speculate that the function of OsKO2 could be interrupted by WRKY72. In consistent with the up-regulation of, thetranscription was significantly reduced in(Fig. 2-G). Moreover, the effects of-kaurenoic acid and paclobutrazol (PAC, a KO inhibitor) (Swain et al, 2005) were further determined on the seed germination of. Interestingly,-kaurenoic acid, the product of OsKO2 catalyzed reaction, fully restored the delayed seed germination and seedling growth of(Fig. 2-H to -J). On the contrary, PAC significantly inhibited the seed germination and seedling growth of all the tested seeds (Fig. 2-H to -J). These results strongly suggested that WRKY72 negatively regulates seed germination and GA accumulation via the ‘WRKY72-’ pathway.

    Up to date, over 100 WRKY gene family members have been identified in rice (Ramamoorthy et al, 2008). Rice WRKY proteins have been shown to regulate the cross-talk between multiple hormone-mediated signaling pathways in various biological processes, but most notably in biotic stress responses (Qiu et al, 2007; Peng et al, 2012; Wang et al, 2015). Previous studies have shown thatis induced by polyethylene glycol, NaCl, naphthalene acetic acid, abscisic acid (ABA) and heat stress in rice, indicating the versatile roles of WRKY72 in multiple physiological processes (Song et al, 2010). Very recently, our group revealed that WRKY72 acts negatively in rice resistance to bacterial blast disease through repressing jasmonic acid (JA) accumulation (Hou et al, 2019). WRKY72 can directly bind to the promoter of a key JA biosynthesis gene, and repress thetranscription possibly via a RNA-directed DNA methylation mechanism. Meanwhile, the WRKY72 transrepression activity depends on its phosphory-lation status mediated by SAPK10, which is a core component in ABA signaling (Hou et al, 2019). Hence, WRKY72 likely serves as an important node in the ABA-JA interaction. Due to its predominant expression pattern in rice developing seeds, especially in aleurone layers, WRKY72 might also participate in the regulation of seed maturation or germination (Xie et al, 2005; Hou et al, 2019). Indeed, when WRKY72 is ectopically expressed in, seed germination of the transgenic lines is drastically retarded (Song et al, 2010). Nevertheless, how WRKY72 functions in rice remains unclear. In this study, we revealed that over-expression ofinhibited seed germination and seedling growth (Fig. 1-A to -C). Several cases have demonstrated that WRKYs involve in seed germination by interfering GA biosynthesis or signaling. For example, heterologous dimmers of OsWRKY51 and OsWRKY71 are found to negatively regulate GA signaling through direct interacting with GAMYB, a GA signal positive regulator, and ultimately inhibit the expression of α-amylase (Zhang et al, 2004; Xie et al, 2006). In our case, it is clear that GA-deficiency resulted in the retarded germination and seedling growth of, becauseexhibited reduced endogenous GA level, and the addition of GA completely restored the phenotype (Fig. 1-D to -G). Therefore, WRKY72 can be a key player in the interaction of phythormones including ABA, JA and GA.

    Since WRKY72is annotated as a transcription factor, identifying its direct target gene is crucial to clarify the regulatory mechanism underlying the WRKY72-governed seed germination. Our RNA-seq and qRT-PCR analyses identified a long list of DEGs which are functionally related to GA biosynthesis and metabolism. Among the DEGs, a leucine-rich repeat receptor-like kinase (LRR-RLKs), which is up-regulated in, is of particular interest (Fig. 2-A). EMSA experiment, ChIP-qPCR and rice protoplasts transient transcriptional activity assaydemonstrated that WRKY72 canspecifically bind to theW-box-element ofpromoter and activate its transcription, suggesting thatis a direct target of WRKY72 (Fig. 2-B to -D). It is reported thatrestricts rice internode elongation through suppressing the-kaurene oxidaseand thereby results in reduced endogenous GA level (Yang et al, 2013). In agreement with the up-regulation of,was significantly reduced in(Fig. 2-G). OsKO2 has been known as a key enzyme catalyzing the conversion of-kaurene tokaurenoic acid, and mutation ofcauses severe GA deficiency and dwarf phenotype (Itoh et al, 2004). This hypothesis is further supported by the fact that addition of-kaurenoic acid, the product of OsKO2 catalyzed reaction, fully rescued the retarded germination of(Fig. 2-H to -J). Thus, WRKY72 inhibits seed germination and GA accumulation via the‘WRKY72-’pathway.

    ACKNOWLEDGEMENTS

    This study was supported by the National Natural Science Foundation of China (Grant No. 31701395), the special research funds for the Central Public Research Institute of the China National Rice Research Institute (Grant No. 2017RG002-5) and the special research funds of State Key Laboratory of Rice Biology (Grant No. 2017ZZKT10105).

    SUPPLEMENTAL DATA

    The following materials are available in the online version of this article at http://www.sciencedirect.com/science/journal/ 16726308; http://www.ricescience.org.

    File S1. Methods.

    Fig. S1. Molecular characterization ofandmutants.

    Fig. S2. Occurrence of-regulatory elements in promoters ofand.

    Table S1. Differentially expressed genes between wild type and.

    Table S2. Selected differentially expressed genes used for RNA-seq verification.

    Eulgem T, Rushton P J, Robatzek S, Somssich I E. 2000. The WRKY superfamily of plant transcription factors., 5(5): 199–206.

    Hou Y X, Wang Y F, Tang L Q, Tong X H, Wang L, Liu L M, Huang S W, Zhang J. 2019. SAPK10-mediated phosphorylation on WRKY72 releases its suppression on jasmonic acid biosynthesis and bacterial blight resistance.,16: 499–510.

    Itoh H, Tatsumi T, Sakamoto T, Otomo K, Toyomasu T, Kitano H, Ashikari M, Ichihara S, Matsuoka M. 2004. A rice semi-dwarf gene,(), encodes the gibberellin biosynthesis enzyme,-kaurene oxidase., 54(4): 533–547.

    Kaneko M, Itoh H, Ueguchi-Tanaka M, Ashikari M, Matsuoka M. 2002. The alpha-amylase induction in endosperm during rice seed germination is caused by gibberellin synthesized in epithelium., 128(4): 1264–1270.

    Peng X X, Hu Y J, Tang X K, Zhou P L, Deng X B, Wang H H, Guo Z J. 2012. Constitutive expression of ricegene increases the endogenous jasmonic acid accumulation,gene expression and resistance to fungal pathogens in rice., 236(5): 1485–1498.

    Qiu D Y, Xiao J, Ding X H, Xiong M, Cai M, Cao Y L, Li X H, Xu C G, Wang S P. 2007. OsWRKY13 mediates rice disease resistance by regulating defense-related genes in salicylate- and jasmonate- dependent signaling., 20(5): 492–499.

    Ramamoorthy R, Jiang S Y, Kumar N, Venkatesh P N, Ramachandran S. 2008. A comprehensive transcriptional profiling of thegene family in rice under various abiotic and phytohormone treatments., 49(6): 865–879.

    Reinecke D M, Wickramarathna A D, Ozga J A, Kurepin L V, Jin A L, Good A G, Pharis R P. 2013. Gibberellin 3-oxidase gene expression patterns influence gibberellin biosynthesis, growth, and development in pea., 163(2): 929–945.

    Rushton P J, Macdonald H, Huttly A K, Lazarus C M, Hooley R. 1995. Members of a new family of DNA-binding proteins bind to a conserved-element in the promoters of α-genes., 29(4): 691–702.

    Sakamoto T, Miura K, Itoh H, Tatsumi T, Ueguchi-Tanaka M, Ishiyama K, Kobayashi M, Agrawal G K, Takeda S, Abe K, Miyao A, Hirochika H, Kitano H, Ashikari M, Matsuoka M. 2004. An overview of gibberellin metabolism enzyme genes and their related mutants in rice., 134(4): 1642–1653.

    Song Y, Chen L G, Zhang L P, Yu D Q. 2010. Overexpression ofgene interferes in the abscisic acid signal and auxin transport pathway of., 35(3): 459–471.

    Swain S M, Singh D P, Helliwell C A, Poole A T. 2005. Plants with increased expression of-kaurene oxidase are resistant to chemical inhibitors of this gibberellin biosynthesis enzyme., 46(2): 284–291.

    Ulker B, Somssich I E. 2004. WRKY transcription factors: From DNA binding towards biological function., 7(5): 491–498.

    Wang H H, Meng J, Peng X X, Tang X K, Zhou P L, Xiang J H, Deng X B. 2015. Rice WRKY4 acts as a transcriptional activator mediating defense responses toward, the causing agent of rice sheath blight., 89(1/2): 157–171.

    Wu J H, Zhu C F, Pang J H, Zhang X R, Yang C L, Xia G X, Tian Y C, He C Z. 2014. OsLOL1, a C2C2-type zinc finger protein, interacts with OsbZIP58 to promote seed germination through the modulation of gibberellin biosynthesis in., 80(6): 1118–1130.

    Xie Z, Zhang Z L, Zou X L, Huang J, Ruas P, Thompson D, Shen Q J. 2005. Annotations and functional analyses of the ricegene superfamily reveal positive and negative regulators of abscisic acid signaling in aleurone cells., 137(1): 176–189.

    Xie Z, Zhang Z L, Zou X L, Yang G X, Komatsu S, Shen Q J. 2006. Interactions of two abscisic-acid inducedgenes in repressing gibberellin signaling in aleurone cells., 46(2): 231–242.

    Yang M F, Qi W W, Sun F, Zha X J, Chen M L, Huang Y Q, Feng Y Q, Yang J S, Luo X J. 2013. Overexpression of ricerestricts internode elongation by down-regulating., 35(1): 121–128.

    Ye H, Feng J H, Zhang L H, Zhang J F, Mispan M S, Cao Z Q, Beighley D H, Yang J C, Gu X Y. 2015. Map-based cloning ofidentified a gibberellin synthesis gene regulating the development of endosperm-imposed dormancy in rice., 169(3): 2152–2165.

    Zentella R, Zhang Z L, Park M, Thomas S G, Endo A, Murase K, Fleet C M, Jikumaru Y, Nambara E, Kamiya Y, Sun T P. 2007. Global analysis of della direct targets in early gibberellin signaling in., 19(10): 3037–3057.

    Zhang Z L, Xie Z, Zou X L, Casaretto J, Ho T H, Shen Q J. 2004. A ricegene encodes a transcriptional repressor of the gibberellin signaling pathway in aleurone cells., 134(4): 1500–1513.

    Wang Huimei1, Hou Yuxuan1, Wang Shuang1, 2, Tong Xiaohong1, Tang Liqun1, Abolore Adijat Ajadi1, Zhang Jian1, Wang Yifeng1

    (State Key Lab of Rice Biology, China National Rice Research Institute, Hangzhou 311400, China; College of Life Science, Yangtze University, Jingzhou 434025, China)

    Copyright ? 2021, China National Rice Research Institute. Hosting by Elsevier B V

    This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)

    Peer review under responsibility of China National Rice Research Institute

    http://dx.doi.org/10.1016/j.rsci.2020.11.001

    s:Wang Yifeng (wangyifeng@caas.cn); Zhang Jian (zhangjian@caas.cn)

    20 December 2019;

    30 May 2020

    亚洲国产欧美日韩在线播放| 亚洲人成电影观看| 首页视频小说图片口味搜索 | 在线观看免费视频网站a站| 久久久国产精品麻豆| 欧美精品人与动牲交sv欧美| 91麻豆av在线| 中文乱码字字幕精品一区二区三区| 亚洲av成人不卡在线观看播放网 | 免费看十八禁软件| 国产片内射在线| 亚洲一区中文字幕在线| 国产成人系列免费观看| 国产成人精品在线电影| 日本一区二区免费在线视频| 午夜福利视频精品| 欧美+亚洲+日韩+国产| 人妻一区二区av| 亚洲av欧美aⅴ国产| 亚洲精品乱久久久久久| 99国产精品99久久久久| 久久久久久久大尺度免费视频| 欧美变态另类bdsm刘玥| 美女大奶头黄色视频| 少妇的丰满在线观看| 欧美日韩国产mv在线观看视频| 欧美日韩亚洲高清精品| 国产亚洲欧美在线一区二区| 亚洲国产av新网站| 丰满少妇做爰视频| 一个人免费看片子| 国产成人精品久久久久久| 精品一区二区三区四区五区乱码 | 另类亚洲欧美激情| av网站免费在线观看视频| 亚洲综合色网址| 最近手机中文字幕大全| 国产日韩欧美在线精品| 亚洲黑人精品在线| 欧美日韩亚洲国产一区二区在线观看 | 麻豆乱淫一区二区| 日韩欧美一区视频在线观看| 最近中文字幕2019免费版| 免费在线观看黄色视频的| 我的亚洲天堂| 蜜桃国产av成人99| 欧美激情极品国产一区二区三区| 国产一区二区在线观看av| 免费一级毛片在线播放高清视频 | 侵犯人妻中文字幕一二三四区| 久久狼人影院| 国产成人精品无人区| av又黄又爽大尺度在线免费看| 一本综合久久免费| 欧美在线黄色| 亚洲激情五月婷婷啪啪| 91老司机精品| 亚洲精品国产区一区二| 黄色一级大片看看| 少妇人妻 视频| 国产1区2区3区精品| 每晚都被弄得嗷嗷叫到高潮| 亚洲成色77777| 亚洲欧美成人综合另类久久久| 免费一级毛片在线播放高清视频 | 久久精品久久久久久久性| 1024香蕉在线观看| 一区在线观看完整版| 久久久久久久精品精品| 婷婷成人精品国产| 90打野战视频偷拍视频| 中文字幕色久视频| 亚洲欧美一区二区三区国产| 亚洲精品美女久久久久99蜜臀 | av在线app专区| 免费高清在线观看日韩| 啦啦啦在线观看免费高清www| 亚洲自偷自拍图片 自拍| 在线观看一区二区三区激情| 久久精品国产亚洲av高清一级| 午夜久久久在线观看| 女性被躁到高潮视频| 国产xxxxx性猛交| 永久免费av网站大全| 一边亲一边摸免费视频| 激情视频va一区二区三区| 高清视频免费观看一区二区| 人人妻人人澡人人看| 午夜日韩欧美国产| 亚洲成人免费av在线播放| 性高湖久久久久久久久免费观看| 欧美黄色淫秽网站| 女性被躁到高潮视频| 久久精品aⅴ一区二区三区四区| 日韩一本色道免费dvd| 欧美另类一区| 一级黄片播放器| 免费看不卡的av| 亚洲人成电影观看| 大片免费播放器 马上看| 亚洲精品一区蜜桃| 免费观看av网站的网址| av一本久久久久| 亚洲三区欧美一区| 亚洲久久久国产精品| 婷婷色综合大香蕉| 99久久综合免费| 新久久久久国产一级毛片| 国产亚洲精品久久久久5区| 91麻豆av在线| 超碰97精品在线观看| 日韩,欧美,国产一区二区三区| 午夜av观看不卡| 91精品国产国语对白视频| 日韩制服丝袜自拍偷拍| 51午夜福利影视在线观看| 午夜激情久久久久久久| 在线观看www视频免费| 十八禁网站网址无遮挡| 久久久久视频综合| 日韩中文字幕欧美一区二区 | 夜夜骑夜夜射夜夜干| 精品国产一区二区三区四区第35| 午夜福利免费观看在线| 欧美日韩视频精品一区| 在线精品无人区一区二区三| 久久久久久人人人人人| 精品人妻熟女毛片av久久网站| 国产精品国产三级专区第一集| 99久久精品国产亚洲精品| 啦啦啦中文免费视频观看日本| 精品少妇一区二区三区视频日本电影| 男女午夜视频在线观看| 五月开心婷婷网| 日本午夜av视频| 亚洲精品久久午夜乱码| 亚洲欧美一区二区三区国产| videos熟女内射| 91麻豆精品激情在线观看国产 | 九色亚洲精品在线播放| 国产野战对白在线观看| 中文字幕人妻丝袜一区二区| 免费观看人在逋| 国产熟女午夜一区二区三区| 成人国产av品久久久| 午夜福利一区二区在线看| 性高湖久久久久久久久免费观看| 亚洲伊人久久精品综合| 秋霞在线观看毛片| videosex国产| 久久久久国产一级毛片高清牌| 一二三四在线观看免费中文在| 男女床上黄色一级片免费看| 一本色道久久久久久精品综合| 曰老女人黄片| 美女高潮到喷水免费观看| 十分钟在线观看高清视频www| 国产在视频线精品| 宅男免费午夜| 女警被强在线播放| 老司机在亚洲福利影院| 欧美日本中文国产一区发布| 成人三级做爰电影| 妹子高潮喷水视频| 亚洲国产日韩一区二区| 美女扒开内裤让男人捅视频| 丝袜在线中文字幕| 精品国产乱码久久久久久男人| 丰满人妻熟妇乱又伦精品不卡| 欧美日韩亚洲高清精品| a级毛片在线看网站| 久久久久久久精品精品| av欧美777| 午夜av观看不卡| 一本综合久久免费| 十八禁网站网址无遮挡| 亚洲国产中文字幕在线视频| 亚洲av成人不卡在线观看播放网 | 亚洲国产中文字幕在线视频| 99久久人妻综合| 欧美在线一区亚洲| 国产免费一区二区三区四区乱码| 久久亚洲精品不卡| e午夜精品久久久久久久| 欧美精品亚洲一区二区| 国产男女超爽视频在线观看| 亚洲情色 制服丝袜| av线在线观看网站| 嫁个100分男人电影在线观看 | 人成视频在线观看免费观看| 99国产精品99久久久久| 尾随美女入室| 国产精品人妻久久久影院| 建设人人有责人人尽责人人享有的| 90打野战视频偷拍视频| 国产精品欧美亚洲77777| 三上悠亚av全集在线观看| 天堂中文最新版在线下载| 亚洲国产精品一区三区| 国产精品香港三级国产av潘金莲 | 亚洲欧美色中文字幕在线| 18在线观看网站| 99国产精品99久久久久| 国产成人一区二区在线| 国产男女内射视频| av天堂在线播放| 免费看十八禁软件| 午夜91福利影院| 免费看不卡的av| 日本vs欧美在线观看视频| 亚洲欧美一区二区三区国产| 香蕉丝袜av| 久久综合国产亚洲精品| 国产精品香港三级国产av潘金莲 | 久久久久久久精品精品| 国产av一区二区精品久久| 在线观看免费午夜福利视频| 国产亚洲av高清不卡| 90打野战视频偷拍视频| 日本av手机在线免费观看| 丁香六月天网| 久久九九热精品免费| av电影中文网址| 亚洲视频免费观看视频| 制服诱惑二区| 美女福利国产在线| 亚洲精品一二三| 久久久久久亚洲精品国产蜜桃av| 欧美日韩亚洲高清精品| 欧美xxⅹ黑人| 国产男女内射视频| 国产亚洲精品第一综合不卡| 久久天躁狠狠躁夜夜2o2o | 久久av网站| 国产成人av教育| 亚洲欧美精品综合一区二区三区| 亚洲九九香蕉| 日本av手机在线免费观看| 男人添女人高潮全过程视频| 国产麻豆69| 国产视频一区二区在线看| 波野结衣二区三区在线| av在线播放精品| avwww免费| 少妇人妻 视频| 一边摸一边做爽爽视频免费| 最近最新中文字幕大全免费视频 | 欧美xxⅹ黑人| 亚洲欧美一区二区三区久久| 在线天堂中文资源库| 亚洲国产中文字幕在线视频| 亚洲图色成人| 麻豆国产av国片精品| 成年人午夜在线观看视频| 看十八女毛片水多多多| 我的亚洲天堂| 宅男免费午夜| www.熟女人妻精品国产| 亚洲第一av免费看| 国产国语露脸激情在线看| 久热爱精品视频在线9| 国产熟女欧美一区二区| 亚洲av片天天在线观看| 久久精品国产亚洲av涩爱| 成人三级做爰电影| 天天躁狠狠躁夜夜躁狠狠躁| 性少妇av在线| 午夜精品国产一区二区电影| 国产色视频综合| a级毛片黄视频| 国产成人精品在线电影| 高潮久久久久久久久久久不卡| 日韩视频在线欧美| 国产成人免费观看mmmm| 悠悠久久av| 久久天躁狠狠躁夜夜2o2o | 亚洲精品久久久久久婷婷小说| 天天躁日日躁夜夜躁夜夜| 十八禁网站网址无遮挡| 欧美久久黑人一区二区| 国产午夜精品一二区理论片| 自拍欧美九色日韩亚洲蝌蚪91| 亚洲国产成人一精品久久久| 一区在线观看完整版| 亚洲专区国产一区二区| 久久久久久久久久久久大奶| 久久久久网色| 亚洲国产精品一区二区三区在线| 女人爽到高潮嗷嗷叫在线视频| 99国产精品免费福利视频| 日本猛色少妇xxxxx猛交久久| 亚洲少妇的诱惑av| 亚洲欧美成人综合另类久久久| 性色av一级| 男的添女的下面高潮视频| 美国免费a级毛片| 久久久久精品人妻al黑| 人人澡人人妻人| 80岁老熟妇乱子伦牲交| 国产亚洲午夜精品一区二区久久| 国产免费又黄又爽又色| 亚洲精品乱久久久久久| 波多野结衣av一区二区av| 亚洲人成电影免费在线| 国产高清视频在线播放一区 | 搡老乐熟女国产| 精品一区二区三卡| 欧美黄色淫秽网站| 国产亚洲av片在线观看秒播厂| 别揉我奶头~嗯~啊~动态视频 | 欧美黄色片欧美黄色片| 精品一区在线观看国产| 亚洲人成网站在线观看播放| www.熟女人妻精品国产| 国产精品久久久人人做人人爽| 一本色道久久久久久精品综合| 久久人人97超碰香蕉20202| 成年人黄色毛片网站| 中文乱码字字幕精品一区二区三区| 99精国产麻豆久久婷婷| 午夜日韩欧美国产| 夫妻性生交免费视频一级片| 国产免费一区二区三区四区乱码| 亚洲人成77777在线视频| 啦啦啦中文免费视频观看日本| 亚洲国产精品999| 久久久精品94久久精品| 精品人妻在线不人妻| 狂野欧美激情性xxxx| 亚洲av在线观看美女高潮| 男人操女人黄网站| 黄色 视频免费看| 只有这里有精品99| 日韩中文字幕欧美一区二区 | 好男人电影高清在线观看| 成人黄色视频免费在线看| 亚洲欧美激情在线| 亚洲人成电影观看| 久久久精品区二区三区| 婷婷色麻豆天堂久久| 男人爽女人下面视频在线观看| 国产伦人伦偷精品视频| 热99国产精品久久久久久7| 天天添夜夜摸| 99九九在线精品视频| 色94色欧美一区二区| 国产成人免费无遮挡视频| 国产精品二区激情视频| 日本av手机在线免费观看| 高清视频免费观看一区二区| 久久99热这里只频精品6学生| 欧美老熟妇乱子伦牲交| 欧美日韩视频高清一区二区三区二| 国产91精品成人一区二区三区 | 首页视频小说图片口味搜索 | 国产人伦9x9x在线观看| 成人午夜精彩视频在线观看| 国产人伦9x9x在线观看| 一本一本久久a久久精品综合妖精| 搡老乐熟女国产| 国产欧美日韩一区二区三 | 久久99热这里只频精品6学生| 一本一本久久a久久精品综合妖精| 搡老乐熟女国产| 亚洲视频免费观看视频| 久久久久久久久免费视频了| 欧美日本中文国产一区发布| 国产成人a∨麻豆精品| 在线天堂中文资源库| 久久精品久久精品一区二区三区| 成年人免费黄色播放视频| 高潮久久久久久久久久久不卡| 99re6热这里在线精品视频| 国产精品一区二区免费欧美 | 只有这里有精品99| 999精品在线视频| 天天躁夜夜躁狠狠久久av| 一区二区三区乱码不卡18| www.999成人在线观看| 国产成人欧美在线观看 | 精品国产一区二区三区久久久樱花| 欧美另类一区| 天天躁狠狠躁夜夜躁狠狠躁| 极品人妻少妇av视频| 亚洲国产精品国产精品| 国产97色在线日韩免费| 日韩 欧美 亚洲 中文字幕| 国产男人的电影天堂91| 国产精品久久久人人做人人爽| 男女高潮啪啪啪动态图| 男女床上黄色一级片免费看| 国产成人免费无遮挡视频| 看十八女毛片水多多多| 最近手机中文字幕大全| 永久免费av网站大全| 亚洲欧美中文字幕日韩二区| 视频在线观看一区二区三区| 啦啦啦啦在线视频资源| 国产国语露脸激情在线看| 久久精品国产a三级三级三级| 久久久精品国产亚洲av高清涩受| 欧美av亚洲av综合av国产av| 亚洲欧洲日产国产| 欧美激情 高清一区二区三区| 亚洲av电影在线观看一区二区三区| 亚洲成人国产一区在线观看 | 精品国产一区二区三区久久久樱花| 亚洲欧美清纯卡通| cao死你这个sao货| 国产视频一区二区在线看| 中文欧美无线码| 免费看av在线观看网站| 亚洲av成人精品一二三区| 精品人妻1区二区| 中文字幕色久视频| 欧美变态另类bdsm刘玥| 日本av手机在线免费观看| av有码第一页| 午夜福利影视在线免费观看| 国产精品久久久久久人妻精品电影 | 中文字幕人妻熟女乱码| 99久久人妻综合| 亚洲欧美成人综合另类久久久| 亚洲少妇的诱惑av| 一边亲一边摸免费视频| 尾随美女入室| 美女福利国产在线| 亚洲欧美精品自产自拍| 秋霞在线观看毛片| av福利片在线| 久久久国产欧美日韩av| 一级毛片电影观看| 国产一区二区三区综合在线观看| 精品少妇内射三级| 在线看a的网站| 九色亚洲精品在线播放| 欧美日韩视频精品一区| 十八禁高潮呻吟视频| 成年女人毛片免费观看观看9 | 亚洲免费av在线视频| 日韩视频在线欧美| 青春草亚洲视频在线观看| 久久精品国产亚洲av涩爱| 巨乳人妻的诱惑在线观看| 一区二区av电影网| 中文字幕亚洲精品专区| 日本欧美视频一区| 国产黄色免费在线视频| 日本欧美国产在线视频| 视频区欧美日本亚洲| 亚洲,一卡二卡三卡| 日韩,欧美,国产一区二区三区| 高潮久久久久久久久久久不卡| 80岁老熟妇乱子伦牲交| 国产精品免费大片| 丁香六月天网| 一本色道久久久久久精品综合| 午夜免费成人在线视频| 最新的欧美精品一区二区| 黄网站色视频无遮挡免费观看| 亚洲国产精品一区三区| 三上悠亚av全集在线观看| 青草久久国产| 国产精品99久久99久久久不卡| 国产伦人伦偷精品视频| 亚洲国产最新在线播放| 国产在线免费精品| 青青草视频在线视频观看| 一区二区日韩欧美中文字幕| 狂野欧美激情性xxxx| 亚洲少妇的诱惑av| 国产成人一区二区三区免费视频网站 | 一本久久精品| 色网站视频免费| 99久久综合免费| 黄色一级大片看看| 日日夜夜操网爽| 成年人免费黄色播放视频| 久久久久久久精品精品| 亚洲第一青青草原| www.精华液| 99re6热这里在线精品视频| 9191精品国产免费久久| 老鸭窝网址在线观看| 久久久久久免费高清国产稀缺| 黄色片一级片一级黄色片| 国产日韩欧美在线精品| 人人澡人人妻人| 成人亚洲欧美一区二区av| 久久久久网色| 日本色播在线视频| videos熟女内射| 国产精品欧美亚洲77777| 一二三四社区在线视频社区8| 一级毛片我不卡| 美女大奶头黄色视频| 每晚都被弄得嗷嗷叫到高潮| 中文字幕色久视频| 男女床上黄色一级片免费看| 婷婷色综合www| 最新的欧美精品一区二区| 自线自在国产av| 大片电影免费在线观看免费| 亚洲,欧美,日韩| 美国免费a级毛片| 亚洲一区二区三区欧美精品| 丝瓜视频免费看黄片| 国产男女内射视频| 欧美激情极品国产一区二区三区| www日本在线高清视频| 免费人妻精品一区二区三区视频| 女人高潮潮喷娇喘18禁视频| av一本久久久久| 国产免费现黄频在线看| 丝袜脚勾引网站| 最黄视频免费看| 国产一区有黄有色的免费视频| 久久热在线av| 叶爱在线成人免费视频播放| 久久人人爽人人片av| 又大又黄又爽视频免费| 一区二区日韩欧美中文字幕| 在线观看免费高清a一片| 国产精品久久久久久人妻精品电影 | 制服人妻中文乱码| 美女脱内裤让男人舔精品视频| 97精品久久久久久久久久精品| 国产成人av教育| 人妻 亚洲 视频| 高清不卡的av网站| 欧美在线一区亚洲| 成年av动漫网址| 国产精品欧美亚洲77777| 性高湖久久久久久久久免费观看| 午夜激情av网站| 国产国语露脸激情在线看| h视频一区二区三区| 日日摸夜夜添夜夜爱| 天天操日日干夜夜撸| 国产欧美日韩一区二区三区在线| av网站在线播放免费| 黄色一级大片看看| 水蜜桃什么品种好| 精品一区二区三区四区五区乱码 | 91麻豆av在线| 看免费成人av毛片| 国产片特级美女逼逼视频| 欧美日韩一级在线毛片| 日韩欧美一区视频在线观看| 亚洲成人手机| 国产精品国产三级专区第一集| 男女午夜视频在线观看| 两个人看的免费小视频| 免费观看人在逋| 欧美日韩黄片免| 爱豆传媒免费全集在线观看| 99re6热这里在线精品视频| 在现免费观看毛片| 在线观看免费午夜福利视频| 考比视频在线观看| 欧美乱码精品一区二区三区| 免费人妻精品一区二区三区视频| 国产一区有黄有色的免费视频| 久久99热这里只频精品6学生| 国产成人精品久久二区二区91| 999久久久国产精品视频| 亚洲国产中文字幕在线视频| 亚洲人成77777在线视频| 亚洲熟女毛片儿| 成年女人毛片免费观看观看9 | 欧美精品av麻豆av| 叶爱在线成人免费视频播放| 婷婷成人精品国产| 国产激情久久老熟女| 一个人免费看片子| 看免费av毛片| 欧美精品一区二区大全| 亚洲 国产 在线| 国产高清国产精品国产三级| 肉色欧美久久久久久久蜜桃| 少妇粗大呻吟视频| 国产精品 欧美亚洲| 99精国产麻豆久久婷婷| 免费看av在线观看网站| 亚洲精品国产一区二区精华液| 午夜福利免费观看在线| 黄网站色视频无遮挡免费观看| 精品欧美一区二区三区在线| 成人免费观看视频高清| 欧美日韩av久久| 99久久精品国产亚洲精品| 在线精品无人区一区二区三| 欧美日韩精品网址| 日本wwww免费看| a级片在线免费高清观看视频| 老司机深夜福利视频在线观看 | 久久综合国产亚洲精品| 男女下面插进去视频免费观看| av线在线观看网站| 天堂8中文在线网| av网站免费在线观看视频| 极品少妇高潮喷水抽搐| 久久99热这里只频精品6学生| 国产精品 国内视频| 午夜福利视频在线观看免费| xxxhd国产人妻xxx| 1024视频免费在线观看| 国产精品麻豆人妻色哟哟久久| 国产成人免费无遮挡视频| 亚洲人成电影观看| 精品国产一区二区三区四区第35| netflix在线观看网站| 波多野结衣一区麻豆| 久久精品aⅴ一区二区三区四区| 女人爽到高潮嗷嗷叫在线视频|