• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Stem Taper Functions for Betula platyphylla in Daxing’anling

    2021-01-05 08:58:50ShahzadMuhammadKhurramHussainAmnaHePeiJiangLichun
    林業(yè)科學 2020年11期

    Shahzad Muhammad Khurram Hussain Amna He Pei Jiang Lichun

    (Key Laboratory of Sustainable Forest Ecosystem Management of Ministry of Education School of Forestry, Northeast Forestry University Harbin 150040)

    Abstract: 【Objective】 Stem taper functions are important components in forest management and planning systems. Currently, there is no taper function for Betula platyphylla in northeast China, therefore, it is necessary to develop the taper function for this species. Eight commonly used taper functions in forestry were compared to evaluate which would provide a better prediction for diameter at a specific height and total volume for B. platyphylla in northeast China.【Method】 The data used in this study were collected from 253 destructively felled sample trees with 3 795 diameter/height measurements in the northwest of the northern slope of Yilehuli Mountains of northeast China. A first-order continuous autoregressive error structure was used to model the error term and account for autocorrelation. Multicollinearity was also evaluated with condition number. Coefficient of determination (R2), mean absolute bias (MAB), root mean square error (RMSE) and mean percentage of bias (MPB) were selected as evaluation criteria of models. Comparison of the taper models was carried out using goodness-of-fit statistics, box plots of diameter and volume residual distributions and validation statistics. 【Result】 1) In terms of model fitting statistics, the models of Kozak (2004)-2, Fang et al. (2000) and Max et al. (1976) were the top three models. The model of Sharma et al. (2001) showed the poorest performance. 2) Based on the box plots of diameter and volume residuals, the models of Bi (2000), Max et al. (1976), Kozak(2004)-2 and Fang et al. (2000) were more accurate in diameter and volume prediction with smaller errors and almost similar residual diameter and volume distribution. The models of Sharma et al. (2001), Sharma et al. (2004), Sharma et al. (2009) and Kozak (2004)-1 had non homogeneous distribution of the diameter residuals along different sections of the stem. 3) Model validation also confirmed that Max et al. (1976), Kozak (2004)-2 and Fang et al. (2000) showed better performances. In general, the model of Kozak (2004)-2 showed consistent performances and was superior to other taper models in predicting diameter and volume.【Conclusion】 Based on the evaluation statistics of fitting and validation, graphic analysis and condition number, the model of Kozak (2004)-2 was recommended for estimating diameter at a specific height, total volume and merchantable volume for B. platyphylla in northeast China.

    Key words: Betula platyphylla; taper; volume; autocorrelation; multicollinearity

    Taper models are one of the essential component in current systems of forest management and planning (Heidarssonetal., 2011). Recently, the estimation of tree volume by using taper equations has gained popularity. As reported in previous studies, taper functions are a valuable tool to estimate the tree contents for a wide range of products. Taper models, owing to their flexibility, are extensively applied in forest inventories to estimate diameter and merchantable stem volume. Merchantable stem volume is of greater concern since it enables the classification of timber products by merchantable dimensions. Additionally, it was indicated by Lietal. (2010) and de-Migueletal. (2012) that taper equations stay ahead of existing volume tables in volume estimation. This benefit is attributed to the ability of taper functions to predict the diameter (over bark or inside bark) accurately at any height along stem. As a result of which, calculation of merchantable volume for any required specification is easily made possible. Besides the prediction of timber volume availability (Zhangetal., 2006), stem taper as a regressor variable, has also been applied to determine the number of growth rings in cross section (Wilhelmsson, 2006) and to evaluate the correct sampling design for the collection of stem diameter data (Newtonetal., 2008).

    Broadly speaking, classification of taper functions exists on the basis of 1) their compatibility with volume equations (Reedetal., 1984); 2) their functional form (Thomasetal., 1991; Muhairweetal., 1994; Sharmaetal., 2001); 3) the origin of these functions such as empirical or geometric (Fangetal., 1999). Principally, taper functions have been arranged into three categories (Diéguez-Arandaetal., 2006). First group contains simple polynomial taper equations (Demaerschalk, 1972; Biging, 1984; Sharmaetal., 2001). Second group comprises of segmented taper functions (Maxetal., 1976; Fangetal. 2000; Jiangetal. 2005). Third type includes variable-form taper functions (Kozak, 1988; 2004; Muhairwe, 1999; Bi, 2000; Leeetal., 2003).

    White birch (Betulaplatyphylla) is extensively distributed in northeast China. Currently, there is no taper function for this species in northeast China. A practical stem taper equation is required to estimate wood volume of white birch. Objectives of this study were to evaluate selected existing taper functions and to develop a taper equation for the prediction of diameter, total volume and merchantable volume of white birch.

    1 Materials and methods

    1.1 Data

    Data used in this study were collected from uneven-aged white birch stands in the northwest of the northern slope of Yilehuli Mountains of northeast China. A total of 253 trees covering the existing range of stand conditions and densities were selected for destructive sampling. Before felling, diameter at breast height (D, 1.3 m above ground level) was measured for all trees. Each sample tree was felled to measure total tree height and their diameter near ground, and at 2%, 4%, 6%, 8%, 10%, 15%, 20%, 30%, 40%, 50%, 60%, 70%, 80% and 90% of total height. Measurement intervals along the stem fluctuate from 14 cm to 2.41 m depending upon the total height of the tree. Measurements for two perpendicular diameters (over bark) were taken in each part and arithmetically averaged. Smalian’s formula was used to calculate the log volumes in cubic meters. Stem top was considered as a cone. Total stem volume (over bark) above stump was computed by adding the logs volumes (over bark) and the volume of top section. The data was randomly split into two groups: 191 trees for model fitting and 62 trees for model validation. Summary statistics for tree diameter and total height are shown in Tab.1.

    1.2 Methods

    1.2.1 Functions selected for comparisonEight commonly used taper equations were selected. These models belong to the categories of simple taper function i.e. Sharmaetal. (2001), segmented taper functions i.e. Maxetal. (1976), Fangetal. (2000), and variable form taper functions i.e. Bi (2000), Kozak (2004)-1 and 2, Sharmaetal. (2004), Sharmaetal. (2009). Mathematical expressions of these models are presented in Tab.2.

    Tab.2 Analyzed taper functions①

    1.2.2ModelevaluationTwo goodness-of-fit statistics were used: coefficient of determination (R2) and root mean square error (RMSE). Mean absolute bias (MAB), root mean square error (RMSE), and mean percentage of bias (MPB) were used for validation. The expressions of these statistics are as follows:

    (1)

    (2)

    (3)

    (4)

    Multicollinearity and autocorrelation are two main problems for construction of taper functions. Multicollinearity is the presence of high inter-correlations among predictor variables during analysis of multiple regressions. The existence of multicollinearity in the taper functions was assessed by condition number (CN). CN is square root of the quotient between maximum and minimum eigenvalue of the correlation matrix. Belsley (1991) suggested that there should be no concern about collinearity provided the CN ranges from 5-10, collinearity associated problems are formed if CN values from 30-100 and the CN from 1 000-3 000 signifies a high degree of collinearity related problems. Autocorrelation refers to spatial correlation since taper function requires data collection from multiple observations within each tree (i.e. hierarchical data). Thus a first-order continuous autoregressive error structure CAR(1) was used to model the error terms of the hierarchical data (Lietal., 2010). The taper functions were also evaluated through the use of box and whisker plots ofdresiduals against relative heights along the stem (5%, 15%, 25%, so on up to 95%) and ofvresiduals against diameter classes.

    1.2.3RankingofmodelsA common procedure of rankingmmodels is to assign numbers 1, 2, 3…,mduring comparison of different models. Though the numbers in such procedures show the respective order (descending or ascending) of the model, yet the exact place of a model with reference to other models is not known. For this study, the method proposed by Poudeletal. (2013) was used to get the specific and relative position of each model. The relative rank of the modeliis defined as

    (5)

    WhereRiis the relative rank of the modeli(i=1, 2, 3,…,m),siis the goodness-of-fit statistics produced by modeli,sminis the minimum value ofsi, andsmaxis the maximum value ofsi. The best and the poorest models have relative ranks of 1 andm, respectively in this method. This ranking system was applied forR2, RMSE, MAB and MPB statistics for all variables i.e. diameter and total volume, and average rank value was also calculated.

    2 Results

    Initially, taper functions were fitted with non-liner least squares method and autocorrelation was not taken into account. An example of observed autocorrelation in the model of Kozak (2004)-2 is given in Fig.1. As expected, a strong positive autocorrelation was observed. After a first order continuous autoregressive error structure CAR(1) was incorporated into the model of Kozak (2004)-2, no obvious correlation trend was observed, indicating that autocorrelation can be reduced through CAR(1) (Fig.1).

    Most of the parameters were significant atP<0.05 (Tab.3), with the exception ofb5,b6in function Bi (2000),b2in function Sharmaetal. (2004), andb6in function Kozak (2004)-2. These insignificant parameters will not make any difference to the model. Therefore, taking the values of such parameters as 0, models were refitted.

    The values of coefficient of determination (R2) and root mean squared error (RMSE) for all 8 models are shown in Tab.4. Above 97% of total variance of diameter was explained by five models i.e. Kozak (2004)-2, Fangetal. (2000), Bi (2000), Sharmaetal. (2009), and Maxetal. (1976). However, the models of Bi (2000) and Maxetal. (1976) displayed fairly high multicollinearity. The models of Kozak (2004)-2, Fangetal. (2000) and Maxetal. (1976) were top three models based on RMSE values. The model of Sharmaetal. (2001) showed the poorest performance. Tab.4 also describes the average ranks of 8 models besides the goodness of fit statistics. As a whole, Kozak (2004)-2 equation was ranked as the best model whereas the equation of Sharmaetal. (2001) was the poorest performer. The model of Fangetal. (2000) attained second position with Maxetal. (1976) and Bi (2000) at third and fourth ranks respectively.

    Fig.1 Lagged residuals for the Kozak (2004)-2 model fitted without considering the autocorrelation parameters and using continuous-time autoregressive error structures of first order

    The box plots ofdresiduals versus relative height classes (Fig.2) indicated that the distribution of error along the stem is not same among different taper functions. The models of Sharmaetal. (2001) and Sharmaetal. (2004) overestimated the diameter above 10% of relative height. The model of Sharmaetal. (2009) overestimated the diameter in the middle bole section (10%-90%). The model of Kozak (2004)-1 has non homogeneous distribution of the residuals along different sections of the stem. It underestimates the middle (30%-70%) and overestimates the upper portions (>80%) of the stem. The models of Bi (2000), Maxetal. (1976), Kozak (2004)-2 and Fangetal. (2000) are more accurate in diameter prediction with smaller errors and almost similar residual diameter distribution.

    The box plots ofvresiduals against diameter classes (Fig.3) indicated that the models of Bi (2000), Maxetal. (1976), Kozak (2004)-2, Fangetal. (2000) and Sharmaetal. (2004) showed more accuracy and similar volume residual distribution since the medians and means of prediction errors are mainly scattered near zero. The model of Kozak (2004)-1 underestimated the volume throughout the diameter classes, especially for larger diameter classes (>20 cm). The models of Sharmaetal. (2001) and Sharmaetal. (2009) overestimated the volume throughout the diameter classes, especially for larger diameter classes (>20 cm).

    Validation data was also used to evaluate the performance of the models for the prediction of diameter and total stem volume (Tab.5). According to the ranking, top three models in diameter prediction were Maxetal. (1976), Kozak (2004)-2, and Fangetal. (2000).

    For total volume prediction, the scenario was a bit changed. The models of Kozak (2004)-1, Kozak (2004)-2 and Maxetal. (1976) were the best three models. The model of Kozak (2004)-2 also had a smaller volume prediction error in the lower section below 40% of total height when compared to the models of Kozak (2004)-1 and Maxetal. (1976). It was noticed that the model of Kozak (2004)-2 maintained its position and offered best results followed by the Fangetal. (2000) model in the prediction of diameter and total volume in overall ranking (Tab.5). The model of Sharmaetal. (2001) consistently displayed the poorest results in comparison with all candidate models.

    3 Discussion

    Numerous taper functions have been developed for many species. However, stem taper models for white birch have not been developed in northeast China. In the present study, a total of 8 commonly used stem taper functions from three groups (simple polynomial, segmented and variable form taper functions) were fitted to estimate the stem diameter and total volume of white birch. Autocorrelation and multicollinearity were considered in model fitting process. It should be noted that inclusion of autocorrelation was to improve the interpretation of statistical properties of taper models. There was no substantial difference between the estimation of the models fitted with and without autocorrelation. Multicollinearity is not a decisive factor for selecting a best taper model, however, models with lower CN should be preferred.

    The goodness of fit statistics, validation statistics and box plots ofdandvresiduals put the models of Kozak (2004)-2 and Fangetal. (2000) at the higher position in estimating diameters along the stem and total stem volume for white birch. The model of Kozak (2004)-2 showed slightly better fitting and validation results than the model of Fangetal. (2000). Thus, the model of Kozak (2004)-2 was recommended for predicting diameters and volume of white birch in northeast China.

    Tab.3 Parameter estimates (standard errors in bracket) of taper models for white birch

    Tab.4 Goodness-of-fit statistics, rank of models, and condition number of taper models

    Fig.2 Box plots of d residuals (Y-axis, cm) against relative height classes (X-axis, percent) for different models The boxes represent interquartile ranges with their edges being 25th and 75th percentiles, maximum and minimum diameter over bark prediction errors are represented by the upper and lower small horizontal lines crossing the vertical bars, the plus sign represent the mean of prediction errors for the corresponding relative height classes.

    Fig.3 Residuals box plots of estimated total volume over bark against diameter classes for different models The boxes represent interquartile ranges with their edges being 25th and 75th percentiles, maximum and minimum prediction errors are represented by the upper and lower small horizontal lines crossing the vertical bars, the plus sign represent the mean of prediction errors for the corresponding diameter classes.

    Tab.5 Evaluation statistics with ranking of different taper models in estimating diameter and volume

    The results of this study are similar to those reported by Kozak (2004), Rojoetal. (2005), Antaetal. (2007), Corral-Rivasetal. (2007), Crecente-Campoetal. (2009), Lietal. (2010), Heidarssonetal. (2011), Jiangetal. (2016).

    Kozak (2004) confirmed that the model of Kozak (2004)-2 was the best overall model for 38 species groups. In Galicia (northwestern Spain), 31 taper functions were assessed and the model of Kozak (2004)-2 was recommended forPinuspinaster(Rojoetal., 2005). Antaetal. (2007) reported that the model of Kozak (2004)-2 appeared to be the best option for stem profile description of Pedunculate oak in northwestern Spain. Corral-Rivasetal., (2007) found that the models of Fangetal. (2000) and Kozak (2004)-2 were equally precise in estimatingdat any position of the stem for the five pine species in El Salto, Mexico. Crecente-Campoetal. (2009) compared the models of Fangetal. (2000) and Kozak (2004)-2 and found no clear advantage of one model against the other forPinussylvestrisin Spain. Although Crecente-Campoetal. (2009) found that the condition number of the Fangetal. (2000) model was slightly less than that of the Kozak (2004)-2 model, in our study, the condition number of the Kozak (2004)-2 model was slightly less than that of the Fangetal. (2000) model. Heidarssonetal. (2011) suggested that the model of Kozak (2004)-2 was the best option forPinuscontortaandLarixsibiricain Iceland. In another study that included 10 taper functions to estimate DIB forPicearubensandPinusstrobus, in north america, this model was declared as the most accurate model (Lietal., 2010). Moreover, it served as a base equation for modeling stem taper equation for 11 conifer species in north America (Lietal., 2012) and forBetulapubescensin northwestern Spain (Gómez-Garcíaetal., 2013). Lately, Lumbresetal. (2016) indicated that Kozak (2004)-2 model out of six taper models showed best performance forCeltisluzonica,Diplodiscuspaniculatus,parashoreaandSwieteniamacrophyllain Philippines. Jiangetal. (2016) reported that the model of Kozak (2004)-2 was the best for describing the stem profile ofLarixgmeliniiin northeast China. In our analysis, we found minimal difference in estimating diameter and volume for the models of the Kozak (2004)-2 and Fangetal. (2000). It should be noted that Kozak(2004)-2 model cannot be directly integrated to calculate total and merchantable volume, numerical integration methods or classical volume formulate (e.g. Smalian or Huber) must be used for volume calculation.

    4 Conclusions

    In this study, a taper equation for white birch in northeast China was developed to estimate diameters at any position along the stem, total and merchantable volume. A total of eight well-known taper functions were evaluated: simple taper function of Sharmaetal. (2001), the segmented taper functions proposed by Maxetal. (1976) and Fangetal. (2000), the trignonmetric and variable form taper functions proposed by Bi (2000), Kozak (2004), Sharmaetal. (2004), and Sharmaetal. (2009). It is obvious from the summary statistics and graphical analysis that the model of Kozak (2004)-2 showed the best performance followed by Fangetal. (2000) with a marginal difference in the prediction of diameters along the stem and total stem volume. Thus, the model of Kozak (2004)-2 was recommended for estimating diameter at a specific height and total volume for white birch.

    秋霞在线观看毛片| 熟妇人妻不卡中文字幕| 两个人免费观看高清视频| 美女高潮到喷水免费观看| 亚洲一区二区三区欧美精品| 欧美日韩成人在线一区二区| 欧美日韩成人在线一区二区| 黑人欧美特级aaaaaa片| www日本在线高清视频| 免费黄网站久久成人精品| 另类亚洲欧美激情| 久久久久精品人妻al黑| 高清视频免费观看一区二区| 免费看不卡的av| 国产又爽黄色视频| av在线app专区| 欧美在线黄色| 欧美97在线视频| 久久精品熟女亚洲av麻豆精品| 另类亚洲欧美激情| 久久久久久久久久人人人人人人| 成人亚洲欧美一区二区av| 老汉色av国产亚洲站长工具| 精品视频人人做人人爽| 久久久久久久国产电影| 亚洲精品一区蜜桃| 精品人妻一区二区三区麻豆| 国产成人欧美| 国产成人欧美| 久久久a久久爽久久v久久| 久久精品熟女亚洲av麻豆精品| 宅男免费午夜| 在线天堂中文资源库| 精品国产一区二区三区久久久樱花| 制服丝袜香蕉在线| 国产精品国产三级专区第一集| 交换朋友夫妻互换小说| 最黄视频免费看| 日本av手机在线免费观看| 三级国产精品片| 日日啪夜夜爽| kizo精华| 丝袜人妻中文字幕| 天美传媒精品一区二区| 18禁动态无遮挡网站| 国产又色又爽无遮挡免| 亚洲人成电影观看| 国产av国产精品国产| 日韩中文字幕欧美一区二区 | av不卡在线播放| 精品99又大又爽又粗少妇毛片| 捣出白浆h1v1| 亚洲欧洲国产日韩| 日韩欧美精品免费久久| 久久国产精品男人的天堂亚洲| 日本免费在线观看一区| 少妇的丰满在线观看| 一级毛片我不卡| 97在线人人人人妻| 天堂中文最新版在线下载| 日韩大片免费观看网站| 色婷婷久久久亚洲欧美| av视频免费观看在线观看| 男的添女的下面高潮视频| 久久久久国产一级毛片高清牌| 一级毛片我不卡| 精品亚洲成国产av| 纵有疾风起免费观看全集完整版| 亚洲av.av天堂| 美女福利国产在线| 午夜福利视频在线观看免费| 精品国产乱码久久久久久男人| 美女国产视频在线观看| av女优亚洲男人天堂| 成年女人在线观看亚洲视频| 亚洲精品自拍成人| 黑人欧美特级aaaaaa片| 老汉色∧v一级毛片| 亚洲精品美女久久久久99蜜臀 | 欧美精品一区二区大全| 国产亚洲最大av| 国产精品国产三级国产专区5o| 女的被弄到高潮叫床怎么办| 人体艺术视频欧美日本| 亚洲精品国产一区二区精华液| 丝袜脚勾引网站| 两个人免费观看高清视频| 亚洲av国产av综合av卡| 一区二区三区四区激情视频| 国产乱人偷精品视频| 国产男女超爽视频在线观看| 777米奇影视久久| 免费日韩欧美在线观看| 18+在线观看网站| 亚洲av中文av极速乱| 国产人伦9x9x在线观看 | 成人国产麻豆网| 91精品国产国语对白视频| 成年av动漫网址| 国产高清不卡午夜福利| 少妇的丰满在线观看| 亚洲一区中文字幕在线| kizo精华| 精品一区二区三区四区五区乱码 | 国产成人免费观看mmmm| 97精品久久久久久久久久精品| 宅男免费午夜| av免费观看日本| 国产av国产精品国产| 丝瓜视频免费看黄片| 99精国产麻豆久久婷婷| 在线观看三级黄色| 下体分泌物呈黄色| 国产一区二区三区综合在线观看| 亚洲一级一片aⅴ在线观看| 国产精品嫩草影院av在线观看| 久久婷婷青草| 国产熟女午夜一区二区三区| 免费在线观看视频国产中文字幕亚洲 | 久久精品国产亚洲av天美| 人人妻人人澡人人爽人人夜夜| 精品一区二区免费观看| a 毛片基地| 国产精品不卡视频一区二区| 精品一区二区三区四区五区乱码 | 久久久久视频综合| 国产精品一二三区在线看| 亚洲国产日韩一区二区| 少妇的丰满在线观看| 午夜激情av网站| 久久亚洲国产成人精品v| 欧美日韩精品成人综合77777| 毛片一级片免费看久久久久| 成年女人在线观看亚洲视频| 日韩中字成人| 热99国产精品久久久久久7| 午夜福利乱码中文字幕| 免费在线观看黄色视频的| 精品国产国语对白av| 一级爰片在线观看| 制服诱惑二区| 精品久久久精品久久久| 91成人精品电影| 免费大片黄手机在线观看| 99国产综合亚洲精品| 亚洲一码二码三码区别大吗| 国产精品无大码| 69精品国产乱码久久久| 中国三级夫妇交换| 国产视频首页在线观看| 我要看黄色一级片免费的| 狠狠精品人妻久久久久久综合| 国产不卡av网站在线观看| 肉色欧美久久久久久久蜜桃| 亚洲欧洲国产日韩| 精品少妇久久久久久888优播| 亚洲精品第二区| 在线观看一区二区三区激情| 国产高清不卡午夜福利| 国产欧美日韩综合在线一区二区| 制服人妻中文乱码| 国产 精品1| 巨乳人妻的诱惑在线观看| 你懂的网址亚洲精品在线观看| 欧美日韩亚洲国产一区二区在线观看 | 久久精品夜色国产| 欧美最新免费一区二区三区| 免费av中文字幕在线| 国产精品久久久久久久久免| 成人毛片a级毛片在线播放| 国产高清国产精品国产三级| av在线app专区| 一级片免费观看大全| 最近中文字幕高清免费大全6| 新久久久久国产一级毛片| 成人毛片60女人毛片免费| 国产综合精华液| 女人高潮潮喷娇喘18禁视频| 只有这里有精品99| 国产精品嫩草影院av在线观看| 久久亚洲国产成人精品v| 一区二区av电影网| 久久人人爽人人片av| 日韩熟女老妇一区二区性免费视频| 亚洲国产欧美在线一区| 免费看av在线观看网站| 日本-黄色视频高清免费观看| 成人18禁高潮啪啪吃奶动态图| 国产乱来视频区| 色94色欧美一区二区| 国产男女内射视频| 亚洲av在线观看美女高潮| 欧美精品人与动牲交sv欧美| 一级毛片我不卡| 亚洲视频免费观看视频| 亚洲欧美成人综合另类久久久| 亚洲av免费高清在线观看| 久久亚洲国产成人精品v| 日韩一卡2卡3卡4卡2021年| 最近2019中文字幕mv第一页| 美女脱内裤让男人舔精品视频| 欧美另类一区| av在线老鸭窝| 少妇被粗大猛烈的视频| 精品少妇一区二区三区视频日本电影 | 久热这里只有精品99| 亚洲天堂av无毛| 超碰成人久久| 99国产精品免费福利视频| 亚洲av.av天堂| 亚洲三区欧美一区| 中文天堂在线官网| 精品第一国产精品| 国产精品久久久久久精品古装| 丝袜美腿诱惑在线| 少妇猛男粗大的猛烈进出视频| 青春草视频在线免费观看| 69精品国产乱码久久久| 秋霞在线观看毛片| 亚洲精品aⅴ在线观看| 一二三四中文在线观看免费高清| 免费看不卡的av| 精品一区二区三区四区五区乱码 | 黄片播放在线免费| 国产又爽黄色视频| 美女国产视频在线观看| 久久久久久人人人人人| 国产精品偷伦视频观看了| 国语对白做爰xxxⅹ性视频网站| 亚洲视频免费观看视频| 自拍欧美九色日韩亚洲蝌蚪91| 免费看av在线观看网站| 亚洲av中文av极速乱| 国产片内射在线| 亚洲av免费高清在线观看| 亚洲国产日韩一区二区| 免费av中文字幕在线| 精品亚洲乱码少妇综合久久| 观看av在线不卡| 亚洲av免费高清在线观看| 欧美激情极品国产一区二区三区| 亚洲av电影在线观看一区二区三区| 丝袜喷水一区| 日韩一卡2卡3卡4卡2021年| 黄网站色视频无遮挡免费观看| 中文字幕另类日韩欧美亚洲嫩草| 在线观看免费高清a一片| 久久婷婷青草| 亚洲国产欧美在线一区| videos熟女内射| 大香蕉久久成人网| 国产 精品1| 国产av精品麻豆| 久久综合国产亚洲精品| 久久精品aⅴ一区二区三区四区 | 在线亚洲精品国产二区图片欧美| 中文欧美无线码| 热99国产精品久久久久久7| 国产一区二区激情短视频 | 国产欧美亚洲国产| 亚洲欧洲精品一区二区精品久久久 | 免费看av在线观看网站| 人成视频在线观看免费观看| 丝袜美足系列| 亚洲精品久久午夜乱码| 国产成人免费观看mmmm| 人妻人人澡人人爽人人| 乱人伦中国视频| 美女脱内裤让男人舔精品视频| 成人国产av品久久久| av.在线天堂| 亚洲一级一片aⅴ在线观看| 亚洲四区av| 精品视频人人做人人爽| 一级,二级,三级黄色视频| 国产日韩一区二区三区精品不卡| 国产亚洲精品第一综合不卡| 日韩av在线免费看完整版不卡| 综合色丁香网| 蜜桃在线观看..| 国产一区亚洲一区在线观看| 精品亚洲成国产av| 精品久久久久久电影网| 亚洲av综合色区一区| 亚洲av欧美aⅴ国产| 黄色毛片三级朝国网站| 在线天堂中文资源库| 国产视频首页在线观看| av视频免费观看在线观看| 中文字幕色久视频| 精品99又大又爽又粗少妇毛片| 免费人妻精品一区二区三区视频| 777久久人妻少妇嫩草av网站| 国产精品av久久久久免费| 亚洲国产精品一区三区| 宅男免费午夜| 久久午夜综合久久蜜桃| 久久久欧美国产精品| 久久久国产一区二区| 日日啪夜夜爽| 亚洲综合色惰| 另类亚洲欧美激情| 亚洲欧美精品综合一区二区三区 | 这个男人来自地球电影免费观看 | 国产亚洲av片在线观看秒播厂| 婷婷色综合大香蕉| 婷婷成人精品国产| 亚洲天堂av无毛| 国产精品国产三级国产专区5o| 欧美精品一区二区大全| 欧美日韩精品网址| 美女大奶头黄色视频| 又黄又粗又硬又大视频| 丝袜美腿诱惑在线| 最近手机中文字幕大全| 人体艺术视频欧美日本| 亚洲成人手机| 国产免费现黄频在线看| 精品卡一卡二卡四卡免费| 美女高潮到喷水免费观看| 人人妻人人添人人爽欧美一区卜| 中文字幕人妻丝袜一区二区 | 久久久久国产精品人妻一区二区| 男的添女的下面高潮视频| 日本欧美国产在线视频| 亚洲国产精品一区二区三区在线| 2021少妇久久久久久久久久久| 色94色欧美一区二区| 亚洲,一卡二卡三卡| 久久亚洲国产成人精品v| 精品一区在线观看国产| 午夜福利一区二区在线看| av网站在线播放免费| 国产精品麻豆人妻色哟哟久久| 亚洲国产av新网站| 新久久久久国产一级毛片| 亚洲av成人精品一二三区| 丝袜在线中文字幕| 26uuu在线亚洲综合色| 婷婷成人精品国产| 看非洲黑人一级黄片| 婷婷成人精品国产| 欧美日韩视频精品一区| 中文字幕亚洲精品专区| 久久久久精品久久久久真实原创| www.自偷自拍.com| 性少妇av在线| 亚洲少妇的诱惑av| 亚洲av男天堂| 在线观看一区二区三区激情| 国产亚洲欧美精品永久| 在线观看免费视频网站a站| 2018国产大陆天天弄谢| 久久婷婷青草| 欧美精品av麻豆av| 欧美老熟妇乱子伦牲交| 青青草视频在线视频观看| 亚洲,欧美精品.| av天堂久久9| 亚洲欧美成人精品一区二区| 国产日韩一区二区三区精品不卡| 99re6热这里在线精品视频| 欧美日韩视频高清一区二区三区二| 熟女av电影| 青春草亚洲视频在线观看| 少妇的逼水好多| 男女边吃奶边做爰视频| kizo精华| 久久99热这里只频精品6学生| 高清视频免费观看一区二区| 日本av手机在线免费观看| 久久精品国产亚洲av涩爱| 天美传媒精品一区二区| 女性生殖器流出的白浆| 精品久久久精品久久久| 中文字幕人妻丝袜制服| 亚洲欧美中文字幕日韩二区| 视频在线观看一区二区三区| 一区二区三区激情视频| 99香蕉大伊视频| 亚洲国产成人一精品久久久| 日韩制服骚丝袜av| 一个人免费看片子| 国产男女内射视频| 亚洲精品一二三| 成人漫画全彩无遮挡| 久久av网站| 色视频在线一区二区三区| 国产一区二区三区综合在线观看| 精品一区在线观看国产| 久久精品国产a三级三级三级| freevideosex欧美| 少妇猛男粗大的猛烈进出视频| 久久婷婷青草| 国产一区二区三区av在线| 精品久久久精品久久久| 久久毛片免费看一区二区三区| 日韩制服骚丝袜av| 丝袜脚勾引网站| 亚洲人成77777在线视频| 精品久久蜜臀av无| 中文字幕亚洲精品专区| 欧美精品人与动牲交sv欧美| 国产免费视频播放在线视频| 秋霞伦理黄片| 26uuu在线亚洲综合色| 亚洲欧美精品综合一区二区三区 | 成人国产av品久久久| 国产成人精品婷婷| 女的被弄到高潮叫床怎么办| 亚洲av国产av综合av卡| 国语对白做爰xxxⅹ性视频网站| 黄色配什么色好看| 亚洲男人天堂网一区| 中国三级夫妇交换| 国产精品 欧美亚洲| 伊人久久国产一区二区| 一区二区av电影网| 国产精品嫩草影院av在线观看| 亚洲中文av在线| 亚洲情色 制服丝袜| 国产av一区二区精品久久| 欧美日韩亚洲国产一区二区在线观看 | 久久久久视频综合| 97人妻天天添夜夜摸| 久久久久国产网址| 2018国产大陆天天弄谢| 午夜精品国产一区二区电影| 欧美精品人与动牲交sv欧美| 毛片一级片免费看久久久久| 亚洲人成网站在线观看播放| 美女国产视频在线观看| 热re99久久精品国产66热6| 美女脱内裤让男人舔精品视频| 免费观看性生交大片5| 久久婷婷青草| 国产一区二区在线观看av| 一区二区三区激情视频| 男女下面插进去视频免费观看| 丝袜美足系列| 99re6热这里在线精品视频| 一二三四在线观看免费中文在| 女人久久www免费人成看片| 丰满少妇做爰视频| 久久久久久久久久久久大奶| 婷婷色av中文字幕| 色婷婷av一区二区三区视频| 久久这里有精品视频免费| 久久久久人妻精品一区果冻| 成年人免费黄色播放视频| 精品卡一卡二卡四卡免费| 亚洲国产精品一区二区三区在线| 黄网站色视频无遮挡免费观看| 日韩中字成人| 亚洲欧美色中文字幕在线| av一本久久久久| 国产一区二区三区综合在线观看| 人妻人人澡人人爽人人| 日韩av在线免费看完整版不卡| 免费看av在线观看网站| 国产成人免费观看mmmm| 少妇被粗大的猛进出69影院| 中文字幕av电影在线播放| 日本免费在线观看一区| 韩国av在线不卡| 最新中文字幕久久久久| 一级爰片在线观看| 亚洲情色 制服丝袜| 色94色欧美一区二区| 老司机亚洲免费影院| 免费高清在线观看视频在线观看| 久久久久久久国产电影| 亚洲综合色网址| 亚洲视频免费观看视频| 午夜福利视频精品| 高清黄色对白视频在线免费看| 亚洲三区欧美一区| 日本vs欧美在线观看视频| h视频一区二区三区| 美女xxoo啪啪120秒动态图| 亚洲中文av在线| 99久久精品国产国产毛片| 欧美精品人与动牲交sv欧美| 晚上一个人看的免费电影| 99热网站在线观看| av视频免费观看在线观看| 亚洲,一卡二卡三卡| 免费观看在线日韩| 日韩中文字幕欧美一区二区 | 超色免费av| 999久久久国产精品视频| 各种免费的搞黄视频| 18禁国产床啪视频网站| 色播在线永久视频| 永久免费av网站大全| 天堂俺去俺来也www色官网| 日韩制服骚丝袜av| 午夜福利一区二区在线看| 亚洲精品av麻豆狂野| 国产av码专区亚洲av| 久久人人爽人人片av| 日本wwww免费看| 精品一区二区三卡| 免费观看性生交大片5| 狠狠婷婷综合久久久久久88av| 一边摸一边做爽爽视频免费| 菩萨蛮人人尽说江南好唐韦庄| 久热这里只有精品99| 免费观看无遮挡的男女| 边亲边吃奶的免费视频| 中文字幕亚洲精品专区| 熟女少妇亚洲综合色aaa.| 日本黄色日本黄色录像| 亚洲精品日本国产第一区| 男人操女人黄网站| 天天影视国产精品| 天美传媒精品一区二区| 国产成人精品久久久久久| 亚洲精品在线美女| 久久久久视频综合| 91精品三级在线观看| 超碰成人久久| 哪个播放器可以免费观看大片| 波多野结衣av一区二区av| 亚洲av电影在线观看一区二区三区| 久久国产精品大桥未久av| 精品少妇一区二区三区视频日本电影 | 免费高清在线观看视频在线观看| 亚洲少妇的诱惑av| 久久热在线av| 黄频高清免费视频| 婷婷色av中文字幕| 亚洲综合色网址| 成年人免费黄色播放视频| 成年人午夜在线观看视频| 日本色播在线视频| 男人添女人高潮全过程视频| 啦啦啦在线免费观看视频4| 纵有疾风起免费观看全集完整版| 久久久久久久国产电影| 黑人猛操日本美女一级片| 国产白丝娇喘喷水9色精品| 黄色视频在线播放观看不卡| 亚洲欧洲国产日韩| 免费看不卡的av| 丰满少妇做爰视频| 成人手机av| 日本欧美视频一区| 久久精品久久精品一区二区三区| 亚洲av日韩在线播放| 久久久久久久大尺度免费视频| av福利片在线| 日本91视频免费播放| 日韩三级伦理在线观看| 亚洲欧美一区二区三区国产| 美女午夜性视频免费| 中国三级夫妇交换| 亚洲欧美色中文字幕在线| 国产男女内射视频| 午夜福利一区二区在线看| 中国国产av一级| 亚洲在久久综合| 亚洲精品久久午夜乱码| 大香蕉久久网| 午夜91福利影院| av.在线天堂| 777久久人妻少妇嫩草av网站| 国产极品天堂在线| 欧美日韩亚洲高清精品| 亚洲国产av影院在线观看| tube8黄色片| 色哟哟·www| 1024香蕉在线观看| xxxhd国产人妻xxx| 成人亚洲精品一区在线观看| 一本久久精品| 美女大奶头黄色视频| 亚洲精品在线美女| 国产国语露脸激情在线看| 91成人精品电影| 欧美另类一区| 国产在线视频一区二区| 欧美日韩av久久| 久久久久久伊人网av| 久久av网站| av女优亚洲男人天堂| 亚洲国产av影院在线观看| 国产精品不卡视频一区二区| 欧美国产精品va在线观看不卡| 久久久久精品久久久久真实原创| 免费看不卡的av| 2021少妇久久久久久久久久久| 精品国产乱码久久久久久小说| kizo精华| 日本欧美国产在线视频| 成人国产麻豆网| 97在线视频观看| 亚洲成人av在线免费| 丰满饥渴人妻一区二区三| 2018国产大陆天天弄谢| 久久久久久久久久人人人人人人| 国产精品久久久久久精品古装| 久久久国产一区二区| av有码第一页| 麻豆精品久久久久久蜜桃| 一本—道久久a久久精品蜜桃钙片| 99国产精品免费福利视频| 亚洲欧美精品综合一区二区三区 | 国产精品久久久久久精品电影小说| 日韩制服骚丝袜av| 精品少妇黑人巨大在线播放| 亚洲欧美中文字幕日韩二区| 七月丁香在线播放| 黄色配什么色好看| 青春草国产在线视频|