• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Stem Taper Functions for Betula platyphylla in Daxing’anling

    2021-01-05 08:58:50ShahzadMuhammadKhurramHussainAmnaHePeiJiangLichun
    林業(yè)科學 2020年11期

    Shahzad Muhammad Khurram Hussain Amna He Pei Jiang Lichun

    (Key Laboratory of Sustainable Forest Ecosystem Management of Ministry of Education School of Forestry, Northeast Forestry University Harbin 150040)

    Abstract: 【Objective】 Stem taper functions are important components in forest management and planning systems. Currently, there is no taper function for Betula platyphylla in northeast China, therefore, it is necessary to develop the taper function for this species. Eight commonly used taper functions in forestry were compared to evaluate which would provide a better prediction for diameter at a specific height and total volume for B. platyphylla in northeast China.【Method】 The data used in this study were collected from 253 destructively felled sample trees with 3 795 diameter/height measurements in the northwest of the northern slope of Yilehuli Mountains of northeast China. A first-order continuous autoregressive error structure was used to model the error term and account for autocorrelation. Multicollinearity was also evaluated with condition number. Coefficient of determination (R2), mean absolute bias (MAB), root mean square error (RMSE) and mean percentage of bias (MPB) were selected as evaluation criteria of models. Comparison of the taper models was carried out using goodness-of-fit statistics, box plots of diameter and volume residual distributions and validation statistics. 【Result】 1) In terms of model fitting statistics, the models of Kozak (2004)-2, Fang et al. (2000) and Max et al. (1976) were the top three models. The model of Sharma et al. (2001) showed the poorest performance. 2) Based on the box plots of diameter and volume residuals, the models of Bi (2000), Max et al. (1976), Kozak(2004)-2 and Fang et al. (2000) were more accurate in diameter and volume prediction with smaller errors and almost similar residual diameter and volume distribution. The models of Sharma et al. (2001), Sharma et al. (2004), Sharma et al. (2009) and Kozak (2004)-1 had non homogeneous distribution of the diameter residuals along different sections of the stem. 3) Model validation also confirmed that Max et al. (1976), Kozak (2004)-2 and Fang et al. (2000) showed better performances. In general, the model of Kozak (2004)-2 showed consistent performances and was superior to other taper models in predicting diameter and volume.【Conclusion】 Based on the evaluation statistics of fitting and validation, graphic analysis and condition number, the model of Kozak (2004)-2 was recommended for estimating diameter at a specific height, total volume and merchantable volume for B. platyphylla in northeast China.

    Key words: Betula platyphylla; taper; volume; autocorrelation; multicollinearity

    Taper models are one of the essential component in current systems of forest management and planning (Heidarssonetal., 2011). Recently, the estimation of tree volume by using taper equations has gained popularity. As reported in previous studies, taper functions are a valuable tool to estimate the tree contents for a wide range of products. Taper models, owing to their flexibility, are extensively applied in forest inventories to estimate diameter and merchantable stem volume. Merchantable stem volume is of greater concern since it enables the classification of timber products by merchantable dimensions. Additionally, it was indicated by Lietal. (2010) and de-Migueletal. (2012) that taper equations stay ahead of existing volume tables in volume estimation. This benefit is attributed to the ability of taper functions to predict the diameter (over bark or inside bark) accurately at any height along stem. As a result of which, calculation of merchantable volume for any required specification is easily made possible. Besides the prediction of timber volume availability (Zhangetal., 2006), stem taper as a regressor variable, has also been applied to determine the number of growth rings in cross section (Wilhelmsson, 2006) and to evaluate the correct sampling design for the collection of stem diameter data (Newtonetal., 2008).

    Broadly speaking, classification of taper functions exists on the basis of 1) their compatibility with volume equations (Reedetal., 1984); 2) their functional form (Thomasetal., 1991; Muhairweetal., 1994; Sharmaetal., 2001); 3) the origin of these functions such as empirical or geometric (Fangetal., 1999). Principally, taper functions have been arranged into three categories (Diéguez-Arandaetal., 2006). First group contains simple polynomial taper equations (Demaerschalk, 1972; Biging, 1984; Sharmaetal., 2001). Second group comprises of segmented taper functions (Maxetal., 1976; Fangetal. 2000; Jiangetal. 2005). Third type includes variable-form taper functions (Kozak, 1988; 2004; Muhairwe, 1999; Bi, 2000; Leeetal., 2003).

    White birch (Betulaplatyphylla) is extensively distributed in northeast China. Currently, there is no taper function for this species in northeast China. A practical stem taper equation is required to estimate wood volume of white birch. Objectives of this study were to evaluate selected existing taper functions and to develop a taper equation for the prediction of diameter, total volume and merchantable volume of white birch.

    1 Materials and methods

    1.1 Data

    Data used in this study were collected from uneven-aged white birch stands in the northwest of the northern slope of Yilehuli Mountains of northeast China. A total of 253 trees covering the existing range of stand conditions and densities were selected for destructive sampling. Before felling, diameter at breast height (D, 1.3 m above ground level) was measured for all trees. Each sample tree was felled to measure total tree height and their diameter near ground, and at 2%, 4%, 6%, 8%, 10%, 15%, 20%, 30%, 40%, 50%, 60%, 70%, 80% and 90% of total height. Measurement intervals along the stem fluctuate from 14 cm to 2.41 m depending upon the total height of the tree. Measurements for two perpendicular diameters (over bark) were taken in each part and arithmetically averaged. Smalian’s formula was used to calculate the log volumes in cubic meters. Stem top was considered as a cone. Total stem volume (over bark) above stump was computed by adding the logs volumes (over bark) and the volume of top section. The data was randomly split into two groups: 191 trees for model fitting and 62 trees for model validation. Summary statistics for tree diameter and total height are shown in Tab.1.

    1.2 Methods

    1.2.1 Functions selected for comparisonEight commonly used taper equations were selected. These models belong to the categories of simple taper function i.e. Sharmaetal. (2001), segmented taper functions i.e. Maxetal. (1976), Fangetal. (2000), and variable form taper functions i.e. Bi (2000), Kozak (2004)-1 and 2, Sharmaetal. (2004), Sharmaetal. (2009). Mathematical expressions of these models are presented in Tab.2.

    Tab.2 Analyzed taper functions①

    1.2.2ModelevaluationTwo goodness-of-fit statistics were used: coefficient of determination (R2) and root mean square error (RMSE). Mean absolute bias (MAB), root mean square error (RMSE), and mean percentage of bias (MPB) were used for validation. The expressions of these statistics are as follows:

    (1)

    (2)

    (3)

    (4)

    Multicollinearity and autocorrelation are two main problems for construction of taper functions. Multicollinearity is the presence of high inter-correlations among predictor variables during analysis of multiple regressions. The existence of multicollinearity in the taper functions was assessed by condition number (CN). CN is square root of the quotient between maximum and minimum eigenvalue of the correlation matrix. Belsley (1991) suggested that there should be no concern about collinearity provided the CN ranges from 5-10, collinearity associated problems are formed if CN values from 30-100 and the CN from 1 000-3 000 signifies a high degree of collinearity related problems. Autocorrelation refers to spatial correlation since taper function requires data collection from multiple observations within each tree (i.e. hierarchical data). Thus a first-order continuous autoregressive error structure CAR(1) was used to model the error terms of the hierarchical data (Lietal., 2010). The taper functions were also evaluated through the use of box and whisker plots ofdresiduals against relative heights along the stem (5%, 15%, 25%, so on up to 95%) and ofvresiduals against diameter classes.

    1.2.3RankingofmodelsA common procedure of rankingmmodels is to assign numbers 1, 2, 3…,mduring comparison of different models. Though the numbers in such procedures show the respective order (descending or ascending) of the model, yet the exact place of a model with reference to other models is not known. For this study, the method proposed by Poudeletal. (2013) was used to get the specific and relative position of each model. The relative rank of the modeliis defined as

    (5)

    WhereRiis the relative rank of the modeli(i=1, 2, 3,…,m),siis the goodness-of-fit statistics produced by modeli,sminis the minimum value ofsi, andsmaxis the maximum value ofsi. The best and the poorest models have relative ranks of 1 andm, respectively in this method. This ranking system was applied forR2, RMSE, MAB and MPB statistics for all variables i.e. diameter and total volume, and average rank value was also calculated.

    2 Results

    Initially, taper functions were fitted with non-liner least squares method and autocorrelation was not taken into account. An example of observed autocorrelation in the model of Kozak (2004)-2 is given in Fig.1. As expected, a strong positive autocorrelation was observed. After a first order continuous autoregressive error structure CAR(1) was incorporated into the model of Kozak (2004)-2, no obvious correlation trend was observed, indicating that autocorrelation can be reduced through CAR(1) (Fig.1).

    Most of the parameters were significant atP<0.05 (Tab.3), with the exception ofb5,b6in function Bi (2000),b2in function Sharmaetal. (2004), andb6in function Kozak (2004)-2. These insignificant parameters will not make any difference to the model. Therefore, taking the values of such parameters as 0, models were refitted.

    The values of coefficient of determination (R2) and root mean squared error (RMSE) for all 8 models are shown in Tab.4. Above 97% of total variance of diameter was explained by five models i.e. Kozak (2004)-2, Fangetal. (2000), Bi (2000), Sharmaetal. (2009), and Maxetal. (1976). However, the models of Bi (2000) and Maxetal. (1976) displayed fairly high multicollinearity. The models of Kozak (2004)-2, Fangetal. (2000) and Maxetal. (1976) were top three models based on RMSE values. The model of Sharmaetal. (2001) showed the poorest performance. Tab.4 also describes the average ranks of 8 models besides the goodness of fit statistics. As a whole, Kozak (2004)-2 equation was ranked as the best model whereas the equation of Sharmaetal. (2001) was the poorest performer. The model of Fangetal. (2000) attained second position with Maxetal. (1976) and Bi (2000) at third and fourth ranks respectively.

    Fig.1 Lagged residuals for the Kozak (2004)-2 model fitted without considering the autocorrelation parameters and using continuous-time autoregressive error structures of first order

    The box plots ofdresiduals versus relative height classes (Fig.2) indicated that the distribution of error along the stem is not same among different taper functions. The models of Sharmaetal. (2001) and Sharmaetal. (2004) overestimated the diameter above 10% of relative height. The model of Sharmaetal. (2009) overestimated the diameter in the middle bole section (10%-90%). The model of Kozak (2004)-1 has non homogeneous distribution of the residuals along different sections of the stem. It underestimates the middle (30%-70%) and overestimates the upper portions (>80%) of the stem. The models of Bi (2000), Maxetal. (1976), Kozak (2004)-2 and Fangetal. (2000) are more accurate in diameter prediction with smaller errors and almost similar residual diameter distribution.

    The box plots ofvresiduals against diameter classes (Fig.3) indicated that the models of Bi (2000), Maxetal. (1976), Kozak (2004)-2, Fangetal. (2000) and Sharmaetal. (2004) showed more accuracy and similar volume residual distribution since the medians and means of prediction errors are mainly scattered near zero. The model of Kozak (2004)-1 underestimated the volume throughout the diameter classes, especially for larger diameter classes (>20 cm). The models of Sharmaetal. (2001) and Sharmaetal. (2009) overestimated the volume throughout the diameter classes, especially for larger diameter classes (>20 cm).

    Validation data was also used to evaluate the performance of the models for the prediction of diameter and total stem volume (Tab.5). According to the ranking, top three models in diameter prediction were Maxetal. (1976), Kozak (2004)-2, and Fangetal. (2000).

    For total volume prediction, the scenario was a bit changed. The models of Kozak (2004)-1, Kozak (2004)-2 and Maxetal. (1976) were the best three models. The model of Kozak (2004)-2 also had a smaller volume prediction error in the lower section below 40% of total height when compared to the models of Kozak (2004)-1 and Maxetal. (1976). It was noticed that the model of Kozak (2004)-2 maintained its position and offered best results followed by the Fangetal. (2000) model in the prediction of diameter and total volume in overall ranking (Tab.5). The model of Sharmaetal. (2001) consistently displayed the poorest results in comparison with all candidate models.

    3 Discussion

    Numerous taper functions have been developed for many species. However, stem taper models for white birch have not been developed in northeast China. In the present study, a total of 8 commonly used stem taper functions from three groups (simple polynomial, segmented and variable form taper functions) were fitted to estimate the stem diameter and total volume of white birch. Autocorrelation and multicollinearity were considered in model fitting process. It should be noted that inclusion of autocorrelation was to improve the interpretation of statistical properties of taper models. There was no substantial difference between the estimation of the models fitted with and without autocorrelation. Multicollinearity is not a decisive factor for selecting a best taper model, however, models with lower CN should be preferred.

    The goodness of fit statistics, validation statistics and box plots ofdandvresiduals put the models of Kozak (2004)-2 and Fangetal. (2000) at the higher position in estimating diameters along the stem and total stem volume for white birch. The model of Kozak (2004)-2 showed slightly better fitting and validation results than the model of Fangetal. (2000). Thus, the model of Kozak (2004)-2 was recommended for predicting diameters and volume of white birch in northeast China.

    Tab.3 Parameter estimates (standard errors in bracket) of taper models for white birch

    Tab.4 Goodness-of-fit statistics, rank of models, and condition number of taper models

    Fig.2 Box plots of d residuals (Y-axis, cm) against relative height classes (X-axis, percent) for different models The boxes represent interquartile ranges with their edges being 25th and 75th percentiles, maximum and minimum diameter over bark prediction errors are represented by the upper and lower small horizontal lines crossing the vertical bars, the plus sign represent the mean of prediction errors for the corresponding relative height classes.

    Fig.3 Residuals box plots of estimated total volume over bark against diameter classes for different models The boxes represent interquartile ranges with their edges being 25th and 75th percentiles, maximum and minimum prediction errors are represented by the upper and lower small horizontal lines crossing the vertical bars, the plus sign represent the mean of prediction errors for the corresponding diameter classes.

    Tab.5 Evaluation statistics with ranking of different taper models in estimating diameter and volume

    The results of this study are similar to those reported by Kozak (2004), Rojoetal. (2005), Antaetal. (2007), Corral-Rivasetal. (2007), Crecente-Campoetal. (2009), Lietal. (2010), Heidarssonetal. (2011), Jiangetal. (2016).

    Kozak (2004) confirmed that the model of Kozak (2004)-2 was the best overall model for 38 species groups. In Galicia (northwestern Spain), 31 taper functions were assessed and the model of Kozak (2004)-2 was recommended forPinuspinaster(Rojoetal., 2005). Antaetal. (2007) reported that the model of Kozak (2004)-2 appeared to be the best option for stem profile description of Pedunculate oak in northwestern Spain. Corral-Rivasetal., (2007) found that the models of Fangetal. (2000) and Kozak (2004)-2 were equally precise in estimatingdat any position of the stem for the five pine species in El Salto, Mexico. Crecente-Campoetal. (2009) compared the models of Fangetal. (2000) and Kozak (2004)-2 and found no clear advantage of one model against the other forPinussylvestrisin Spain. Although Crecente-Campoetal. (2009) found that the condition number of the Fangetal. (2000) model was slightly less than that of the Kozak (2004)-2 model, in our study, the condition number of the Kozak (2004)-2 model was slightly less than that of the Fangetal. (2000) model. Heidarssonetal. (2011) suggested that the model of Kozak (2004)-2 was the best option forPinuscontortaandLarixsibiricain Iceland. In another study that included 10 taper functions to estimate DIB forPicearubensandPinusstrobus, in north america, this model was declared as the most accurate model (Lietal., 2010). Moreover, it served as a base equation for modeling stem taper equation for 11 conifer species in north America (Lietal., 2012) and forBetulapubescensin northwestern Spain (Gómez-Garcíaetal., 2013). Lately, Lumbresetal. (2016) indicated that Kozak (2004)-2 model out of six taper models showed best performance forCeltisluzonica,Diplodiscuspaniculatus,parashoreaandSwieteniamacrophyllain Philippines. Jiangetal. (2016) reported that the model of Kozak (2004)-2 was the best for describing the stem profile ofLarixgmeliniiin northeast China. In our analysis, we found minimal difference in estimating diameter and volume for the models of the Kozak (2004)-2 and Fangetal. (2000). It should be noted that Kozak(2004)-2 model cannot be directly integrated to calculate total and merchantable volume, numerical integration methods or classical volume formulate (e.g. Smalian or Huber) must be used for volume calculation.

    4 Conclusions

    In this study, a taper equation for white birch in northeast China was developed to estimate diameters at any position along the stem, total and merchantable volume. A total of eight well-known taper functions were evaluated: simple taper function of Sharmaetal. (2001), the segmented taper functions proposed by Maxetal. (1976) and Fangetal. (2000), the trignonmetric and variable form taper functions proposed by Bi (2000), Kozak (2004), Sharmaetal. (2004), and Sharmaetal. (2009). It is obvious from the summary statistics and graphical analysis that the model of Kozak (2004)-2 showed the best performance followed by Fangetal. (2000) with a marginal difference in the prediction of diameters along the stem and total stem volume. Thus, the model of Kozak (2004)-2 was recommended for estimating diameter at a specific height and total volume for white birch.

    欧美绝顶高潮抽搐喷水| 国产男人的电影天堂91| 一本久久中文字幕| 久久久久久久久久久丰满 | 熟女电影av网| 欧美日韩精品成人综合77777| 久久精品综合一区二区三区| 亚洲最大成人手机在线| 男人狂女人下面高潮的视频| 一个人看视频在线观看www免费| 99久久久亚洲精品蜜臀av| 精品久久久久久久久亚洲 | 国产av麻豆久久久久久久| 国产精品98久久久久久宅男小说| 午夜福利18| 九色成人免费人妻av| 欧美成人性av电影在线观看| 国产日本99.免费观看| 窝窝影院91人妻| 一个人看的www免费观看视频| 无遮挡黄片免费观看| 五月玫瑰六月丁香| 18禁裸乳无遮挡免费网站照片| 非洲黑人性xxxx精品又粗又长| 老女人水多毛片| 看十八女毛片水多多多| 色综合亚洲欧美另类图片| 69av精品久久久久久| 国产69精品久久久久777片| 麻豆一二三区av精品| 色哟哟哟哟哟哟| 99热只有精品国产| 春色校园在线视频观看| 国产成人a区在线观看| 在线a可以看的网站| 少妇被粗大猛烈的视频| 亚洲七黄色美女视频| 麻豆av噜噜一区二区三区| 天堂av国产一区二区熟女人妻| 久久精品91蜜桃| 久久99热这里只有精品18| 狠狠狠狠99中文字幕| 成人鲁丝片一二三区免费| 午夜日韩欧美国产| 免费看a级黄色片| a级毛片a级免费在线| 午夜爱爱视频在线播放| 成人精品一区二区免费| 成人国产一区最新在线观看| 久久精品综合一区二区三区| 乱系列少妇在线播放| 亚洲avbb在线观看| av福利片在线观看| 高清日韩中文字幕在线| 桃红色精品国产亚洲av| 免费在线观看日本一区| 国产高潮美女av| 精品午夜福利在线看| 嫩草影院入口| 国产大屁股一区二区在线视频| 亚洲欧美日韩东京热| 亚洲精品日韩av片在线观看| 免费人成视频x8x8入口观看| 九九爱精品视频在线观看| 免费无遮挡裸体视频| 国产不卡一卡二| 91在线精品国自产拍蜜月| 久久久国产成人精品二区| 国产精品不卡视频一区二区| 亚洲美女黄片视频| 亚洲av第一区精品v没综合| 成人鲁丝片一二三区免费| 国产午夜精品论理片| 婷婷精品国产亚洲av在线| a级毛片a级免费在线| 免费在线观看成人毛片| 看免费成人av毛片| 热99在线观看视频| 禁无遮挡网站| 精品国内亚洲2022精品成人| 此物有八面人人有两片| 99九九线精品视频在线观看视频| 欧美日韩亚洲国产一区二区在线观看| 国产精品亚洲一级av第二区| 九色成人免费人妻av| 乱系列少妇在线播放| 小蜜桃在线观看免费完整版高清| 久久人人精品亚洲av| 国产精品自产拍在线观看55亚洲| 特大巨黑吊av在线直播| 黄色一级大片看看| 久久久成人免费电影| 午夜老司机福利剧场| 尤物成人国产欧美一区二区三区| 国产免费一级a男人的天堂| 国产黄a三级三级三级人| 能在线免费观看的黄片| 欧美人与善性xxx| 97人妻精品一区二区三区麻豆| 狠狠狠狠99中文字幕| 亚洲男人的天堂狠狠| av福利片在线观看| 免费高清视频大片| 少妇人妻精品综合一区二区 | 三级毛片av免费| 91在线观看av| 午夜a级毛片| 久久午夜福利片| 真实男女啪啪啪动态图| 亚洲专区中文字幕在线| 免费观看人在逋| 国产v大片淫在线免费观看| 看免费成人av毛片| 免费电影在线观看免费观看| 国产真实乱freesex| 人人妻人人看人人澡| 最好的美女福利视频网| 亚洲av熟女| 亚洲四区av| 亚洲美女搞黄在线观看 | 91麻豆精品激情在线观看国产| 午夜免费激情av| 黄色欧美视频在线观看| 波多野结衣高清无吗| 我要看日韩黄色一级片| 久久精品国产鲁丝片午夜精品 | 99热6这里只有精品| 18+在线观看网站| 成人三级黄色视频| 欧美xxxx黑人xx丫x性爽| 乱码一卡2卡4卡精品| 三级国产精品欧美在线观看| 免费观看人在逋| 九九爱精品视频在线观看| 免费av不卡在线播放| 免费av毛片视频| 精品欧美国产一区二区三| 精品久久久久久久人妻蜜臀av| 自拍偷自拍亚洲精品老妇| 两个人视频免费观看高清| 在线播放国产精品三级| 日韩欧美 国产精品| 国产精品精品国产色婷婷| 欧美成人免费av一区二区三区| 国产白丝娇喘喷水9色精品| 丰满的人妻完整版| 国内精品久久久久久久电影| 小说图片视频综合网站| 欧美日韩中文字幕国产精品一区二区三区| 成熟少妇高潮喷水视频| 精品一区二区三区人妻视频| 校园人妻丝袜中文字幕| 高清在线国产一区| 大型黄色视频在线免费观看| 嫩草影院入口| netflix在线观看网站| 国产男靠女视频免费网站| 69av精品久久久久久| 十八禁国产超污无遮挡网站| 男人舔奶头视频| 两个人视频免费观看高清| 中文在线观看免费www的网站| 一区二区三区高清视频在线| 色播亚洲综合网| 久久精品国产鲁丝片午夜精品 | 韩国av在线不卡| 中国美白少妇内射xxxbb| 在线观看一区二区三区| 三级毛片av免费| 日韩国内少妇激情av| 婷婷色综合大香蕉| 毛片女人毛片| 窝窝影院91人妻| 久久国产乱子免费精品| 亚洲va在线va天堂va国产| a级一级毛片免费在线观看| 一级a爱片免费观看的视频| 久久久久国内视频| netflix在线观看网站| 国产主播在线观看一区二区| 午夜福利在线观看吧| 美女被艹到高潮喷水动态| 亚洲欧美日韩无卡精品| 午夜爱爱视频在线播放| 日韩,欧美,国产一区二区三区 | 中文字幕高清在线视频| 久久久久久伊人网av| 可以在线观看的亚洲视频| 91狼人影院| 香蕉av资源在线| 美女 人体艺术 gogo| 少妇高潮的动态图| 99在线人妻在线中文字幕| 又爽又黄无遮挡网站| 国产熟女欧美一区二区| 乱人视频在线观看| 男女那种视频在线观看| 18禁黄网站禁片免费观看直播| 给我免费播放毛片高清在线观看| 日本熟妇午夜| 久久久久久久午夜电影| 天堂影院成人在线观看| 亚洲精品成人久久久久久| 国产精华一区二区三区| 欧美日韩瑟瑟在线播放| 91久久精品国产一区二区三区| 国产精品久久电影中文字幕| av中文乱码字幕在线| 午夜老司机福利剧场| 波多野结衣巨乳人妻| 搡女人真爽免费视频火全软件 | 极品教师在线视频| 亚洲 国产 在线| 性插视频无遮挡在线免费观看| 欧美潮喷喷水| 精品一区二区免费观看| 成年免费大片在线观看| 日本黄大片高清| 最近中文字幕高清免费大全6 | 国产免费av片在线观看野外av| 国产精华一区二区三区| 天天一区二区日本电影三级| 欧美精品国产亚洲| 如何舔出高潮| 99国产极品粉嫩在线观看| www.www免费av| 免费av观看视频| 一进一出好大好爽视频| 国产v大片淫在线免费观看| 免费在线观看影片大全网站| 久久久久国内视频| 亚洲最大成人中文| 黄色视频,在线免费观看| 蜜桃久久精品国产亚洲av| ponron亚洲| 精品久久久久久久末码| 国产午夜精品论理片| 美女高潮喷水抽搐中文字幕| 亚洲不卡免费看| 日韩人妻高清精品专区| 久久午夜亚洲精品久久| 在线观看66精品国产| 嫩草影院精品99| 天堂影院成人在线观看| 五月伊人婷婷丁香| 日韩亚洲欧美综合| 国产视频一区二区在线看| 免费观看人在逋| 联通29元200g的流量卡| 在线免费观看的www视频| 啦啦啦啦在线视频资源| 中文字幕av成人在线电影| 欧美xxxx黑人xx丫x性爽| 欧美日韩国产亚洲二区| 欧美性猛交黑人性爽| 国产大屁股一区二区在线视频| 亚洲欧美日韩无卡精品| 国产中年淑女户外野战色| 国产老妇女一区| 一级毛片久久久久久久久女| 欧美一级a爱片免费观看看| 最新中文字幕久久久久| x7x7x7水蜜桃| 午夜福利高清视频| 日本欧美国产在线视频| 精品不卡国产一区二区三区| 久久亚洲真实| 成人高潮视频无遮挡免费网站| 琪琪午夜伦伦电影理论片6080| 天堂影院成人在线观看| 久久婷婷人人爽人人干人人爱| 色视频www国产| 国产成人a区在线观看| 一a级毛片在线观看| 国产中年淑女户外野战色| 日本-黄色视频高清免费观看| 最近中文字幕高清免费大全6 | 深夜精品福利| 国产 一区 欧美 日韩| 亚洲精品日韩av片在线观看| 桃红色精品国产亚洲av| 女同久久另类99精品国产91| 99国产精品一区二区蜜桃av| 日韩在线高清观看一区二区三区 | 久久草成人影院| 久久热精品热| 麻豆成人午夜福利视频| 久久精品91蜜桃| 久久亚洲真实| 免费无遮挡裸体视频| 免费大片18禁| 亚洲国产日韩欧美精品在线观看| 国产国拍精品亚洲av在线观看| 又爽又黄a免费视频| av国产免费在线观看| 韩国av在线不卡| 一进一出抽搐gif免费好疼| a在线观看视频网站| 亚洲欧美日韩东京热| 乱人视频在线观看| 在线播放无遮挡| 国产欧美日韩精品亚洲av| 尤物成人国产欧美一区二区三区| 搡女人真爽免费视频火全软件 | 乱码一卡2卡4卡精品| 日韩中字成人| 成年人黄色毛片网站| 国语自产精品视频在线第100页| 国内毛片毛片毛片毛片毛片| 中文字幕久久专区| 日韩中字成人| 男人狂女人下面高潮的视频| 精品人妻视频免费看| 18禁黄网站禁片午夜丰满| 夜夜看夜夜爽夜夜摸| 一个人观看的视频www高清免费观看| 欧美激情国产日韩精品一区| 免费观看人在逋| 亚洲午夜理论影院| 国产精品日韩av在线免费观看| 国产色爽女视频免费观看| 亚洲美女视频黄频| 九九爱精品视频在线观看| 97人妻精品一区二区三区麻豆| 久久精品国产亚洲网站| 婷婷精品国产亚洲av在线| 午夜爱爱视频在线播放| 久久热精品热| 三级毛片av免费| 日本成人三级电影网站| 国产精品免费一区二区三区在线| 精品人妻一区二区三区麻豆 | 久久精品影院6| 日本一本二区三区精品| 亚洲精品色激情综合| 久久精品国产鲁丝片午夜精品 | 免费观看精品视频网站| 免费不卡的大黄色大毛片视频在线观看 | 一卡2卡三卡四卡精品乱码亚洲| 无遮挡黄片免费观看| 久久精品国产亚洲网站| 国产三级在线视频| 国产亚洲欧美98| 午夜福利在线在线| 夜夜夜夜夜久久久久| 又粗又爽又猛毛片免费看| 99在线视频只有这里精品首页| 国产精品久久久久久久电影| 俺也久久电影网| 波野结衣二区三区在线| 国模一区二区三区四区视频| 国产亚洲精品久久久久久毛片| 亚洲精华国产精华精| 亚洲色图av天堂| 丝袜美腿在线中文| 国语自产精品视频在线第100页| 99国产精品一区二区蜜桃av| 一个人看的www免费观看视频| 亚洲国产精品成人综合色| 国内精品一区二区在线观看| 亚洲国产精品成人综合色| 亚洲国产精品合色在线| 欧美成人a在线观看| 网址你懂的国产日韩在线| 岛国在线免费视频观看| 色综合色国产| videossex国产| .国产精品久久| 日本 欧美在线| 亚洲精品一卡2卡三卡4卡5卡| 性插视频无遮挡在线免费观看| 免费无遮挡裸体视频| 啪啪无遮挡十八禁网站| 在线观看66精品国产| 欧美xxxx黑人xx丫x性爽| 波野结衣二区三区在线| 男插女下体视频免费在线播放| 全区人妻精品视频| 久久九九热精品免费| 国产极品精品免费视频能看的| 男插女下体视频免费在线播放| 国产精品久久久久久久电影| 99在线视频只有这里精品首页| 国产免费一级a男人的天堂| 99在线视频只有这里精品首页| 悠悠久久av| 亚洲欧美日韩高清专用| 亚洲精品亚洲一区二区| 97超级碰碰碰精品色视频在线观看| 亚洲精品在线观看二区| 亚洲精品456在线播放app | 久久人妻av系列| 国产精品国产三级国产av玫瑰| 真实男女啪啪啪动态图| 亚洲精品粉嫩美女一区| netflix在线观看网站| av在线天堂中文字幕| 搡老熟女国产l中国老女人| 日韩欧美免费精品| 国产精品国产高清国产av| 夜夜爽天天搞| 日本黄色视频三级网站网址| 久9热在线精品视频| 国产女主播在线喷水免费视频网站 | 亚洲欧美激情综合另类| 91av网一区二区| 成人亚洲精品av一区二区| 男女下面进入的视频免费午夜| 别揉我奶头 嗯啊视频| 高清日韩中文字幕在线| 联通29元200g的流量卡| 最近视频中文字幕2019在线8| 91狼人影院| 69人妻影院| 日韩精品中文字幕看吧| 亚洲va在线va天堂va国产| 999久久久精品免费观看国产| 国产精品嫩草影院av在线观看 | 俺也久久电影网| 日本黄大片高清| 一进一出抽搐动态| 深夜a级毛片| 精品99又大又爽又粗少妇毛片 | 国产在线男女| 超碰av人人做人人爽久久| 欧美日韩瑟瑟在线播放| 99riav亚洲国产免费| 国产精品一区二区性色av| 一进一出抽搐动态| 成人三级黄色视频| 精品久久久久久久久久久久久| 国产成年人精品一区二区| 日日摸夜夜添夜夜添小说| 最近视频中文字幕2019在线8| 久久精品国产亚洲av涩爱 | 免费看美女性在线毛片视频| 亚洲av五月六月丁香网| 在线观看午夜福利视频| 老熟妇仑乱视频hdxx| 欧美色欧美亚洲另类二区| 一级a爱片免费观看的视频| 欧美丝袜亚洲另类 | 中文字幕精品亚洲无线码一区| 亚洲自拍偷在线| 欧洲精品卡2卡3卡4卡5卡区| 欧美黑人欧美精品刺激| 亚洲午夜理论影院| 免费人成视频x8x8入口观看| 精品一区二区三区视频在线观看免费| 国产中年淑女户外野战色| 日本色播在线视频| 老师上课跳d突然被开到最大视频| www日本黄色视频网| 九九爱精品视频在线观看| 97超视频在线观看视频| 午夜日韩欧美国产| 亚洲国产精品成人综合色| 一个人看的www免费观看视频| av天堂在线播放| 欧美丝袜亚洲另类 | 99热精品在线国产| 日韩欧美免费精品| 白带黄色成豆腐渣| 18禁裸乳无遮挡免费网站照片| 亚洲国产高清在线一区二区三| 毛片女人毛片| 22中文网久久字幕| 精品午夜福利视频在线观看一区| 在线免费观看的www视频| 成人精品一区二区免费| 69av精品久久久久久| 日韩中文字幕欧美一区二区| 亚洲人成伊人成综合网2020| 久久亚洲精品不卡| 啦啦啦韩国在线观看视频| 国内毛片毛片毛片毛片毛片| 又紧又爽又黄一区二区| 国产美女午夜福利| 欧美bdsm另类| 日韩大尺度精品在线看网址| 极品教师在线免费播放| 国产高清不卡午夜福利| 国产麻豆成人av免费视频| 美女免费视频网站| 久久人妻av系列| 亚洲精品国产成人久久av| 不卡视频在线观看欧美| 久久国内精品自在自线图片| 最好的美女福利视频网| 精品人妻一区二区三区麻豆 | 欧美在线一区亚洲| 国内精品美女久久久久久| 久久久久性生活片| 久久精品国产亚洲av香蕉五月| 精品国内亚洲2022精品成人| а√天堂www在线а√下载| 一区二区三区激情视频| 久久久久性生活片| 色综合亚洲欧美另类图片| 免费一级毛片在线播放高清视频| 久久6这里有精品| 欧美日韩黄片免| 成人鲁丝片一二三区免费| 91麻豆精品激情在线观看国产| 波多野结衣巨乳人妻| 亚洲aⅴ乱码一区二区在线播放| 不卡一级毛片| 亚洲精品456在线播放app | 日韩在线高清观看一区二区三区 | 熟妇人妻久久中文字幕3abv| 美女cb高潮喷水在线观看| 婷婷精品国产亚洲av在线| 亚洲图色成人| 九九热线精品视视频播放| 看十八女毛片水多多多| 国产成人aa在线观看| 色噜噜av男人的天堂激情| 亚洲三级黄色毛片| 亚洲七黄色美女视频| 在线天堂最新版资源| 成人av在线播放网站| eeuss影院久久| 黄色欧美视频在线观看| а√天堂www在线а√下载| 亚洲中文字幕一区二区三区有码在线看| 国产亚洲欧美98| 免费电影在线观看免费观看| 色5月婷婷丁香| 午夜免费激情av| 2021天堂中文幕一二区在线观| 国产在视频线在精品| 我要看日韩黄色一级片| 国产亚洲精品久久久久久毛片| 韩国av在线不卡| 久久久久久久久大av| 欧美日本视频| 午夜老司机福利剧场| 亚洲真实伦在线观看| 乱码一卡2卡4卡精品| 国产精品精品国产色婷婷| 国产视频一区二区在线看| xxxwww97欧美| 久久久久久久久久黄片| 两性午夜刺激爽爽歪歪视频在线观看| 真人一进一出gif抽搐免费| av国产免费在线观看| 国产探花在线观看一区二区| 丝袜美腿在线中文| 国产乱人视频| 国内久久婷婷六月综合欲色啪| 国产精品爽爽va在线观看网站| 日本成人三级电影网站| 日本黄色片子视频| 亚洲18禁久久av| 成人高潮视频无遮挡免费网站| 久久久国产成人免费| 在线观看一区二区三区| 亚洲av中文字字幕乱码综合| 久久午夜福利片| 国产三级在线视频| 精品久久久噜噜| 欧美激情在线99| 亚洲 国产 在线| 又爽又黄a免费视频| 欧美一区二区亚洲| 色哟哟哟哟哟哟| 精品99又大又爽又粗少妇毛片 | 免费无遮挡裸体视频| 热99re8久久精品国产| 久久久久久伊人网av| 国产伦在线观看视频一区| 国内精品宾馆在线| www日本黄色视频网| 天堂av国产一区二区熟女人妻| 久久午夜福利片| 亚洲美女黄片视频| 联通29元200g的流量卡| 天天躁日日操中文字幕| 国产男靠女视频免费网站| 日韩欧美在线二视频| 久久久久久大精品| 久久香蕉精品热| 国产视频内射| 波多野结衣高清作品| 色综合色国产| 日本撒尿小便嘘嘘汇集6| 亚州av有码| 成人国产综合亚洲| 午夜激情欧美在线| 亚洲一级一片aⅴ在线观看| 亚洲,欧美,日韩| av女优亚洲男人天堂| 黄色女人牲交| 国产免费男女视频| 国产成人aa在线观看| 我的女老师完整版在线观看| 天天一区二区日本电影三级| 18禁黄网站禁片午夜丰满| 99久久中文字幕三级久久日本| 国产精品乱码一区二三区的特点| 国产精品一区www在线观看 | 在线国产一区二区在线| 国产亚洲精品久久久com| 在线观看一区二区三区| 在线播放无遮挡| 最近在线观看免费完整版| 国产免费av片在线观看野外av| 久久久久久久久久成人| 熟女人妻精品中文字幕| 免费电影在线观看免费观看| 欧美精品啪啪一区二区三区| 中文字幕精品亚洲无线码一区| 国产成年人精品一区二区| 国产乱人伦免费视频| 亚洲成a人片在线一区二区|