李夢(mèng)夢(mèng) 焦靜靜 楊仕平
摘 ?要: 鑭系元素因其特殊的4f電子層結(jié)構(gòu)而具有優(yōu)異的光譜特性,如尖銳的線狀譜帶和相對(duì)較長(zhǎng)的激發(fā)態(tài)壽命,這大大提高了其光學(xué)成像性能,是一類新型的成像元素.但其電子躍遷幾率低,表現(xiàn)出較差的發(fā)光強(qiáng)度及較低的吸光效率,這對(duì)鑭系發(fā)光材料作為生物成像探針的發(fā)展有一定的阻礙.近些年,研究者們通過(guò)設(shè)計(jì)鑭系材料組成與結(jié)構(gòu),對(duì)其發(fā)光性能進(jìn)行調(diào)控,使其成像性能得到了極大的提升.該文分別綜述了鑭系配合物、鑭系納米粒子作為成像探針的發(fā)光原理、材料類型及生物應(yīng)用.
關(guān)鍵詞: 鑭系元素; 配合物; 納米材料; 生物發(fā)光成像
中圖分類號(hào): O 614.33;R 318.51 ?文獻(xiàn)標(biāo)志碼: A ?文章編號(hào): 1000-5137(2021)06-0737-08
Abstract: Due to the special structure of 4f electron layer, lanthanides have excellent spectral characteristics, such as sharp linear bands and relatively long excited state lifetime, which greatly improves their optical imaging performance and makes them a new type of imaging elements. However, their low electron transition probability, low light absorption efficiency, and low luminescence intensity have hindered the development of lanthanide luminescent materials as biological imaging probes. In recent years, numerous researchers have tried to resolve this problem through designing luminescence materials based on lanthanides elements. This article summarizes the recent advance in the luminant mechanism, material types, and biological applications of lanthanide coordination complexes and lanthanide nanoparticles as bioluminescence imaging agents.
Key words: lanthanide; coordination complexes; nanomaterials; bioluminescence imaging
0 ?引 言
鑭系元素具有4f電子軌道,其多樣的電子構(gòu)型、豐富的電子能級(jí)賦予了鑭系材料優(yōu)異的光學(xué)性質(zhì)[1-3].每種鑭系金屬離子均具有獨(dú)特的躍遷能級(jí),特殊的4f-4f能級(jí)的躍遷禁阻使其發(fā)射光譜表現(xiàn)出狹窄、尖銳的譜帶(半峰寬通常小于10 nm),產(chǎn)生的單個(gè)峰很容易區(qū)分,且其發(fā)光光譜具有特異性.同時(shí),鑭系元素具有相對(duì)較長(zhǎng)的發(fā)光壽命,如小型有機(jī)熒光團(tuán)和熒光蛋白發(fā)光僅幾納秒,鑭系元素發(fā)光可以持續(xù)幾毫秒.但躍遷禁阻也使其電子躍遷幾率較小,表現(xiàn)出較低的吸光效率以及較差的發(fā)光強(qiáng)度,消光系數(shù)遠(yuǎn)低于常用的熒光團(tuán)(鑭系元素的消光系數(shù)小于10 L·mol-1·cm-1,有機(jī)熒光團(tuán)和熒光蛋白的消光系數(shù)為10 000~100 000 L·mol-1·cm-1)[4].直接、高效地激發(fā)鑭系金屬所需的光強(qiáng)度會(huì)對(duì)生物樣品產(chǎn)生破壞性[5].因此,需要對(duì)鑭系材料進(jìn)行各種合理的設(shè)計(jì),以敏化鑭系元素發(fā)光.
目前應(yīng)用廣泛的鑭系發(fā)光材料主要為鑭系配合物、鑭系納米粒子.由于鑭系配合物材料兼具無(wú)機(jī)物良好的穩(wěn)定性和有機(jī)物量子產(chǎn)率高等優(yōu)點(diǎn),由此被認(rèn)為是具有廣泛應(yīng)用和發(fā)展前景的新型稀土有機(jī)發(fā)光材料.配體與鑭系金屬離子的類型均多種多樣,這賦予了鑭系配合物獨(dú)特的電、光、磁、熱等性能,其中以發(fā)光性能最為突出[6-7].由于該系列納米材料被認(rèn)為是一種新興的納米發(fā)光材料,上轉(zhuǎn)換發(fā)光納米粒子利用其獨(dú)特的上轉(zhuǎn)換發(fā)光性質(zhì),吸收了低能量的近紅外光,產(chǎn)生高能量的可見(jiàn)光或紫外光(反斯托克斯發(fā)光).與普通下轉(zhuǎn)換材料相比,其在生物成像方面優(yōu)勢(shì)顯著,如可用紅外光激發(fā)、穿透性更好、毒性更低、半峰寬更窄等[8-10].相較于傳統(tǒng)的熒光材料,上轉(zhuǎn)換發(fā)光材料可避免光漂白,背景熒光干擾性低,檢測(cè)也幾乎可實(shí)現(xiàn)無(wú)損傷[11-12].鑭系摻雜的納米粒子材料經(jīng)過(guò)一定的表面修飾還可實(shí)現(xiàn)特定的生物學(xué)應(yīng)用,如改善生物相容性、穩(wěn)定性、靶向性、傳感性等[13-16].
本文作者將從發(fā)光原理、發(fā)光材料的組成及優(yōu)化、生物成像的研究應(yīng)用等方面對(duì)鑭系配合物、鑭系納米粒子發(fā)光材料分別進(jìn)行綜述.
1 ?鑭系配合物發(fā)光
1.1 鑭系配合物發(fā)光原理
有機(jī)分子配體由于具有較高的吸收系數(shù),所需激發(fā)能量低,熒光發(fā)射效率高,因此可通過(guò)設(shè)計(jì)成鑭系元素配合物實(shí)現(xiàn)優(yōu)化鑭系元素的發(fā)光性能.這樣的有機(jī)配體通過(guò)更高效率的吸收光并將能量傳遞給鑭系金屬離子,實(shí)現(xiàn)鑭系材料發(fā)光性能的增強(qiáng)[17],因此被稱為天線分子.天線分子通常用于將能量轉(zhuǎn)移到鑭系金屬離子來(lái)實(shí)現(xiàn)其光學(xué)性能轉(zhuǎn)換效率及成像性能的提升.利用天線分子敏化鑭系金屬離子發(fā)光,形成的鑭系金屬配合物既表現(xiàn)出良好的發(fā)光性能,同時(shí)其狹窄的發(fā)射譜帶不會(huì)受到激發(fā)光源強(qiáng)度、發(fā)光中心濃度以及光學(xué)檢測(cè)器靈敏度的影響[18].大多數(shù)天線分子吸收波長(zhǎng)為300~400 nm的光,并具有大于10 000 L·mol-1·cm-1的消光系數(shù),少數(shù)還可響應(yīng)可見(jiàn)光[19],所得到的光致發(fā)光也與斯托克斯位移有關(guān),有明顯的激發(fā)和發(fā)射信號(hào)的分離(幾百納米).但并非所有的有機(jī)配體都適合作為天線分子,優(yōu)異的天線分子需要具有較強(qiáng)的吸光能力、較寬的吸收譜帶、較長(zhǎng)的三重態(tài)激發(fā)態(tài)發(fā)光壽命,同時(shí)其能級(jí)需要與鑭系金屬離子的4f激發(fā)態(tài)能級(jí)相匹配才能實(shí)現(xiàn)能量的有效傳遞,如圖1(a)所示[20].其發(fā)光原理為:首先,天線分子在紫外區(qū)吸收光能后進(jìn)行電子躍遷,即π→π*,基態(tài)的電子則可以躍遷至最低激發(fā)單重態(tài)(S0-S1);然后,三重態(tài)T1中能量開(kāi)始逐漸轉(zhuǎn)移至其中心離子——鑭系離子,基態(tài)的電子即被激發(fā)躍遷至最高激發(fā)態(tài);最后,離子高能態(tài)的電子重新返回基態(tài)時(shí),電子所吸收的多余能量以可見(jiàn)光方式進(jìn)行輻射,即產(chǎn)生人類肉眼可識(shí)別的特征性熒光,如圖1(b)所示.
1.2 鑭系配合物發(fā)光材料及其生物成像
最早的光致發(fā)光鑭系配合物之一是吡啶-2,6-二羧酸鋱Tb〖(DPA)〗_3^(3-)[20],分子結(jié)構(gòu)如圖2(a)所示.后續(xù)又開(kāi)發(fā)了新的基于鑭系元素的配合物光學(xué)探針來(lái)實(shí)現(xiàn)摩爾吸光系數(shù)最大化及提高天線分子到鑭系金屬的轉(zhuǎn)移效率、量子產(chǎn)率、光穩(wěn)定性和體內(nèi)穩(wěn)定性[21].MOORE等[22]研發(fā)了針對(duì)三價(jià)鋱離子(Tb3+)和三價(jià)銪離子(Eu3+)的最小發(fā)色配體2-羥基苯甲酰胺(IAM)和1-羥基吡啶-2-酮(1,2-HOPO),均為吡啶二羧酸(DPA)的二齒配體衍生物,如圖2(b)所示.后續(xù)又開(kāi)發(fā)了包含4個(gè)IAM分子的Tb3+穴狀化合物,其中最亮、最長(zhǎng)壽命的Tb3+復(fù)合物之一是Tb3+-Lumi4 [23],如圖2(c)所示,其具有優(yōu)異的消光系數(shù)(23 700 L·mol-1·cm-1)、量子產(chǎn)量(50%)和熒光壽命(2.45 ms).
聚酰胺羧酸連接一個(gè)天線分子是最常用的鑭系配合物,HEFFERN等[24]合成了幾種這類探針,如與喹諾酮天線連接的二乙基三胺五乙酸(DTPA)、三乙烯四胺六乙酸(TTHA)、1,4,7,10-四氮雜環(huán)十二烷-1,4,7,10-四羧酸(DOTA)和一氧化二氮(N2O),如圖2(d)所示.7-氨基-4-甲基喹諾酮(cs124)發(fā)色團(tuán)與Tb3+和Eu3+的配合物也已經(jīng)被研制出來(lái)[25],其中,7-氨基-4-三氟甲基-2-(1氫)-喹啉酮(cs124-CF3)優(yōu)先將能量轉(zhuǎn)移到Eu3+,360 nm處消光系數(shù)可達(dá)15 000 L·mol-1·cm-1.鑭系聚酰胺羧酸酯配合物種類繁多,在體內(nèi)具有不同的生物穩(wěn)定性,使某些種類更適應(yīng)于生物應(yīng)用.例如,DOTA和N2O配體可以在低濃度(mmol·L-1)核苷三磷酸的存在下,結(jié)合三價(jià)鑭系元素實(shí)現(xiàn)生物體內(nèi)的靈敏穩(wěn)定性檢測(cè).TAKALO等[26]開(kāi)創(chuàng)了鑭系元素配位的三聯(lián)吡啶和類三聯(lián)吡啶,在以三聯(lián)吡啶為骨架的鑭系絡(luò)合物中,2,2',2″,2?-{[4'-(氨基聯(lián)苯)-2,2':6',2″-三吡啶-6,6″-二基]雙(亞甲基腈)}四(乙酸)}銪(Ⅲ)(Eu3+-ATBTA)穩(wěn)定性較高且亮度強(qiáng),如圖2(e)所示.這種鑭系配合物在360 nm處具有20 000 L·mol-1·cm-1的高消光系數(shù),量子產(chǎn)率可達(dá)到9.1%.即使在磷酸鹽緩沖溶液時(shí),例如,磷酸銪(EuPO4)的溶度積(Ksp)達(dá)到約25,仍能實(shí)現(xiàn)優(yōu)異的光致發(fā)光[27].Eu3+-ATBTA的生化穩(wěn)定性進(jìn)一步通過(guò)其在斑馬魚胚胎中的天數(shù)和耐熱能力達(dá)到95 ℃而得到驗(yàn)證[28-29].此外,含Tb3+和Eu3+的配合物已被用作定量檢測(cè)聚合酶鏈反應(yīng)的TaqMan探針,采用時(shí)間門控光度法監(jiān)測(cè),提供了跨越6個(gè)數(shù)量級(jí)的線性檢測(cè)[30].
2 ?鑭系納米粒子發(fā)光
2.1 鑭系納米粒子發(fā)光原理
納米顆粒中的鑭系元素通過(guò)幾種不同機(jī)制促進(jìn)光子上轉(zhuǎn)換,其中2個(gè)最常見(jiàn)的是激發(fā)態(tài)吸收和能量轉(zhuǎn)移上轉(zhuǎn)換.激發(fā)態(tài)吸收材料通常由基質(zhì)和激活離子組成的單一摻雜材料構(gòu)成(二元鑭系氟化物),具有梯狀能級(jí)結(jié)構(gòu)的鑭系元素連續(xù)吸收激發(fā)光子,鑭系元素?fù)诫s劑的中間激發(fā)態(tài)具有長(zhǎng)壽命,利于其連續(xù)吸收光子,并于中間激發(fā)態(tài)連續(xù)發(fā)射.進(jìn)行能量轉(zhuǎn)移上轉(zhuǎn)換的通常是多種鑭系元素?fù)诫s的材料,此類鑭系納米粒子由基質(zhì)材料、敏化離子和發(fā)光中心組成(三元鑭系氟化物).敏化離子(供體)得到的激發(fā)能量被傳遞到發(fā)光中心(受體),從同一敏化離子或多個(gè)敏化劑到單個(gè)發(fā)光中心可發(fā)生多次轉(zhuǎn)移.三價(jià)鐿離子(Yb3+)被認(rèn)為是目前最優(yōu)的敏化劑,因其只有一個(gè)激發(fā)態(tài)能級(jí),并且在960~990 nm具有強(qiáng)烈吸收,可以被幾種常見(jiàn)的紅外激光器高效地瞄準(zhǔn).Yb3+通常與三價(jià)鈥離子(Ho3+)、三價(jià)鉺離子(Er3+)或三價(jià)銩離子(Tm3+)活化劑偶聯(lián),這些受體離子由紅外激發(fā),隨上轉(zhuǎn)換程度產(chǎn)生紫色到紅色波長(zhǎng)的光子,如圖3所示.近年來(lái),許多生物材料研究者在研究合成高發(fā)光性能的上轉(zhuǎn)換發(fā)光材料,逐步使其被廣泛地應(yīng)用在生物標(biāo)志、生物成像、DNA檢測(cè)、病變等方面.此外,還可通過(guò)修飾鑭系摻雜的納米粒子的表面以實(shí)現(xiàn)特定的生物學(xué)應(yīng)用,例如代謝物傳感和靶向遞送等[31].上轉(zhuǎn)化納米發(fā)光材料在生物上已經(jīng)具有很強(qiáng)的應(yīng)用潛力,某些鑭系納米顆??蛇M(jìn)行光子上轉(zhuǎn)換,特別適用于小動(dòng)物活體全身成像[32].
2.2 鑭系納米粒子發(fā)光材料及其生物成像
為實(shí)現(xiàn)優(yōu)異的發(fā)光性能,其基質(zhì)材料應(yīng)滿足光學(xué)透明和晶格聲子能量低的要求,目前的研究發(fā)現(xiàn)以氟化物為基質(zhì)的光學(xué)性能最為優(yōu)異.二元鑭系氟化物主要包括氟化釹(NdF3)、氟化釓(GdF3)、氟化鑭(LaF3).MOON等[34]合成了核殼型的二氧化硅包覆的氟化釹(NdF3@SiO2),納米顆粒發(fā)出明亮的綠色熒光,實(shí)現(xiàn)了優(yōu)異的成像效果,將100 μL質(zhì)量濃度為1.0 μg·mL-1的納米材料靜脈注射于小鼠的大腿及腹部,用730 nm的近紅外光照射激發(fā),即能檢測(cè)到皮下1 cm處的成像.SAYED等[35]將鑭系離子與GdF3摻雜而形成具有優(yōu)異發(fā)光特征的材料,細(xì)胞成像結(jié)果顯示其具有高靈敏度.SIVAKUMAR等[36]將鑭系元素Eu與LaF3摻雜,Eu作為敏化劑,然后通過(guò)交聯(lián)作用將生物素修飾在LaF3上來(lái)用于生物分析.WANG等[16]通過(guò)一步法合成了直徑約20 nm的LaF3納米粒子,此外還通過(guò)修飾殼聚糖以改善材料的水溶性,提高其與生物的相容性,利用殼聚糖中含有的氨基功能團(tuán)使材料容易和生物體內(nèi)小分子相互作用,其被用作一種分子檢測(cè)探針,有利于生物學(xué)研究.
目前,三元鑭系氟化物主要有四氟化釔鈉(NaYF4)和四氟化釓鈉(NaGdF4).LIU等[37]合成了六方相的NaYF4,并將Yb或Er摻雜NaYF4制備的NaYF4∶Yb3+/Er3+與金(Au)進(jìn)行組裝,這種把貴金屬與上轉(zhuǎn)換納米晶NaYF4進(jìn)行結(jié)合的方式使上轉(zhuǎn)換納米材料的發(fā)光效率得到了明顯提升,因此引起了科研者的研究興趣.WEI等[38]合成了一種具有核殼結(jié)構(gòu)的介孔SiO2包覆摻雜Yb的NaYF4(NaYF4∶Yb3+@mSiO2)納米粒子,并廣泛應(yīng)用于活體醫(yī)學(xué)中的藥物釋放及實(shí)時(shí)影像.首先合成約80 nm的核殼結(jié)構(gòu)的納米微粒,用聚乙二醇對(duì)其進(jìn)行修飾以提高其生物相容性;然后再利用葉酸對(duì)其進(jìn)行修飾以提高靶向性;最后將抗癌藥物阿霉素修飾在納米微粒子表面.由于阿霉素本身具有pH值特異響應(yīng)性能,在腫瘤的酸性環(huán)境下,納米微粒中阿霉素被大量釋放,從而實(shí)現(xiàn)抑制和殺死腫瘤細(xì)胞的效果.同時(shí),納米微粒被人體細(xì)胞捕獲和攝取,在980 nm紅外光的照射下發(fā)出了綠光,實(shí)現(xiàn)了細(xì)胞成像.LIU等[39]用分子影像探針NaGdF4對(duì)動(dòng)物活體進(jìn)行了成像.這個(gè)NaGdF4中的鑭系離子使材料具有光學(xué)信號(hào),同時(shí)利用Gd的磁性來(lái)進(jìn)行核磁共振成像,由于放射性的核素18F與Gd之間存在著相互作用,能將18F修飾在納米顆粒表面,使其也能產(chǎn)生一種放射性信號(hào).最后再利用葉酸來(lái)修飾納米材料的表面,使納米探針具有良好的靶向性,修飾后的納米探針也能同時(shí)實(shí)現(xiàn)光學(xué)成像、核磁共振成像和正電子發(fā)射計(jì)算機(jī)斷層成像的性能,從而實(shí)現(xiàn)了對(duì)腫瘤的有效檢測(cè).
通過(guò)時(shí)間門控可實(shí)現(xiàn)鑭系元素納米粒子成像的增強(qiáng),因?yàn)樗鼈兊陌l(fā)光壽命(數(shù)十至數(shù)百微秒)是樣品自體熒光的數(shù)量級(jí)倍數(shù),且這種檢測(cè)模式與上轉(zhuǎn)換和下轉(zhuǎn)換探針兼容.TAN等[40]合成了鑭系元素離子摻雜的NaGdF4和NaYF4納米粒子,具有優(yōu)異的上轉(zhuǎn)換性能,可以用長(zhǎng)波長(zhǎng)808 nm激光激發(fā),從而避免對(duì)生物樣本的熱損傷,給小鼠口服NaGdF4納米粒子,然后立即通過(guò)時(shí)間分辨成像確認(rèn)其在胃中的存在,如圖4(a)所示.此外,將NaYF4納米粒子注入小鼠腦中,還可以通過(guò)時(shí)間門控高對(duì)比度檢測(cè)其發(fā)光,如圖4(b)所示.FAN等[41]通過(guò)控制能量中繼結(jié)構(gòu),產(chǎn)生具有不同發(fā)光壽命(微秒至毫秒)的Er3+基的納米顆粒.通過(guò)將這些時(shí)間壽命編碼的探針共聚到靶向腫瘤表面特定的抗體上,能夠?qū)崿F(xiàn)同時(shí)成像小鼠毫米大小的腫瘤上的多個(gè)抗原,如圖4(c)所示.
3 ?結(jié)論與展望
本文作者通過(guò)向鑭系配合物引入天線分子、在鑭系無(wú)機(jī)納米材料進(jìn)行上轉(zhuǎn)換設(shè)計(jì)等,實(shí)現(xiàn)了鑭系材料的優(yōu)異發(fā)光,并將其應(yīng)用到生物層次成像.然而,鑭系發(fā)光的應(yīng)用仍存在一些缺陷,如熒光濃度猝滅、量子產(chǎn)率低、需要輔助敏化劑、與某些聚合物材料相容性不佳等,這些問(wèn)題還需解決.相信隨著科研者的不斷探究,鑭系元素的性能會(huì)得到更大的提升,應(yīng)用領(lǐng)域也會(huì)越來(lái)越廣泛.
參考文獻(xiàn):
[1] BARRY D E, CAFFREY D F, GUNNLAUGSON T. Lanthanide-directed synthesis of luminescent self-assembly supramolecular structures and mechanically bonded systems from acyclic coordinating organic ligands [J]. Chemical Society Reviews,2016,45(11):3244-3274.
[2] ZHANG B B, DONG X L, ZHOU Q, et al. Carboxymethyl chitosan-promoted luminescence of lanthanide metallogel and its application in assay of multiple metal ions [J]. Carbohydrate Polymers,2021,263(72):117986-117994.
[3] HALUBEK-GLUCHOWSKA K, SZYMA?SKI D, TRAN T N L, et al. Upconversion luminescence of silica-calcia nanoparticles co-doped with Tm3+ and Yb3+ ions [J]. Materials,2021,14(4):937-956.
[4] TANG J H, SUN Y, GONG Z L, et al. Temperature-responsive fluorescent organoplatinum(Ⅱ) metallacycles [J]. Journal of the American Chemical Society,2018,140(24):7723-7729.
[5] PAN Y, SU H Q, ZHOU E L, et al. A stable mixed lanthanide metal-organic framework for highly sensitive thermometry [J]. Dalton Transactions,2019,48(11):3723-3729.
[6] YANAGISAWA K, NAKANISHI T, KITAGAWA Y, et al. Seven-coordinate luminophores: brilliant luminescence of lanthanide complexes with C3v geometrical structures [J]. European Journal of Inorganic Chemistry,2015,2015(28):4769-4774.
[7] ROSA P P F D, NAKANISHI T, KITAGAWA Y, et al. Thermosensitive seven-coordinate TbIII complexes with LLCT transitions [J]. European Journal of Inorganic Chemistry,2018(19):2031-2037.
[8] AKIZUKI N, AOTA S, MOURI S, et al. Efficient near-infrared up-conversion photoluminescence in carbon nanotubes [J]. Nature Communications,2015,6(1):8920-8926.
[9] YU H, SUN W L, TIEMUER A, et al. Mitochondria targeted near-infrared chemodosimeter for upconversion luminescence bioimaging of hypoxia [J]. Chemical Communications,2021,57(42):5207-5210.
[10] ZHOU Y H, CHENG Y, XU Y, et al. Thermo-enhanced upconversion luminescence in inert-core/active-shell UCNPs: the inert core matters [J]. Nanoscale,2021,13(13):6569-6576.
[11] JU Q, CHEN X, AI F J, et al. An upconversion nanoprobe operating in the first biological window [J]. Journal of Materials Chemistry B,2015,3(17):3548-3555.
[12] RAFIQUE R, KAILASA S K, PARK T J. Recent advances of upconversion nanoparticles in theranostics and bioimaging applications [J]. TrAC Trends in Analytical Chemistry,2019,120:115646-115714.
[13] LI R B, JI Z X, DONG J Y, et al. Enhancing the imaging and biosafety of upconversion nanoparticles through phosphonate coating [J]. ACS Nano,2015,9(3):3293-3306.
[14] XIONG L Q, YANG T S, YANG Y, et al. Long-term in vivo biodistribution imaging and toxicity of polyacrylic acid-coated upconversion nanophosphors [J]. Biomaterials,2010,31(27):7078-7085.
[15] WANG Y Z, CHEN B, WANG F. Overcoming thermal quenching in upconversion nanoparticles [J]. Nanoscale,2021,13(6):3454-3462.
[16] WANG F, ZHANG Y, FAN X P, et al. One-pot synthesis of chitosan/LaF3: Eu3+ nanocrystals for bio-applications [J]. Nanotechnology,2006,17(5):1527-1532.
[17] LIU W, CHEN C Y, WU Z L, et al. Construction of multifunctional luminescent lanthanide MOFs by hydrogen bond functionalization for picric acid detection and fluorescent dyes encapsulation [J]. ACS Sustainable Chemistry and Engineering,2020,8(35):13497-13506.
[18] WEISSMAN S I. Intramolecular energy transfer the fluorescence of complexes of europium [J]. The Journal of Chemical Physics,1942,10(4):214-217.
[19] MA H, WANG X, SONG B, et al. Extending the excitation wavelength from UV to visible light for a europium complex-based mitochondria targetable luminescent probe for singlet oxygen [J]. Dalton Transactions,2018,47(37):12852-12857.
[20] BARELA T D, SHERRY A D. A simple, one-step fluorometric method for determination of nanomolar concentrations of terbium [J]. Analytical Biochemistry,1976,71(2):351-352.
[21] LAPAEV D V, NIKIFOROV V G, LOBKOV V S, et al. A photostable vitrified film based on a terbium(Ⅲ) β-diketonate complex as a sensing element for reusable luminescent thermometers [J]. Journal of Materials Chemistry C, 2018,6(35):9475-9481.
[22] MOORE E G, AMUEL A P S, RAYMOND K N. From antenna to assay: lessons learned in lanthanide luminescence [J]. Accounts of Chemical Research,2009,42(4):542-552.
[23] XU J, CORNEILLIE T M, MOORE E G, et al. Octadentate cages of Tb(Ⅲ) 2-hydroxyisophthalamides: a new standard for luminescent lanthanide labels [J]. Journal of the American Chemical Society,2011,133(49):19900-19910.
[24] HEFFERN M C, MATOSZIUK L M, MEADE T J. Lanthanide probes for bioresponsive imaging [J]. Chemical Reviews,2014,114(8):4496-4539.
[25] YUE C Y, LIU F L, DENG W T, et al. Iodide-centered cuprous octatomic ring: a luminescent molecular thermometer exhibiting dual-emission character [J]. Crystal Growth and Design,2018,18(1):22-26.
[26] TAKALO H, MUKKALA V M, MERI? L, et al. Development of luminescent terbium(Ⅲ) chelates for protein labelling: effect of triplet-state energy level [J]. Helvetica Chimica Acta,1997,80(2):372-387.
[27] FIRSCHING F H, BRUNE S N. Solubility products of the trivalent rare-earth phosphates[J]. Journal of Chemical and Engineering Data,1991,36(1):93-95.
[28] CHO U, RIORDAN D P, CIEPLA P, et al. Ultrasensitive optical imaging with lanthanide lumiphores [J]. Nature Chemical Biology,2018,14(1):15-21.
[29] NISHIOKA T, YUAN J, YAMAMOTO Y, et al. New luminescent europium(Ⅲ) chelates for DNA labeling [J]. Inorganic Chemistry,2006,45(10):4088-4096.
[30] GUEIMONDE M, T?LKK? S, KORPIM?KI T, et al. New real-time quantitative PCR procedure for quantification of bifidobacteria in human fecal samples [J]. Applied and Environmental Microbiology,2004,70(7):4165-4169.
[31] BAGHERI A, ARANDIYAN H, BOYER C, et al. Lanthanide-doped upconversion nanoparticles: emerging intelligent light-activated drug delivery systems [J]. Advanced Science,2016,3(7):1500437-1500462.
[32] WU X Y, ZHAO Q, ZHANG D X, et al. A self-calibrated luminescent thermometer based on nanodiamond-Eu/Tb hybrid materials [J]. Dalton Transactions,2019,48(22):7910-7917.
[33] WANG F, LIU X. Recent advances in the chemistry of lanthanide-doped upconversion nanocrystals [J]. Chemical Society Reviews,2009,38(4):976-989.
[34] MOON J H, MACLEAN P, MCDANIEL W, et al. Conjugated polymer nanoparticles for biochemical protein kinase assay [J]. Chemical Communications,2007(46):4910-4912.
[35] SAYED F N, GROVER V, UDARSAN V, et al. Multicolored and white-light phosphors based on doped GdF3 nanoparticles and their potential bio-applications [J]. Journal of Colloid and Interface Science,2012,367(1):161-170.
[36] SIVAKUMAR S, DIAMENTE P R, FRANK C J M. Silica-coated Ln3+?doped LaF3 nanoparticles as robust down-and upconverting biolabels [J]. Chemistry:A European Journal,2006,12(22):5878-5884.
[37] LIU N, QIN W P, QIN G S, et al. Highly plasmon-enhanced upconversion emissions from Au@β-NaYF4∶ Yb, Tm hybrid nanostructures [J]. Chemical Communications,2011,47(27):7671-7673.
[38] FENG W, SUN D L, YAN C H. Ag nanowires enhanced upconversion emission of NaYF4∶ Yb, Er nanocrystalsvia a direct assembly method [J]. Chemical Communications,2009(29):4393-4395.
[39] LIU Q, SUN Y, LI C G, et al. 18F-Labeled magnetic-upconversion nanophosphors via rare-earth cation-assisted ligand assembly [J]. ACS Nano,2011,5(4):3146-3157.
[40] TAN M L, ROSAL B D, ZHANG Y Q, et al. Rare-earth-doped fluoride nanoparticles with engineered long luminescence lifetime for time-gated in vivo optical imaging in the second biological window [J]. Nanoscale,2018,10(37):17771-17780.
[41] FAN Y, WANG P Y, LU Y Q, et al. Lifetime-engineered NIR-Ⅱ nanoparticles unlock multiplexed in vivo imaging [J]. Nature Nanotechnology,2018,13(10):941-946.
(責(zé)任編輯:郁慧,顧浩然)
上海師范大學(xué)學(xué)報(bào)·自然科學(xué)版2021年6期