• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    WRKY72 Negatively Regulates Seed Germination Through Interfering Gibberellin Pathway in Rice

    2021-01-13 07:29:40WANGHuimei,HOUYuxuan,WANGShuang
    Rice Science 2021年1期

    Letter

    WRKY72 Negatively Regulates Seed Germination Through Interfering Gibberellin Pathway in Rice

    Seed germination is associated with grain yield and quality in crop production. Gibberellic acid (GA) serves as a major phytohormone in the promotion of seed germination. It is synthesized in the embryos and transmitted to the aleurone layers, where GA triggers the synthesis and secretion of a set of hydrolases, especially α-amylase. Subsequently, the storage nutrients such as starch in the endosperm are digested by these hydrolases and absorbed by the embryo to sustain seed germination and early seedling establishment (Kaneko et al, 2002). The detailed GA biosynthesis process has been well studied and thoroughly reviewed in several literatures (Sakamoto et al, 2004; Reinecke et al, 2013). Briefly, geranylgeranyl diphosphate (GGDP) is turned into-kaurene by two terpene synthases,-copalyl diphosphate synthase (CPS) and-kaurene synthase (KS). Subsequently, the conversion of GA precursor-kaurene to-kaurenoic acid is catalyzed by-kaurene oxidase (KO), and that from-kaurenoic acid to GA12is catalyzed by-kaurenoic acid oxidase (KAO). Ultimately, GA12is converted to various GA intermediates and bioactive GAs by GA20-oxidase (GA20ox) and GA3-oxidase (GA3ox), respectively.

    WRKY transcription factors (TFs), one of the largest TF families in higher plants, usually bind to the W-box motif (T)(T)TGAC(C/T) in the promoter of the downstream target genes (Eulgem et al, 2000; Ulker and Somssich, 2004). Several WRKY family members have been reported to participate in GA-mediated seed germination in the past decade. In, AtWRKY27, which is directly regulated by GA signaling component RGA, is involved in GA-mediated seed germination (Zentella et al, 2007). Rushton et al (1995) reported that AfWRKY1 and AfWRKY2 inhibit the expression of α-amylase, therefore delay seed germination in. OsWRKY51 and OsWRKY71, which are homologous of AfWRKY1 and AfWRKY2, function as heterologous dimers and interact with GA signal positive regulator GAMYB to inhibit the expression of α-amylase in rice (Zhang et al, 2004; Xie et al, 2006). Here we report that WRKY72 acts as a negative regulator in rice seed germination by restricting GA accumulation through modulating ‘’ pathway, which would provide novel insights into the finely regulated mechanism of WRKY72-mediated seed germination in rice.

    Previous studies have shown thatis predominantly expressed in rice developing seeds, especially in aleurone layers, indicating it can participate in the regulation of seed maturation or germination (Xie et al, 2005; Hou et al, 2019). In this study, we mainly focused on the role ofin rice seed germination process. Firstly,over-expression lines () andmutants () were generated. Two independentover-expression lines (and) showed about 90-fold higher transcript level compared with the wild type (WT) (Fig. S1-A). Twomutants (and) harbored a G insertion and a T insertion in the 1st exon ofrespectively, which shifted the open reading frame, though the transcript level ofremained unchanged (Fig. S1-B to -D). Seeds of T2generation from bothandlines were subjected to seed germination assay. The germination rates oflines were significantly lower than that of the WT (Fig. 1-A). In consistent with the retarded seed germination, the seedling heights oflines were also lower than that of the WT (Fig. 1-B and -C). However, the germination rates and seedling growths oflines were similar to the WT, possibly due to its functional redundancy with other WRKY family members (Fig. 1-A to -C). As GA is a major activating phytohormone in seed germination, the retarded seed germination ofseeds intrigued us to measure the endogenous GA level inas well as the WT. The results showed that the GA3content was significantly reduced in thegerminating embryos, indicating thatdefected in GA accumulation, rather than GA signaling (Fig. 1-D). As expected, the retarded germination rates and seedling growths oflines were restored to the same level as the WT when 1.5 μmol/L exogenous GA3was applied (Fig. 1-E to -G). Hence, the suggestion is that WRKY72 inhibits seed germination at least partly by blocking GA accumulation.

    Fig. 1. Seed germination characteristics of overexpression linesand mutant lines.

    A,Germination time courses of the wild type (WT), overexpression linesand mutant lines, respectively. B, Germination phenotypes of the WT,andgrown on 1/2 Murashige and Skoog (MS) medium for 4 d. Scale bars, 1 cm.C, Seedling heights of the WT,andin accordance to B. D,GA3content in the germinating embryos of the WT and. E, Germination time courses of the WT andunder mock or 1.5 μmol/L GA3treatment. F, Germination phenotypes of the WT andunder mock or GA3treatment for 4 d. Scale bars, 2 cm. G, Seedling heights of the WT andlines in accordance to F. Error bars indicate SD with triple biological replicates (each replicate containing 50 seeds) in A andE, 50 biological replicates in C andG, and triple biological replicates in D. Asterisks indicate the significant differences between the WT and transgenic lines as determined by the Student’stest analysis. **,< 0.01.

    Germinating embryos ofand the WT grown on half-strength Murashige and Skoog(MS) medium for 2 d were collected for RNA-sequencing (RNA-seq)assay to clarify the regulatory mechanism underlying the WRKY72-governed seed germination. As a result, we totally identified 2457 differentiallyexpressed genes (DEGs), including 727 down-regulated and 1730 up-regulated genes in(|log2 ratio|≥1; False discovery rate <0.01) (Table S1). To validate the transcriptome analysis, 13 DEGs, which are functionally relevant to GA biosynthesis or seed germination, were selected for gene transcript abundance verification (Table S2). As shown in Fig. 2-A, the transcript levels of most of the selected genes were consistent with the RNA-seq results, suggesting the high-reliability of the RNA-seq data. Interestingly, among these detected DEGs, several have been reported to be functionally involved in GA biosynthesis or metabolism. For example,(gibberellin 20 oxidase 2, a major GA biosynthesis enzyme) () was down-regulated in, and mutation ofreduces GA biosynthesis and thereby delays seed germination (Ye et al, 2015).(a C2C2-type zinc finger protein) () was also reduced in, and it can interact with OsbZIP58 to promote seed germination through activating the gibberellin biosynthesis gene(Wu et al, 2014).(a leucine-rich repeat receptor-like kinase, LRR-RLKs)() was significantly elevated in, and it represses GA biosynthesis through inhibiting the activity of the GA biosynthesis enzyme OsKO2 (Itoh et al, 2004; Yang et al, 2013). We further analyzed the-element distribution in the promoter region of these selected DEGs using the online tool PlantCARE(http://bioinformatics.psb.ugent.be/webtools/plantcare/html/), and found that onlyandcontain W-box (TTGAC[C/T]) or W-box like (TGAC[C/T])-elements (Fig. S2). Theincreased transcript levelofinindicated thatmight be involved in WRKY72-mediated GA biosynthesis repression(Fig. 2-A). Therefore, we mainly focused on whethercan be the direct target of WRKY72. To test this hypothesis, the EMSA(electrophoresis mobility shift assay) was firstly performed to detect the DNA binding ability of WRKY72 with. As shown in Fig. 2-B and -C, GST-WRKY72 protein can bind to the probe 3 (P3), which contains a conserved W-box motif close to the transcription starting site, andthe shift band signal was gradually weakened by the addition of unlabeled, competitive P3 probe in a dosage-dependentmanner, suggesting that this binding is highly specific (Fig. 2-B and -C). Subsequently, ChIP-qPCR (chromatin immunoprecipitation-quantitative PCR) assay was performed to validate the binding pattern of WRKY72 onpromoter. In consistent with the results of EMSA, WRKY72 was significantly enriched in the P3 region ofpromoter, while there was no significant enrichment in the other fragments, except that P1 region located inpromoter exhibited slightly WRKY72enrichment,strongly suggesting that the W-box in the P3 region acts as a core binding site for WRKY72 (Fig. 2-B and -D).Finally, a dual-luciferase (LUC) transient transcriptional activity assay was performed to determine the regulatory effect of WRKY72 ontranscription (Fig. 2-E and -F). In comparison with the empty effector,drastically elevated the transcript level ofreporter, but such induction was significantly reduced when the W-box in the P3 promoter region ofwas mutated, which was in accordancewith the transcription pattern ofintransgenic lines (Fig. 2-A, -E and -F). Taken together, these experiments clearly demonstrated that WRKY72 specifically binds to thepromoter containing a W-box-element and induces the latter’s transcription.

    Fig. 2. WRKY72 mediates seed germination by WRKY72--pathway.

    A, Real-time PCR (qRT-PCR) validation of the differentially expressed genes (DEGs) revealed by RNA-sequencing (RNA-seq) experiments. cDNA of germinating embryos grown on 1/2 Murashige and Skoog (MS) medium for 2 d was used as templates. B, Probe positions onpromoter and genome. Grey, black and yellow boxes represent untranslational regions, coding sequence and promoter regions, respectively. Transcription starting site (TSS) was set as 0. Numbers indicate the distances (bps) to the TSS. C, Electrophoretic mobility shift assay (EMSA) to show GST-WRKY72 specifically binds with the probe 3 (P3) region on the promoter ofin B. Purified GST, GST-bZIP72 was detected with anti-GST antibody. The 5-, 10- and 100-fold excess non-labeled probes were applied for competition. D, Chromatin immunoprecipitation-quantitative PCR (ChIP-qPCR) assay to show WRKY72 binding to the promoter regions of. P1?P7 represent the regions shown in B detected by ChIP-qPCR, respectively. The enrichment values were normalized to the Input. IgG immunoprecipitated DNA was used as a control. E and F, Luciferase (LUC) transient transcriptional activity assay in rice protoplast., The promoter ofwith G-box mutated. G, qRT-PCR analysis for the transcript accumulation ofingerminating embryos grown on half-strength MS medium for 2 d. H, Germination time courses of the wild type (WT) andunder mock, 3 μmol/L-kaurenoic acid or 10 μmol/L paclobutrazol (PAC) treatments, respectively. I, Germination phenotypes of the WT andunder mock,-kaurenoic acid or PAC treatments for 4 d. Scale bars, 2 cm. J,Seedling heights of the WT andin accordance to I. Data represent Mean ± SD (= 3) in A, D, F and G,= 3 (each replicate containing 50 seeds) in H, and= 50 in J. Asterisks indicate the significant differences as determined by the Student’stest analysis (*,< 0.05; **,< 0.01).

    It is reported thatrestricts rice internode elongation through suppressingand thereby results in reduced endogenous GA level (Yang et al, 2013). OsKO2, a key-kaurene oxidase, promotes GA biosynthesis by catalyzing GA precursor-kaurene intokaurenoic acid, and the mutation ofcauses severe GA deficiency and dwarf phenotype (Itoh et al, 2004). These evidences intrigued us to speculate that the function of OsKO2 could be interrupted by WRKY72. In consistent with the up-regulation of, thetranscription was significantly reduced in(Fig. 2-G). Moreover, the effects of-kaurenoic acid and paclobutrazol (PAC, a KO inhibitor) (Swain et al, 2005) were further determined on the seed germination of. Interestingly,-kaurenoic acid, the product of OsKO2 catalyzed reaction, fully restored the delayed seed germination and seedling growth of(Fig. 2-H to -J). On the contrary, PAC significantly inhibited the seed germination and seedling growth of all the tested seeds (Fig. 2-H to -J). These results strongly suggested that WRKY72 negatively regulates seed germination and GA accumulation via the ‘WRKY72-’ pathway.

    Up to date, over 100 WRKY gene family members have been identified in rice (Ramamoorthy et al, 2008). Rice WRKY proteins have been shown to regulate the cross-talk between multiple hormone-mediated signaling pathways in various biological processes, but most notably in biotic stress responses (Qiu et al, 2007; Peng et al, 2012; Wang et al, 2015). Previous studies have shown thatis induced by polyethylene glycol, NaCl, naphthalene acetic acid, abscisic acid (ABA) and heat stress in rice, indicating the versatile roles of WRKY72 in multiple physiological processes (Song et al, 2010). Very recently, our group revealed that WRKY72 acts negatively in rice resistance to bacterial blast disease through repressing jasmonic acid (JA) accumulation (Hou et al, 2019). WRKY72 can directly bind to the promoter of a key JA biosynthesis gene, and repress thetranscription possibly via a RNA-directed DNA methylation mechanism. Meanwhile, the WRKY72 transrepression activity depends on its phosphory-lation status mediated by SAPK10, which is a core component in ABA signaling (Hou et al, 2019). Hence, WRKY72 likely serves as an important node in the ABA-JA interaction. Due to its predominant expression pattern in rice developing seeds, especially in aleurone layers, WRKY72 might also participate in the regulation of seed maturation or germination (Xie et al, 2005; Hou et al, 2019). Indeed, when WRKY72 is ectopically expressed in, seed germination of the transgenic lines is drastically retarded (Song et al, 2010). Nevertheless, how WRKY72 functions in rice remains unclear. In this study, we revealed that over-expression ofinhibited seed germination and seedling growth (Fig. 1-A to -C). Several cases have demonstrated that WRKYs involve in seed germination by interfering GA biosynthesis or signaling. For example, heterologous dimmers of OsWRKY51 and OsWRKY71 are found to negatively regulate GA signaling through direct interacting with GAMYB, a GA signal positive regulator, and ultimately inhibit the expression of α-amylase (Zhang et al, 2004; Xie et al, 2006). In our case, it is clear that GA-deficiency resulted in the retarded germination and seedling growth of, becauseexhibited reduced endogenous GA level, and the addition of GA completely restored the phenotype (Fig. 1-D to -G). Therefore, WRKY72 can be a key player in the interaction of phythormones including ABA, JA and GA.

    Since WRKY72is annotated as a transcription factor, identifying its direct target gene is crucial to clarify the regulatory mechanism underlying the WRKY72-governed seed germination. Our RNA-seq and qRT-PCR analyses identified a long list of DEGs which are functionally related to GA biosynthesis and metabolism. Among the DEGs, a leucine-rich repeat receptor-like kinase (LRR-RLKs), which is up-regulated in, is of particular interest (Fig. 2-A). EMSA experiment, ChIP-qPCR and rice protoplasts transient transcriptional activity assaydemonstrated that WRKY72 canspecifically bind to theW-box-element ofpromoter and activate its transcription, suggesting thatis a direct target of WRKY72 (Fig. 2-B to -D). It is reported thatrestricts rice internode elongation through suppressing the-kaurene oxidaseand thereby results in reduced endogenous GA level (Yang et al, 2013). In agreement with the up-regulation of,was significantly reduced in(Fig. 2-G). OsKO2 has been known as a key enzyme catalyzing the conversion of-kaurene tokaurenoic acid, and mutation ofcauses severe GA deficiency and dwarf phenotype (Itoh et al, 2004). This hypothesis is further supported by the fact that addition of-kaurenoic acid, the product of OsKO2 catalyzed reaction, fully rescued the retarded germination of(Fig. 2-H to -J). Thus, WRKY72 inhibits seed germination and GA accumulation via the‘WRKY72-’pathway.

    ACKNOWLEDGEMENTS

    This study was supported by the National Natural Science Foundation of China (Grant No. 31701395), the special research funds for the Central Public Research Institute of the China National Rice Research Institute (Grant No. 2017RG002-5) and the special research funds of State Key Laboratory of Rice Biology (Grant No. 2017ZZKT10105).

    SUPPLEMENTAL DATA

    The following materials are available in the online version of this article at http://www.sciencedirect.com/science/journal/ 16726308; http://www.ricescience.org.

    File S1. Methods.

    Fig. S1. Molecular characterization ofandmutants.

    Fig. S2. Occurrence of-regulatory elements in promoters ofand.

    Table S1. Differentially expressed genes between wild type and.

    Table S2. Selected differentially expressed genes used for RNA-seq verification.

    Eulgem T, Rushton P J, Robatzek S, Somssich I E. 2000. The WRKY superfamily of plant transcription factors., 5(5): 199–206.

    Hou Y X, Wang Y F, Tang L Q, Tong X H, Wang L, Liu L M, Huang S W, Zhang J. 2019. SAPK10-mediated phosphorylation on WRKY72 releases its suppression on jasmonic acid biosynthesis and bacterial blight resistance.,16: 499–510.

    Itoh H, Tatsumi T, Sakamoto T, Otomo K, Toyomasu T, Kitano H, Ashikari M, Ichihara S, Matsuoka M. 2004. A rice semi-dwarf gene,(), encodes the gibberellin biosynthesis enzyme,-kaurene oxidase., 54(4): 533–547.

    Kaneko M, Itoh H, Ueguchi-Tanaka M, Ashikari M, Matsuoka M. 2002. The alpha-amylase induction in endosperm during rice seed germination is caused by gibberellin synthesized in epithelium., 128(4): 1264–1270.

    Peng X X, Hu Y J, Tang X K, Zhou P L, Deng X B, Wang H H, Guo Z J. 2012. Constitutive expression of ricegene increases the endogenous jasmonic acid accumulation,gene expression and resistance to fungal pathogens in rice., 236(5): 1485–1498.

    Qiu D Y, Xiao J, Ding X H, Xiong M, Cai M, Cao Y L, Li X H, Xu C G, Wang S P. 2007. OsWRKY13 mediates rice disease resistance by regulating defense-related genes in salicylate- and jasmonate- dependent signaling., 20(5): 492–499.

    Ramamoorthy R, Jiang S Y, Kumar N, Venkatesh P N, Ramachandran S. 2008. A comprehensive transcriptional profiling of thegene family in rice under various abiotic and phytohormone treatments., 49(6): 865–879.

    Reinecke D M, Wickramarathna A D, Ozga J A, Kurepin L V, Jin A L, Good A G, Pharis R P. 2013. Gibberellin 3-oxidase gene expression patterns influence gibberellin biosynthesis, growth, and development in pea., 163(2): 929–945.

    Rushton P J, Macdonald H, Huttly A K, Lazarus C M, Hooley R. 1995. Members of a new family of DNA-binding proteins bind to a conserved-element in the promoters of α-genes., 29(4): 691–702.

    Sakamoto T, Miura K, Itoh H, Tatsumi T, Ueguchi-Tanaka M, Ishiyama K, Kobayashi M, Agrawal G K, Takeda S, Abe K, Miyao A, Hirochika H, Kitano H, Ashikari M, Matsuoka M. 2004. An overview of gibberellin metabolism enzyme genes and their related mutants in rice., 134(4): 1642–1653.

    Song Y, Chen L G, Zhang L P, Yu D Q. 2010. Overexpression ofgene interferes in the abscisic acid signal and auxin transport pathway of., 35(3): 459–471.

    Swain S M, Singh D P, Helliwell C A, Poole A T. 2005. Plants with increased expression of-kaurene oxidase are resistant to chemical inhibitors of this gibberellin biosynthesis enzyme., 46(2): 284–291.

    Ulker B, Somssich I E. 2004. WRKY transcription factors: From DNA binding towards biological function., 7(5): 491–498.

    Wang H H, Meng J, Peng X X, Tang X K, Zhou P L, Xiang J H, Deng X B. 2015. Rice WRKY4 acts as a transcriptional activator mediating defense responses toward, the causing agent of rice sheath blight., 89(1/2): 157–171.

    Wu J H, Zhu C F, Pang J H, Zhang X R, Yang C L, Xia G X, Tian Y C, He C Z. 2014. OsLOL1, a C2C2-type zinc finger protein, interacts with OsbZIP58 to promote seed germination through the modulation of gibberellin biosynthesis in., 80(6): 1118–1130.

    Xie Z, Zhang Z L, Zou X L, Huang J, Ruas P, Thompson D, Shen Q J. 2005. Annotations and functional analyses of the ricegene superfamily reveal positive and negative regulators of abscisic acid signaling in aleurone cells., 137(1): 176–189.

    Xie Z, Zhang Z L, Zou X L, Yang G X, Komatsu S, Shen Q J. 2006. Interactions of two abscisic-acid inducedgenes in repressing gibberellin signaling in aleurone cells., 46(2): 231–242.

    Yang M F, Qi W W, Sun F, Zha X J, Chen M L, Huang Y Q, Feng Y Q, Yang J S, Luo X J. 2013. Overexpression of ricerestricts internode elongation by down-regulating., 35(1): 121–128.

    Ye H, Feng J H, Zhang L H, Zhang J F, Mispan M S, Cao Z Q, Beighley D H, Yang J C, Gu X Y. 2015. Map-based cloning ofidentified a gibberellin synthesis gene regulating the development of endosperm-imposed dormancy in rice., 169(3): 2152–2165.

    Zentella R, Zhang Z L, Park M, Thomas S G, Endo A, Murase K, Fleet C M, Jikumaru Y, Nambara E, Kamiya Y, Sun T P. 2007. Global analysis of della direct targets in early gibberellin signaling in., 19(10): 3037–3057.

    Zhang Z L, Xie Z, Zou X L, Casaretto J, Ho T H, Shen Q J. 2004. A ricegene encodes a transcriptional repressor of the gibberellin signaling pathway in aleurone cells., 134(4): 1500–1513.

    Wang Huimei1, Hou Yuxuan1, Wang Shuang1, 2, Tong Xiaohong1, Tang Liqun1, Abolore Adijat Ajadi1, Zhang Jian1, Wang Yifeng1

    (State Key Lab of Rice Biology, China National Rice Research Institute, Hangzhou 311400, China; College of Life Science, Yangtze University, Jingzhou 434025, China)

    Copyright ? 2021, China National Rice Research Institute. Hosting by Elsevier B V

    This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)

    Peer review under responsibility of China National Rice Research Institute

    http://dx.doi.org/10.1016/j.rsci.2020.11.001

    s:Wang Yifeng (wangyifeng@caas.cn); Zhang Jian (zhangjian@caas.cn)

    20 December 2019;

    30 May 2020

    亚洲av男天堂| 丁香六月天网| 久久女婷五月综合色啪小说| 日韩不卡一区二区三区视频在线| 久久人人爽av亚洲精品天堂| 一本大道久久a久久精品| 2021少妇久久久久久久久久久| 激情五月婷婷亚洲| 亚洲国产av新网站| 国产成人欧美在线观看 | 黄色 视频免费看| 久久精品国产a三级三级三级| 嫩草影视91久久| 精品国产一区二区三区四区第35| 欧美变态另类bdsm刘玥| 久久av网站| 亚洲人成77777在线视频| 男女床上黄色一级片免费看| 精品国产一区二区三区久久久樱花| 国产成人精品久久二区二区91 | 伦理电影免费视频| 青青草视频在线视频观看| 国产精品偷伦视频观看了| 日韩大片免费观看网站| 亚洲精品国产一区二区精华液| 如日韩欧美国产精品一区二区三区| 久久久亚洲精品成人影院| 观看av在线不卡| 亚洲熟女精品中文字幕| 91国产中文字幕| 色吧在线观看| 又粗又硬又长又爽又黄的视频| 中文字幕最新亚洲高清| 啦啦啦视频在线资源免费观看| 最近中文字幕高清免费大全6| 亚洲国产中文字幕在线视频| 亚洲情色 制服丝袜| 久久精品久久精品一区二区三区| 日日爽夜夜爽网站| 老司机影院成人| 韩国av在线不卡| 在线观看www视频免费| 欧美成人午夜精品| 国产欧美日韩一区二区三区在线| 老司机亚洲免费影院| 亚洲欧美日韩另类电影网站| 成年av动漫网址| 国产日韩欧美在线精品| 19禁男女啪啪无遮挡网站| 国产黄色免费在线视频| 成人漫画全彩无遮挡| 久久久久网色| 日本欧美视频一区| 大话2 男鬼变身卡| 日本wwww免费看| 国产人伦9x9x在线观看| 亚洲欧美精品综合一区二区三区| 精品视频人人做人人爽| 日韩av不卡免费在线播放| 爱豆传媒免费全集在线观看| 我要看黄色一级片免费的| 久久久国产欧美日韩av| 国产免费福利视频在线观看| 日韩大片免费观看网站| 夜夜骑夜夜射夜夜干| www.自偷自拍.com| 人体艺术视频欧美日本| 日韩伦理黄色片| 黄色毛片三级朝国网站| 国产欧美日韩一区二区三区在线| 久久精品人人爽人人爽视色| 少妇的丰满在线观看| 2021少妇久久久久久久久久久| av在线app专区| 黑丝袜美女国产一区| 性少妇av在线| 一边摸一边抽搐一进一出视频| 九九爱精品视频在线观看| 天天躁狠狠躁夜夜躁狠狠躁| 亚洲国产毛片av蜜桃av| 久久久国产一区二区| 性少妇av在线| 各种免费的搞黄视频| 男女国产视频网站| 国产男女内射视频| av国产精品久久久久影院| 色婷婷久久久亚洲欧美| 纯流量卡能插随身wifi吗| av网站免费在线观看视频| 如日韩欧美国产精品一区二区三区| kizo精华| 亚洲成人国产一区在线观看 | 97人妻天天添夜夜摸| 欧美精品亚洲一区二区| 三上悠亚av全集在线观看| 国产午夜精品一二区理论片| 亚洲第一av免费看| 久久毛片免费看一区二区三区| 人人妻人人爽人人添夜夜欢视频| 午夜福利网站1000一区二区三区| 午夜免费男女啪啪视频观看| 国产毛片在线视频| 亚洲第一区二区三区不卡| 女人精品久久久久毛片| 91精品伊人久久大香线蕉| 国产精品嫩草影院av在线观看| 777久久人妻少妇嫩草av网站| 晚上一个人看的免费电影| 国产成人系列免费观看| 女性生殖器流出的白浆| 国产在线视频一区二区| 亚洲人成77777在线视频| 亚洲av日韩在线播放| 精品酒店卫生间| 国产成人系列免费观看| 国产一卡二卡三卡精品 | 蜜桃国产av成人99| 亚洲欧美一区二区三区久久| 国产亚洲欧美精品永久| 两个人看的免费小视频| 男女边吃奶边做爰视频| 十分钟在线观看高清视频www| 国产97色在线日韩免费| 中国三级夫妇交换| 久久久久国产一级毛片高清牌| 少妇人妻 视频| 久久精品人人爽人人爽视色| 国产伦人伦偷精品视频| 伊人亚洲综合成人网| 最新的欧美精品一区二区| 亚洲精品,欧美精品| 欧美日韩一区二区视频在线观看视频在线| 天天躁夜夜躁狠狠久久av| 丝袜人妻中文字幕| 亚洲国产av影院在线观看| 国产精品一区二区在线不卡| 色视频在线一区二区三区| 久久 成人 亚洲| 女性被躁到高潮视频| 老司机影院成人| 亚洲色图综合在线观看| 青青草视频在线视频观看| www.精华液| 成人18禁高潮啪啪吃奶动态图| 日韩制服骚丝袜av| 亚洲一卡2卡3卡4卡5卡精品中文| 一区二区av电影网| 亚洲综合色网址| 在线观看免费午夜福利视频| 自拍欧美九色日韩亚洲蝌蚪91| 成人国产麻豆网| 国产精品国产三级专区第一集| 久久久久久久久久久免费av| 精品少妇黑人巨大在线播放| 亚洲,欧美,日韩| 99re6热这里在线精品视频| 大话2 男鬼变身卡| 一区二区三区精品91| 日本vs欧美在线观看视频| 久久久久视频综合| av又黄又爽大尺度在线免费看| 少妇人妻久久综合中文| 最新在线观看一区二区三区 | 久久亚洲国产成人精品v| 亚洲人成网站在线观看播放| 欧美变态另类bdsm刘玥| 国产精品久久久人人做人人爽| 秋霞伦理黄片| 赤兔流量卡办理| 亚洲,欧美,日韩| 日韩熟女老妇一区二区性免费视频| 欧美激情极品国产一区二区三区| 老汉色av国产亚洲站长工具| 久久精品国产亚洲av涩爱| 午夜福利,免费看| 亚洲,欧美,日韩| 看十八女毛片水多多多| 亚洲成人av在线免费| 日韩熟女老妇一区二区性免费视频| 一级片免费观看大全| 国产免费福利视频在线观看| 精品国产一区二区三区久久久樱花| 国产高清不卡午夜福利| 大陆偷拍与自拍| av.在线天堂| 男女免费视频国产| 18在线观看网站| 99精品久久久久人妻精品| 日本vs欧美在线观看视频| 啦啦啦在线观看免费高清www| 亚洲国产欧美在线一区| 啦啦啦在线观看免费高清www| 高清av免费在线| 国产成人啪精品午夜网站| 黑人欧美特级aaaaaa片| 亚洲,一卡二卡三卡| 久久精品国产综合久久久| 中文乱码字字幕精品一区二区三区| 99久国产av精品国产电影| 国产精品久久久久成人av| 国产精品熟女久久久久浪| 国产在视频线精品| 高清欧美精品videossex| 在线 av 中文字幕| 一级黄片播放器| 国产精品蜜桃在线观看| 超碰97精品在线观看| 国产精品久久久久久久久免| 欧美日韩亚洲高清精品| 亚洲精品一区蜜桃| 人人妻,人人澡人人爽秒播 | 黄片播放在线免费| 高清不卡的av网站| 一级毛片我不卡| 我要看黄色一级片免费的| 水蜜桃什么品种好| 一级a爱视频在线免费观看| 超碰97精品在线观看| 免费黄网站久久成人精品| 丝袜喷水一区| 精品人妻在线不人妻| 国产毛片在线视频| 丝袜美腿诱惑在线| 91国产中文字幕| 最新在线观看一区二区三区 | 在线看a的网站| 精品午夜福利在线看| 又粗又硬又长又爽又黄的视频| 国产亚洲午夜精品一区二区久久| 久久ye,这里只有精品| 国产免费一区二区三区四区乱码| 国语对白做爰xxxⅹ性视频网站| 下体分泌物呈黄色| 纯流量卡能插随身wifi吗| 男人添女人高潮全过程视频| 免费在线观看完整版高清| 在线天堂最新版资源| 久久精品亚洲av国产电影网| 国产麻豆69| 美女扒开内裤让男人捅视频| 青青草视频在线视频观看| 国产成人av激情在线播放| 精品久久久精品久久久| 丰满饥渴人妻一区二区三| 无遮挡黄片免费观看| 国产精品二区激情视频| 亚洲一码二码三码区别大吗| 香蕉国产在线看| 欧美日韩亚洲国产一区二区在线观看 | 99热国产这里只有精品6| 日本猛色少妇xxxxx猛交久久| 91老司机精品| 亚洲精品国产av成人精品| 下体分泌物呈黄色| 纯流量卡能插随身wifi吗| 考比视频在线观看| 中文字幕另类日韩欧美亚洲嫩草| 久久久亚洲精品成人影院| 少妇人妻 视频| 成人影院久久| 无限看片的www在线观看| 飞空精品影院首页| 久久精品aⅴ一区二区三区四区| 国产探花极品一区二区| 欧美精品一区二区大全| 哪个播放器可以免费观看大片| 成人国语在线视频| 人人澡人人妻人| 一区二区三区乱码不卡18| 亚洲精品第二区| 搡老岳熟女国产| 女人久久www免费人成看片| 亚洲一区二区三区欧美精品| 精品一区二区免费观看| 观看美女的网站| 国产精品一区二区精品视频观看| 天天躁夜夜躁狠狠躁躁| 亚洲欧美成人精品一区二区| 大香蕉久久网| 满18在线观看网站| 国产国语露脸激情在线看| 丰满迷人的少妇在线观看| 亚洲av中文av极速乱| 超色免费av| 亚洲国产欧美在线一区| 校园人妻丝袜中文字幕| 日韩欧美精品免费久久| 国产乱来视频区| av在线app专区| 捣出白浆h1v1| 国产精品国产三级专区第一集| 国产一区二区在线观看av| 欧美日韩视频高清一区二区三区二| 国产免费一区二区三区四区乱码| 国产精品99久久99久久久不卡 | 日韩av不卡免费在线播放| 日韩精品有码人妻一区| www.精华液| 高清欧美精品videossex| 伊人久久大香线蕉亚洲五| 国产伦理片在线播放av一区| 在线天堂最新版资源| 精品国产乱码久久久久久小说| 熟女少妇亚洲综合色aaa.| 王馨瑶露胸无遮挡在线观看| 国产精品99久久99久久久不卡 | 免费观看a级毛片全部| 一边亲一边摸免费视频| 啦啦啦中文免费视频观看日本| 亚洲欧美中文字幕日韩二区| 国产深夜福利视频在线观看| 亚洲欧美成人精品一区二区| 51午夜福利影视在线观看| 精品国产一区二区久久| 国产一区二区 视频在线| 日韩 亚洲 欧美在线| 欧美精品高潮呻吟av久久| 天天添夜夜摸| bbb黄色大片| 中文字幕av电影在线播放| 亚洲精品中文字幕在线视频| a级片在线免费高清观看视频| 在线天堂最新版资源| 极品人妻少妇av视频| 久久国产亚洲av麻豆专区| 黄色 视频免费看| 精品少妇黑人巨大在线播放| 91国产中文字幕| 青春草亚洲视频在线观看| 国产99久久九九免费精品| 一区二区三区激情视频| 国产午夜精品一二区理论片| 狠狠婷婷综合久久久久久88av| 日韩不卡一区二区三区视频在线| 一级毛片电影观看| 天天躁日日躁夜夜躁夜夜| 99久久人妻综合| 男女床上黄色一级片免费看| 久久性视频一级片| 国产精品女同一区二区软件| 狂野欧美激情性bbbbbb| 国产免费又黄又爽又色| 性高湖久久久久久久久免费观看| 两性夫妻黄色片| 色视频在线一区二区三区| 婷婷色av中文字幕| 蜜桃在线观看..| 欧美亚洲 丝袜 人妻 在线| 成人影院久久| 亚洲熟女毛片儿| 国产毛片在线视频| 如日韩欧美国产精品一区二区三区| 欧美少妇被猛烈插入视频| 97人妻天天添夜夜摸| 成人午夜精彩视频在线观看| 欧美最新免费一区二区三区| 亚洲熟女精品中文字幕| 亚洲精品国产一区二区精华液| 国产一区二区 视频在线| 少妇人妻精品综合一区二区| 久久精品aⅴ一区二区三区四区| 天天添夜夜摸| 国产麻豆69| 国精品久久久久久国模美| 国产爽快片一区二区三区| 亚洲人成77777在线视频| 亚洲免费av在线视频| 高清欧美精品videossex| 日韩视频在线欧美| 在线天堂最新版资源| 成人三级做爰电影| 国产精品久久久久久精品电影小说| 久久久国产欧美日韩av| 亚洲欧美一区二区三区黑人| 欧美日韩亚洲国产一区二区在线观看 | 国产精品嫩草影院av在线观看| 97在线人人人人妻| 黑丝袜美女国产一区| 七月丁香在线播放| 亚洲欧美一区二区三区久久| av在线老鸭窝| 纵有疾风起免费观看全集完整版| 久久久久视频综合| 老司机在亚洲福利影院| 国产一卡二卡三卡精品 | 大码成人一级视频| 亚洲一区中文字幕在线| 欧美变态另类bdsm刘玥| 男的添女的下面高潮视频| 一边亲一边摸免费视频| 成年人午夜在线观看视频| 国产又色又爽无遮挡免| 日韩大码丰满熟妇| 亚洲情色 制服丝袜| 波多野结衣av一区二区av| 午夜日本视频在线| 国产成人av激情在线播放| 亚洲精品国产区一区二| 国产精品一区二区在线观看99| 一区二区av电影网| 亚洲四区av| 日韩 欧美 亚洲 中文字幕| 日韩av在线免费看完整版不卡| 久久久久精品国产欧美久久久 | 国产午夜精品一二区理论片| 国产女主播在线喷水免费视频网站| 日韩av免费高清视频| 女的被弄到高潮叫床怎么办| 男女床上黄色一级片免费看| 国产欧美日韩综合在线一区二区| 久久青草综合色| 999久久久国产精品视频| 精品国产露脸久久av麻豆| 亚洲国产欧美在线一区| 国产老妇伦熟女老妇高清| 91成人精品电影| 国产精品久久久久久人妻精品电影 | 五月开心婷婷网| 一区二区av电影网| 久久精品亚洲熟妇少妇任你| 欧美黑人精品巨大| 日本av免费视频播放| 午夜免费鲁丝| 久久精品国产a三级三级三级| 五月开心婷婷网| 各种免费的搞黄视频| 国产日韩欧美视频二区| 看十八女毛片水多多多| 七月丁香在线播放| 日韩免费高清中文字幕av| 日韩 欧美 亚洲 中文字幕| 久久99精品国语久久久| 午夜免费鲁丝| 丝瓜视频免费看黄片| 制服丝袜香蕉在线| 久久人人爽av亚洲精品天堂| 亚洲伊人色综图| 中文字幕人妻丝袜制服| 亚洲精品国产一区二区精华液| 日韩 亚洲 欧美在线| 欧美黑人精品巨大| 欧美xxⅹ黑人| 9色porny在线观看| 国产精品一区二区精品视频观看| 国产日韩欧美在线精品| 男女边摸边吃奶| 91精品伊人久久大香线蕉| 欧美精品高潮呻吟av久久| 在线观看免费日韩欧美大片| av国产久精品久网站免费入址| 一级爰片在线观看| 久久久亚洲精品成人影院| 天堂8中文在线网| 丁香六月天网| 免费人妻精品一区二区三区视频| 91精品国产国语对白视频| 亚洲精品久久成人aⅴ小说| 美女主播在线视频| 热99国产精品久久久久久7| 亚洲,欧美,日韩| 可以免费在线观看a视频的电影网站 | 亚洲少妇的诱惑av| 又大又爽又粗| 丰满少妇做爰视频| 日韩欧美一区视频在线观看| 免费人妻精品一区二区三区视频| 国产成人免费无遮挡视频| 秋霞伦理黄片| 观看av在线不卡| 国产片特级美女逼逼视频| 在线精品无人区一区二区三| 大码成人一级视频| 18禁动态无遮挡网站| 亚洲精品日韩在线中文字幕| 毛片一级片免费看久久久久| 丝袜喷水一区| 一级,二级,三级黄色视频| 两个人看的免费小视频| 91成人精品电影| 久久99精品国语久久久| 国产1区2区3区精品| 日韩电影二区| 亚洲精品日韩在线中文字幕| 欧美日韩视频高清一区二区三区二| 久久精品国产a三级三级三级| 大话2 男鬼变身卡| av网站在线播放免费| 中文字幕制服av| 精品国产露脸久久av麻豆| 欧美中文综合在线视频| 欧美日韩亚洲高清精品| 纵有疾风起免费观看全集完整版| 黑人猛操日本美女一级片| 狠狠精品人妻久久久久久综合| 成人亚洲欧美一区二区av| 久久久久国产一级毛片高清牌| 亚洲欧美激情在线| 肉色欧美久久久久久久蜜桃| 色视频在线一区二区三区| 精品国产一区二区三区四区第35| 91aial.com中文字幕在线观看| 日韩欧美精品免费久久| h视频一区二区三区| 人人妻人人澡人人看| 亚洲欧美日韩另类电影网站| 欧美日韩综合久久久久久| 国产精品秋霞免费鲁丝片| 国产免费一区二区三区四区乱码| 精品一区二区三卡| 国产国语露脸激情在线看| 侵犯人妻中文字幕一二三四区| 国产在线视频一区二区| 日韩av免费高清视频| 免费黄网站久久成人精品| 免费观看av网站的网址| 黄色怎么调成土黄色| 日韩欧美一区视频在线观看| 精品久久久久久电影网| 啦啦啦啦在线视频资源| 中文字幕另类日韩欧美亚洲嫩草| av一本久久久久| 波多野结衣av一区二区av| 18在线观看网站| www日本在线高清视频| 免费高清在线观看日韩| 日韩成人av中文字幕在线观看| www.自偷自拍.com| 青草久久国产| 9热在线视频观看99| 人成视频在线观看免费观看| 国产精品免费视频内射| 亚洲精品日韩在线中文字幕| 一边摸一边抽搐一进一出视频| 欧美最新免费一区二区三区| 久久 成人 亚洲| 国产伦理片在线播放av一区| 大码成人一级视频| 精品人妻一区二区三区麻豆| 亚洲精品,欧美精品| 2021少妇久久久久久久久久久| 国产精品二区激情视频| 少妇的丰满在线观看| 女人被躁到高潮嗷嗷叫费观| 国产黄色免费在线视频| 欧美国产精品va在线观看不卡| 欧美日本中文国产一区发布| svipshipincom国产片| 国产一区有黄有色的免费视频| 国产熟女午夜一区二区三区| 少妇人妻精品综合一区二区| 国产av精品麻豆| 日日爽夜夜爽网站| 人妻一区二区av| 激情五月婷婷亚洲| 日韩电影二区| 狂野欧美激情性xxxx| 久久精品国产a三级三级三级| 在线观看免费日韩欧美大片| 一级a爱视频在线免费观看| 高清黄色对白视频在线免费看| av国产精品久久久久影院| 亚洲,欧美精品.| 久久久久精品国产欧美久久久 | www.av在线官网国产| 精品少妇久久久久久888优播| 精品一区二区免费观看| 老司机靠b影院| 青草久久国产| 一边摸一边做爽爽视频免费| 久久久久久久久久久久大奶| 久久精品亚洲熟妇少妇任你| 人体艺术视频欧美日本| 校园人妻丝袜中文字幕| 国产精品国产av在线观看| 夫妻午夜视频| 亚洲国产看品久久| 中文精品一卡2卡3卡4更新| 丝瓜视频免费看黄片| 国产欧美日韩综合在线一区二区| 99热全是精品| 亚洲av欧美aⅴ国产| 在线 av 中文字幕| 在线看a的网站| 色婷婷久久久亚洲欧美| 国产成人精品久久久久久| 久久韩国三级中文字幕| 男女床上黄色一级片免费看| 两个人看的免费小视频| 熟女av电影| 久久久久人妻精品一区果冻| 国产成人午夜福利电影在线观看| 国产一区亚洲一区在线观看| 乱人伦中国视频| 菩萨蛮人人尽说江南好唐韦庄| 建设人人有责人人尽责人人享有的| 亚洲七黄色美女视频| 老司机影院成人| 夫妻性生交免费视频一级片| 国产亚洲最大av| 久久狼人影院| 亚洲国产中文字幕在线视频| 秋霞伦理黄片| 亚洲综合色网址| avwww免费| 免费av中文字幕在线| 国产午夜精品一二区理论片| 一边亲一边摸免费视频| 亚洲欧美色中文字幕在线| 精品久久蜜臀av无| 国产xxxxx性猛交| 又粗又硬又长又爽又黄的视频| 91成人精品电影| 久久久久视频综合| 日韩电影二区| www.熟女人妻精品国产|