• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    耐洗型疏水疏油絲綢織物的制備及性能研究

    2020-12-28 02:02:36DOKhaiLy鐘申潔徐浪左甜易玲敏
    絲綢 2020年12期

    DO Khai Ly 鐘申潔 徐浪 左甜 易玲敏

    摘要: 目前所制備的疏水疏油絲綢織物大多難以同時(shí)滿足疏水疏油及耐洗性,或制備過程過于復(fù)雜。因此,文章提出在絲綢表面浸涂一層疏水改性的二氧化硅納米粒子以提供一定的粗糙度,隨之將聚(偏氟乙烯-六氟丙烯)溶液噴涂于其上以提供低表面能,兩者的協(xié)同作用可使絲綢織物具有高度的疏水疏油性和良好的耐洗性能。結(jié)果顯示,通過這一簡(jiǎn)單易實(shí)施的兩步法,制備所得絲綢織物表面的水接觸角高達(dá)149.5°、滾動(dòng)角小至5.5°,色拉油的接觸角可達(dá)132°,表現(xiàn)出高度的疏水疏油性。經(jīng)20次標(biāo)準(zhǔn)洗滌后,水接觸角仍在140°以上,且滾動(dòng)角小于10°,表現(xiàn)出優(yōu)異的耐洗色牢度。

    關(guān)鍵詞: 絲綢織物;疏水;疏油;耐洗牢度;疏水改性SiO2

    中圖分類號(hào): TS195.6 文獻(xiàn)標(biāo)志碼: A 文章編號(hào): 10017003(2020)12002608

    引用頁碼: 121105 DOI: 10.3969/j.issn.1001-7003.2020.12.005(篇序)

    Preparation of hydrophobic and oleophobic silk fabric with good washing durabilityand research on its performance

    DO Khai Ly, ZHONG Shenjie, XU Lang, ZUO Tian, YI Lingmin

    (a.College of Textile Science and Engineering; b.Key Laboratory of Advanced Textile Materials & Manufacturing Technology,Ministry of Education; c.Engineering Research Center for Eco-Dyeing & Finishing of Textiles, Ministry of Education,Zhejiang Sci-Tech University, Hangzhou 310018, China)

    Abstract: It is difficult for current hydrophobic and oleophobic silk fabrics to meet hydrophobic and oleophobic characteristics as well as washing durability at the same time, or the preparation process is too complex. Thus, in this study, we proposed to coat hydrophobic modified silica nanoparticles on the fiber surface to provide certain roughness, and then spray poly(vinylidene fluoride-hexafluoropropylene) (PVDF-HFP) to provide low surface energy. The synergistic effect of the two could make the silk fabric had high hydrophobic and oleophobic properties as well as good washing durability. The results indicated that via this simple two-step method, the prepared silk fabric presented a water contact angle(WCA) of 149.5°, a water sliding angle(WSA) of 5.5°, and an oil contact angle(OCA) of 132.0°, demonstrating the high hydrophobicity and oleophobicity of silk. After standard washing for 20 times, the WCA was still more than 140° and the WSA was less than 10°, showing excellent laundering durability.

    Key words: silk fabric; hydrophobic; oleophobic; washing durability; hydrophobic modified silica

    During the last decades, researchers have been continuously exploring the functional coatings on textile surfaces, for example, superhydrophobic coatings[1-2], anti-fouling coatings[3-4], self-cleaning coatings[5-6], and so on[7-8]. Silk fabric products have been popular in textile industry due to good mechanical strength, toughness and elasticity[9], as well as the elegant appearance and soft hand touch[10], which have attracted the attention of researchers. However, because of a great number of groups containing carboxyl, hydroxyl and amine groups which caused the poor anti-fouling properties[11], it is an imperious demand for improvement of water and oil repellency of silk fabrics.

    Several studies of anti-fouling performances of silk fabrics have been reported. For example, Huang et al[12]. obtained the superhydrophobic and anti-UV silk fabric via single-step in-situ synthesis of ZnO nanorods on the surface of silk fabric and modified by n-octadecanethiol, and the WCA reached 151.9°. Wang et al[13]. blended the POSS with fluorinated alkyl silane, then through the dip coating POSS composites onto fibers to get a superhydrobic textile. However, among these work, most of them used silane with long fluorinated chain, which have potential risk to organic organism. On the other hand, fabrics with only water-repellent behavior still can not meet the demand of textile market. Aslanidou et al[14]. dispersed SiO2 nanoparticles(NPs) into a soluble emulsion of silane, siloxane and organic polymer and then sprayed over the surface of silk fabric, as a result, it showed the outstanding WCA and OCA of 161.0° and 159.0°, respectively, However, the washing durability of the modified silk fabric was not studied. Cheng et al[15]. prepared superhydrophobic silk fabrics using enzyme-etching approach by papain and methyltrichlorosilane(MTCS) via thermal chemical vapor deposition(CVD) process at 70 ℃. The MTCS@papain-etched fabric has a WCA of 153.5° and sliding angle of 8.5°, demonstrating superhydrophobic, but the WCA was dropped to about 140° after 10 washing cycles. Based on above works, it could be recognized that the durability in textile materials is also important. Thus, Chen et al[16]. prepared a water-repellent silk surface with excellent washing durability by depositing TiO2 coatings on the surface of silk fabric via atomic layer deposition(ALD) method. However, because of the complicated and time-consuming procedure to obtain robust silk fabrics, it is particularly urgent to discover a simple and facile method for wide production.

    In this work, we report an easy method to fabricate highly hydrophobic and oleophobic silk fabric with outstanding washing durability. Silk fabric was firstly immersed into the modified silica solution to obtain certain roughness, followed by a final coating of fluoric-containing polymer poly(vinylidene fluoride-hexafluoropropylene) (PVDF-HFP) to achieve low surface energy and stable fastness on the surface of silk fabric. The result is useful for the development of self-cleaning silk fabric with desired water and oil-resistant performances as well as laundering durability.

    1 實(shí) 驗(yàn)

    1 Experiment

    1.1 材料與儀器

    1.1 Materials and instruments

    Materials: White commercial silk fabric(Hangzhou Xidebao Co. Ltd), methyltrimethoxysilane(MTMS), 1H, 1H, 2H, 2H-perfluorooctyltriethoxysilane(HFOTES), ethanol(Hangzhou Gaojing Fine Chemical Industry Co. Ltd), dimethylformamide(DMF) and poly(vinylidene fluoride-hexafluoropropylene)(PVDF-HFP)(Sigma-Aldrich). SiO2 nanoparticles were synthesized by Stber method[17]. All agents were used without additional purification.

    Instruments: Contact angle measurement DSA20(Krüss, Germany), JSM-5610LV scanning electron microscope(SEM) (JEOL, Japan), X-ray Photoelectron Spectrum(XPS) (K-Alpha, Thermo Fisher Scientific, U.S.A), Launder-O-Meter(Labec Co., Taiwan), (Kato-Tech, Japan), Universal Testing(Instron-2365, INSTRON CORPORATION Co.), Numerical Air Permeability Tester YG461E.

    1.2 方 法

    1.2 Methods

    1.2.1 改性SiO2納米粒子的合成

    1.2.1 Synthesis of modified SiO2

    0.5 g SiO2 nanoparticles were ultrasonicated in 100 mL of ethanol at room temperature for 10 min to ensure good dispersion. Afterwards, HFOTES was added to the above dispersed solution, followed by the dropping addition of MTMS. The modified SiO2(named as H-M-SiO2) solution was obtained by maintaining for 24 h at room temperature under magnetic stirring. Different volume ratios of HFOTES to MTMS were described in Tab.1.

    1.2.2 絲綢樣品的制備

    1.2.2 Preparation of silk samples

    As described in Fig.1 and Fig.2, silk samples were first dipped into the as-prepared H-M-SiO2 solution at ambient temperature for 12 h then dried at 80 ℃ for 1 h(named as H-M-SiO2@Silk). Afterwards, 0.5 g PVDF-HFP was put into 30 mL of DMF and stirred for 20 min. Finally, this PVDF-HFP solution was sprayed over the surface of H-M-SiO2@Silk samples and dried at 80 ℃ for 1 h(labelled as PVDF-HFP/H-M-SiO2@Silk). One sample which was coated by HFOTES modified SiO2 and PVDF-HFP solution was labelled as PVDF-HFP/H-SiO2@Silk. One controlled sample coated by only PVDF-HFP solution was labelled as PVDF-HFP@Silk.

    1.3 測(cè)試與表征

    1.3 Testing and characterization

    1.3.1 接觸角測(cè)試

    1.3.1 Contact angle measurements

    Surface wettability of modified silk fabrics was investigated by contact angle measurement device DSA20(Krüss, Germany) at room temperature. The liquid volume in each measurement was 3 μL(water) or 2.4 μL(oil). Average result was recorded by five testing points for each sample.

    1.3.2 表面形貌表征

    1.3.2 Surface morphology characterization(SEM)

    JSM-5610LV scanning electron microscope(SEM) was employed to analyze the surface morphology of modified silk samples. An ultra-thin layer of Au was coated on sample surfaces to observe the surface morphology properly.

    1.3.3 表面化學(xué)組成分析

    1.3.3 Analysis of surface chemical compositions

    Energy-dispersive X-ray spectrometer(EDS) attached to SEM and X-ray photoelectron spectroscopy(XPS) system were used to measure the surface elements and investigate the surface atomic compositions of silk samples. Fabric samples were packed onto a standard specimen holder and analyzed by microfocused, monochromated Al Kα X-ray source. Photoelectron emission take-off angle of 90° was utilized to analyze the samples, and hydrocarbon C1s line with the position at 284.8 eV was chosen as a reference to rectify the charging effect.

    1.3.4 服用及物理機(jī)械性能測(cè)試

    1.3.4 Wearability and mechanical property tests

    Laundering durability was tested by HB 12P(NEWAVE LAB EQUIPMENTS Co., Ltd) based on AATCC 61-2003 Test No.1A. Samples were washed at 40 ℃ in the presence of 10 stainless steel balls. One washing cycle(45 min) is approximate to five times of commercial laundering. Tensile strength was determined by Universal Testing(Instron-2365, INSTRON CORPORATION Co.) due to GB/T 3923.2-2013. Air permeation test was conducted by Numerical Air Permeability Tester YG461E due to GB/T 5453-1997. Water vapor transmission rates were measured due to GB/T 12704.2-2009 by special aluminum cups. Whiteness and lightness were measured by WSD-3C Whiteness Meter due to GSBA67002 standard. All the tested samples were PVDF-HFP/H-M-SiO2@Silk.

    2 結(jié)果與分析

    2 Results and analysis

    2.1 潤濕性能及影響因素

    2.1 Wettability of silk fabrics and its factors

    The particle size and volume ratio of HFOTES to MTMS have effect on the wettability of silk fabrics. Tab. 2 shows the effect of volume ratio of HFOTES to MTMS on oleophobic property of modified silk fabric. The result indicated that when the volume ratio of HFOTES to MTMS was increased, the oleophobicity was improved correspondingly. Compared to the ratio of HFOTES to MTMS 1︰1, as the volume ratio reached 3︰1, the salad oil contact angle of PVDF-HFP/H-M-SiO2@Silk sample was improved from 126.0° to 132.0°, and that of mineral oil increased from 122.5° to 129.5°. This was attributed to the existence of fluorine element which supplied low surface energy for good oleophobic performance of modified silk fabric. However, as the volume ratio reached 4︰1, the oil contact angle decreased slightly.

    Fig.3-Fig.6 shows the WCA and WSA of silk fabrics modified with different conditions. From Fig.3, it can be seen that the WCA increased with the increase of SiO2 particle size(VHFOTES︰MTMS=1︰1), as the particle size was up to 601 nm, the WCA of H-M-SiO2@Silk can reach 147.0° while the SA was smaller than 10°. This was attributed to the increasing particle size of SiO2 nanoparticles that made the roughness of the surface of the silk increased correspondingly, thus enhanced the hydrophobic property of the silk fabric. However, when the particle size was further increased, the WCA decreased, this phenomenon was due to the particle size was larger, it was easy to fall off from the surface, thus reducing the WCA. Subsequently, the influence of volume ratio of HFOTES to MTMS was also investigated(SiO2 particle size was 601 nm). Fig.4 presents the influence of different ratios of HFOTES to MTMS. We can conclude that the H-M-SiO2@Silk

    sample had excellent hydrophobic performance after being coated by the HFOTES and MTMS co-modified SiO2 nanoparticles. As the volume ratio of HFOTES to MTMS was 3︰1, the highest WCA was 149.5°, and the SA was 5.5°. Therefore, the most appropriate value of SiO2 particle size was 601 nm and volume ratio of HFOTES to MTMS was 3︰1.

    Self-cleaning ability is one essential factor to evaluate the applications of hydrophobic silk textiles[18]. For the investigation of self-cleaning ability of silk fabric, congo red powder was used for testing. Fig.5 shows that the water drop a space can not remove the powder from hydrophilic silk surface, and the fabric was wet and dirty. Meanwhile, the water drop rolled off quickly from the surface of PVDF-HFP/H-M-SiO2@Silk sample, took away all congo red powder and left the dry and clean silk surface(Fig.6), it was due to the low adhesive force to fabric and powder. This result proved the excellent self-cleaning properties of PVDF-HFP/H-M-SiO2@Silk sample.

    2.2 織物表面微觀形貌分析

    2.2 Surface morphology analysis

    SEM images of pristine silk fabric and modified silk fabric were shown in Fig.7. Fig.7(a) exhibits the smooth fiber surface of original silk fabric. After coated by PVDF-HFP, there was a clear layer of PVDF-HFP on the fiber surface of PVDF-HFP@Silk sample(Fig.7(b)). Fig.7(d-f) reveal that as the concentration of HFOTES was increased, more SiO2 nanoparticles were packed onto the fiber surface of PVDF-HFP/H-M-SiO2@Silk, leading to an increase of surface roughness and better hydrophobicity. This was attributed to the concentration of HFOTES was increased, the cross-linked density of modified SiO2 was increased correspondingly, which made the particles stick to the fabric and not fallen off easily. Surface element analysis of PVDF-HFP/H-M-SiO2@Silk sample was presented by EDS and mapping in Fig.7(c、g). The EDS data(Fig.7(c)) showed that the Si and F element had appeared on the surface of PVDF-HFP/H-M-SiO2@Silk, the element content was 2.04% and 13.29 % respectively, which confirmed the successful coating on the surface of modified silk fabric[15]. On the other hand, we can observe from the F mapping(Fig.7(g)) that the F element was covered on the silk fabric surface uniformly, this provided the possibility of stable hydrophobicity of the PVDF-HFP/H-M-SiO2@Silk.

    2.3 織物表面化學(xué)組成分析

    2.3 Surface compositions of silk fabrics

    XPS survey confirms the appearance of F 1s on PVDF-HFP@Silk sample, and Si 2p and F 1s on PVDF-HFP/H-M-SiO2@Silk sample with binding energy at 103.5 eV and 688.9 eV, respectively(Fig.8). Those new peaks of Si 2p and F 1s indicate the successful chemical modification on silk fabric surface, which corresponds to EDS result. In Fig.9, three peaks at 284.8 eV, 286.2 eV and 288.5 eV corresponding to —C—C—, C—OH and CO groups of pristine silk fabric, respectively. Furthermore, Si 2p spectrum of PVDF-HFP/H-M-SiO2@Silk sample displayed the larger amount of SiO2 than Si-O, which meaned that more SiO2 nanoparticles were packed onto silk fabric surface and created the surface roughness(Fig.10). After modification, in C 1s spectrum there were three new peaks —CF3, —CF2— and C—F at 293.5 eV, 291.2 eV and 287.9 eV, respectively[19]. The peak-CF3 accounts for 11.39 % and the peak —CF2— was about 48.51 %(Fig.11), which resulting in low surface energy.

    2.4 服用及物理機(jī)械性能

    2.4 Wearability and mechanical properties

    Air permeability and water vapor permeability are the important properties of textile fabrics for wearing. It can be seen from Tab.3 that compared to the pristine silk fabric, the water vapor transmission rate of PVDF-HFP/H-M-SiO2@Silk sample was slightly decreased from 0.17 g/(m2·t) to 0.16 g/(m2·t), indicated that there was no significant deterioration of water vapor permeability after surface modification. Simultaneously, the air permeability was also decreased by 10.85%, this was mainly caused by the modified coating which formed a film on the surface of silk fabric and covered the space between two yarns. This result declared that there was almost no negative impact of coatings on the breathability of silk fabric.

    Fig.12-Fig.14 shows the tensile strength, whiteness, lightness and washing durability of pristine silk fabric and PVDF-HFP/H-M-SiO2@Silk sample. After the treatment by PVDF-HFP/H-M-SiO2, there was a sharp growth in tensile strength of fabric sample from 17.78 MPa to 46.46 MPa, as shown in Fig.12. The change in tensile strength of treated silk fabric sample was caused by the deposition of coatings on their surface. This caused an efficient stress transfer form matrix to the particles, which increased the tensile strength of fabric.

    Fig.13 presents the changes in original color of whiteness and lightness of silk fabric before and after modification. It can be seen that the whiteness of silk fabric decreases from 59.02 to 51.06, and lightness had a little drop from 78.22 to 73.43 after being treated by PVDF-HFP/H-M-SiO2 coating. These parameters conformed that the coating did not create a negative effect on silk fabric color, and the original color is almost maintained after the finishing process.

    Laundering durability is also one important aspect to assess the quality of silk fabrics[20]. Fig.14 shows that after 20 times washing, the WCA of PVDF-HFP/H-M-SiO2@Silk sample was dropped from 149.5° to 144.0° and the WSA was increased to 8.0°. This result demonstrated that PVDF-HFP/H-M-SiO2@Silk fabric has good washing durability.

    3 結(jié) 論

    3 Conclusions

    In conclusion, a simple two-step method was presented to fabricate highly hydrophobic and oleophobic silk fabric with good laundering durability by using modified-SiO2 nanoparticles and a final coating of PVDF-HFP. As a result, the most appropriate value of SiO2 particle size was 601 nm and volume ratio of HFOTES to MTMS was 3︰1. PVDF-HFP/H-M-SiO2@Silk fabric sample displayed excellent water and oil resistant performances with WCA of 149.5°, WSA of 5.5° and OCA of 132.0°. After 20 times washing, the WCA of PVDF-HFP/H-M-SiO2@Silk sample was only dropped from 149.5° to 144.0° with the WSA of 8.0. Moreover, there was still more works on preparing the super hydrophobic and oleophobic silk fabric with good washing durability.

    參考文獻(xiàn):

    [1]WANG F, PI J, SONG F, et al. A superhydrophobic coating to create multi-functional materials with mechanical/chemical/physical robustness[J]. Chemical Engineering Journal, 2020, 381:122539.

    [2]PAN G M, XIAO X Y, YU N L, et al. Fabrication of superhydrophobic coatings on cotton fabric using ultrasound-assisted in-situ growth method[J]. Progress in Organic Coatings, 2018, 125: 463-471.

    [3]HE Z C, BAO B W, FAN J, et al. Photochromic cotton fabric based on microcapsule technology with anti-fouling properties[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 594:124661.

    [4]WU J D, ZHANG C, XU S, et al. Preparation of zwitterionic polymer-functionalized cotton fabrics and the performance of anti-biofouling and long-term biofilm resistance[J]. Colloid and Interface Science Communications, 2018, 24: 98-104.

    [5]CHEN K L, ZHOU J L, CHE X G, et al. One-step synthesis of core shell cellulose-silica/n-octadecane microcapsules and their application in waterborne self-healing multiple protective fabric coatings[J]. Journal of Colloid and Interface Science, 2020, 566: 401-410.

    [6]KALE B M, WIENER J, MILITKY J, et al. Coating of cellulose-TiO2 nanoparticles on cotton fabric for durable photocatalytic self-cleaning and stiffness[J]. Carbohydrate Polymers, 2016, 150: 107-113.

    [7]QIN R H, SONG Y H, NIU M, et al. Construction of flame retardant coating on polyester fabric with ammonium polyphosphate and carbon microspheres[J]. Polymer Degradation and Stability, 2019, 171:109028.

    [8]PAN G M, XIAO X Y, YE Z H. Fabrication of stable superhydrophobic coating on fabric with mechanical durability, UV resistance and high oil-water separation efficiency[J]. Surface & Coatings Technology, 2019, 360: 318-328.

    [9]OMENETTO F G, KAPLAN D L. New opportunities for an ancient material[J]. Science, 2010, 329: 528-531.

    [10]LIU X S, XING T L, XU D M, et al. Study on novel eco-friendly anti-creasing agents for natural silk fabric[J]. Chinese Chemical Lettles, 2012, 23: 665-668.

    [11]CHEN F G, LIU X, YANG H Y, et al. A simple one-step approach to fabrication of highly hydrophobic silk fabrics[J]. Applied Surface Science, 2016, 360: 207-212.

    [12]HUANG J J, YANG Y Y, YANG L, et al. Fabrication of multifunctional silk fabrics via one step in-situ synthesis of ZnO[J]. Materials Letters, 2019, 237: 149-151.

    [13]WANG H, ZHOU H, GESTOS A, et al. Robust, superamphiphobic fabric with multiple self-healing ability against both physical and chemical damages[J]. ACS Applied Materials & Interfaces, 2013, 5: 10221-10226.

    [14]ASLANIDOU D, KARAPANAGIOTIS I, PANAYIOTOU C. Superhydrophobic, superoleophobic coatings for the protection of silk textiles[J]. Progress in Organic Coatings, 2016, 97: 44-52.

    [15]CHENG Y, ZHUA T X, LI S H, et al. A novel strategy for fabricating robust superhydrophobic fabrics by environmentally-friendly enzyme etching[J]. Chemical Engineering Journal, 2019, 355: 290-298.

    [16]CHEN F G, YANG H Y, LIU X, et al. Facile fabrication of multifunctional hybrid silk fabrics with controllable surface wettability and laundering durability[J]. ACS Applied Materials & Interfaces, 2016, 8(8): 5653-5660.

    [17]STBER W, FINK A, BOHN E. Controlled growth of monodisperse silica spheres in the micron size range[J]. Journal of Colloid and Interface Science, 1968, 26: 62-69.

    [18]NITAYAPHAT W, JIRAWONGCHAROEN P, TRIJATURON T. Self-cleaning properties of silk fabrics functionalized with TiO2/SiO2 composites[J]. Journal of Natural Fibers, 2018, 15: 262-272.

    [19]PALCHAN I, CRESPON M, ESTRADE-SZWARCKOPF H, et al. Graphite fluorides: an XPS study of a new type of C-F bonding[J]. Chemical Physics Letters, 1989, 157(4): 321-327.

    [20]LIANG Z H, ZHOU Z Z, DONG B H, et al. Fabrication of superhydrophobic and UV-resistant silk fabrics with laundering durability and chemical stabilities[J]. Coatings, 2020, 10(4): 349.

    收稿日期: 20200524; 修回日期: 20201107

    基金項(xiàng)目: 浙江省基礎(chǔ)公益研究計(jì)劃資助項(xiàng)目(LGG18E030009)

    作者簡(jiǎn)介: Do Khai Ly(1993),女,碩士研究生,研究方向?yàn)榧徔椈瘜W(xué)與染整工程。通信作者:易玲敏,教授,lmyi@zstu.edu.cn。

    国产精品乱码一区二三区的特点| 国产成人精品久久二区二区91| 丰满人妻一区二区三区视频av | 啦啦啦韩国在线观看视频| 国内精品久久久久久久电影| svipshipincom国产片| 欧美日韩亚洲国产一区二区在线观看| 久久性视频一级片| 亚洲黑人精品在线| 日韩av在线大香蕉| 99riav亚洲国产免费| 岛国在线观看网站| 99热这里只有是精品50| 国产又黄又爽又无遮挡在线| 精品久久蜜臀av无| 欧洲精品卡2卡3卡4卡5卡区| 法律面前人人平等表现在哪些方面| 黄色丝袜av网址大全| 国产视频内射| 午夜福利成人在线免费观看| 老司机午夜十八禁免费视频| 国产成人欧美在线观看| 特大巨黑吊av在线直播| 黄色丝袜av网址大全| 中文字幕av在线有码专区| 亚洲午夜理论影院| 婷婷亚洲欧美| 欧美精品啪啪一区二区三区| 国产精品亚洲美女久久久| 熟妇人妻久久中文字幕3abv| 熟女电影av网| 人人妻,人人澡人人爽秒播| 久久精品aⅴ一区二区三区四区| 久久婷婷人人爽人人干人人爱| 中文字幕人成人乱码亚洲影| 中文字幕人妻丝袜一区二区| 欧美zozozo另类| 99精品久久久久人妻精品| 国产单亲对白刺激| 在线播放国产精品三级| 国产激情偷乱视频一区二区| 波多野结衣巨乳人妻| 久久久久免费精品人妻一区二区| 免费看光身美女| 国产一区二区三区视频了| 黄色 视频免费看| 两个人的视频大全免费| 男女午夜视频在线观看| 一区福利在线观看| 久久精品aⅴ一区二区三区四区| 国产精品久久久久久精品电影| 国产成年人精品一区二区| 国产精品一区二区三区四区久久| 久久精品综合一区二区三区| 宅男免费午夜| 亚洲九九香蕉| 亚洲精华国产精华精| 欧美zozozo另类| 99riav亚洲国产免费| 99久久国产精品久久久| www.精华液| 国产1区2区3区精品| 老司机在亚洲福利影院| 国产精品综合久久久久久久免费| 国产精品香港三级国产av潘金莲| 亚洲熟妇中文字幕五十中出| 18禁美女被吸乳视频| 毛片女人毛片| 亚洲精品456在线播放app | 欧美不卡视频在线免费观看| 久久中文看片网| 十八禁人妻一区二区| 久久人妻av系列| 国产极品精品免费视频能看的| 亚洲av成人av| 国产97色在线日韩免费| 精品福利观看| 亚洲,欧美精品.| 日本一二三区视频观看| 一级毛片高清免费大全| 久久久国产欧美日韩av| 老鸭窝网址在线观看| 国产精品永久免费网站| 1000部很黄的大片| 叶爱在线成人免费视频播放| 一进一出抽搐动态| 亚洲第一欧美日韩一区二区三区| 小蜜桃在线观看免费完整版高清| 国产av在哪里看| 国内毛片毛片毛片毛片毛片| 校园春色视频在线观看| 免费av不卡在线播放| 香蕉av资源在线| 黄片大片在线免费观看| 亚洲av中文字字幕乱码综合| 色在线成人网| 欧美成人性av电影在线观看| 欧美大码av| 亚洲中文字幕一区二区三区有码在线看 | 亚洲精品国产精品久久久不卡| 国产美女午夜福利| 欧美乱色亚洲激情| 日韩欧美一区二区三区在线观看| 在线观看日韩欧美| 亚洲成av人片在线播放无| 村上凉子中文字幕在线| 成人无遮挡网站| 观看免费一级毛片| 一区二区三区高清视频在线| 亚洲欧美一区二区三区黑人| 九色国产91popny在线| 麻豆久久精品国产亚洲av| 麻豆国产97在线/欧美| 非洲黑人性xxxx精品又粗又长| 亚洲中文日韩欧美视频| 啦啦啦免费观看视频1| 亚洲黑人精品在线| 免费观看精品视频网站| 久久国产乱子伦精品免费另类| 两个人视频免费观看高清| 美女扒开内裤让男人捅视频| av在线蜜桃| 久久久久久久午夜电影| 婷婷丁香在线五月| 国产极品精品免费视频能看的| 床上黄色一级片| x7x7x7水蜜桃| 一二三四在线观看免费中文在| 亚洲,欧美精品.| 麻豆国产av国片精品| 啦啦啦韩国在线观看视频| 日韩欧美国产一区二区入口| 99久久无色码亚洲精品果冻| 精品一区二区三区av网在线观看| 亚洲真实伦在线观看| 亚洲七黄色美女视频| 午夜成年电影在线免费观看| ponron亚洲| 偷拍熟女少妇极品色| 成人亚洲精品av一区二区| 激情在线观看视频在线高清| 九色成人免费人妻av| x7x7x7水蜜桃| 亚洲国产高清在线一区二区三| 国产黄a三级三级三级人| 国内精品久久久久久久电影| 午夜两性在线视频| 久久久精品欧美日韩精品| 亚洲成a人片在线一区二区| 老熟妇乱子伦视频在线观看| 欧美日韩中文字幕国产精品一区二区三区| 法律面前人人平等表现在哪些方面| 成年女人看的毛片在线观看| 偷拍熟女少妇极品色| 亚洲精品乱码久久久v下载方式 | 国产成年人精品一区二区| 国产亚洲精品久久久com| 最新美女视频免费是黄的| 日韩国内少妇激情av| 黄色日韩在线| 国产av在哪里看| 国产一区在线观看成人免费| 极品教师在线免费播放| 免费看十八禁软件| 国产成人福利小说| 国产伦人伦偷精品视频| 亚洲成人久久性| 国产真人三级小视频在线观看| or卡值多少钱| 精品一区二区三区四区五区乱码| 看免费av毛片| 国产精品久久久久久久电影 | 12—13女人毛片做爰片一| 国产精品久久久久久精品电影| 亚洲av熟女| 老司机午夜十八禁免费视频| 久久精品亚洲精品国产色婷小说| 成人三级黄色视频| 国内毛片毛片毛片毛片毛片| 午夜激情福利司机影院| 中文字幕高清在线视频| 午夜福利高清视频| 亚洲无线在线观看| 亚洲人成伊人成综合网2020| 高潮久久久久久久久久久不卡| 日韩人妻高清精品专区| 亚洲精品色激情综合| 亚洲色图 男人天堂 中文字幕| 狂野欧美激情性xxxx| 亚洲欧美日韩高清在线视频| 波多野结衣巨乳人妻| 免费在线观看成人毛片| 国产激情偷乱视频一区二区| 我的老师免费观看完整版| 九九热线精品视视频播放| 狂野欧美白嫩少妇大欣赏| 午夜日韩欧美国产| 国产精品影院久久| 99国产综合亚洲精品| 99精品久久久久人妻精品| 日韩欧美在线乱码| 色在线成人网| 亚洲av第一区精品v没综合| 国产精品亚洲av一区麻豆| 淫妇啪啪啪对白视频| 亚洲 欧美 日韩 在线 免费| 亚洲18禁久久av| 嫁个100分男人电影在线观看| 亚洲天堂国产精品一区在线| 一个人看的www免费观看视频| 99re在线观看精品视频| 最近最新中文字幕大全免费视频| 久久草成人影院| 757午夜福利合集在线观看| 搡老岳熟女国产| 国产高清有码在线观看视频| 中出人妻视频一区二区| av黄色大香蕉| 日本熟妇午夜| 美女黄网站色视频| 成人亚洲精品av一区二区| 日韩免费av在线播放| 国产精品久久久久久人妻精品电影| 99热精品在线国产| 国产精品久久久久久精品电影| 免费在线观看亚洲国产| 国产精品综合久久久久久久免费| 嫁个100分男人电影在线观看| 亚洲一区二区三区不卡视频| 日韩三级视频一区二区三区| 一本精品99久久精品77| 午夜福利18| 欧美乱妇无乱码| 搞女人的毛片| 国产一区二区激情短视频| 国产精品久久电影中文字幕| 好男人电影高清在线观看| 国产精品 国内视频| 在线国产一区二区在线| 99在线人妻在线中文字幕| 国产单亲对白刺激| 国产精品亚洲一级av第二区| 99re在线观看精品视频| 亚洲美女黄片视频| 51午夜福利影视在线观看| 亚洲成av人片免费观看| 啦啦啦韩国在线观看视频| 色在线成人网| 在线观看午夜福利视频| 两个人看的免费小视频| 亚洲成人免费电影在线观看| 美女黄网站色视频| 国产亚洲精品久久久com| 搞女人的毛片| 午夜免费观看网址| 男女那种视频在线观看| 欧美三级亚洲精品| 97超视频在线观看视频| 免费大片18禁| 国产成人欧美在线观看| 在线十欧美十亚洲十日本专区| 中文字幕人成人乱码亚洲影| 国产精品 国内视频| 黑人欧美特级aaaaaa片| 99久久久亚洲精品蜜臀av| 淫秽高清视频在线观看| 精品午夜福利视频在线观看一区| 国产精品一区二区精品视频观看| 久久天堂一区二区三区四区| 给我免费播放毛片高清在线观看| 国产激情偷乱视频一区二区| 国产野战对白在线观看| 亚洲aⅴ乱码一区二区在线播放| 久久久久精品国产欧美久久久| 999久久久精品免费观看国产| 欧美性猛交黑人性爽| 国产69精品久久久久777片 | 国产91精品成人一区二区三区| 欧美日韩一级在线毛片| 亚洲一区二区三区不卡视频| 男人舔女人下体高潮全视频| 性色av乱码一区二区三区2| 一级毛片精品| 色吧在线观看| 国产精品永久免费网站| 国产成人系列免费观看| 可以在线观看的亚洲视频| 一区二区三区激情视频| 在线观看午夜福利视频| 免费av不卡在线播放| 午夜亚洲福利在线播放| 又黄又粗又硬又大视频| 国产精品av久久久久免费| 丁香六月欧美| 亚洲精品粉嫩美女一区| 久久人妻av系列| 日本 av在线| 狂野欧美激情性xxxx| 久久久久亚洲av毛片大全| a级毛片在线看网站| 看免费av毛片| 一a级毛片在线观看| 欧美色视频一区免费| 一个人看视频在线观看www免费 | 国产一区二区三区在线臀色熟女| 精品久久久久久久人妻蜜臀av| 日本免费一区二区三区高清不卡| 国产精品 国内视频| 国产熟女xx| 五月玫瑰六月丁香| av片东京热男人的天堂| 亚洲成人免费电影在线观看| 久久中文字幕一级| 国产单亲对白刺激| 国产一区二区三区视频了| 91av网站免费观看| 欧美成人一区二区免费高清观看 | 国产精品香港三级国产av潘金莲| 嫩草影院入口| 亚洲av成人精品一区久久| 午夜免费成人在线视频| 欧美成人一区二区免费高清观看 | 欧美性猛交黑人性爽| 精品99又大又爽又粗少妇毛片 | 国产av不卡久久| 久久精品国产99精品国产亚洲性色| av福利片在线观看| 久久香蕉国产精品| 欧美成人免费av一区二区三区| 亚洲人成网站在线播放欧美日韩| 亚洲九九香蕉| 高潮久久久久久久久久久不卡| 国产一区在线观看成人免费| 亚洲成av人片免费观看| 亚洲熟女毛片儿| 欧美黑人巨大hd| 成人国产综合亚洲| 搡老妇女老女人老熟妇| 日韩国内少妇激情av| www.自偷自拍.com| 午夜福利在线观看吧| 人人妻,人人澡人人爽秒播| 午夜精品在线福利| 老司机午夜十八禁免费视频| 99久国产av精品| 久久久久久久午夜电影| 最新在线观看一区二区三区| 老汉色∧v一级毛片| 听说在线观看完整版免费高清| 校园春色视频在线观看| 91av网一区二区| 可以在线观看的亚洲视频| 国产精品永久免费网站| 国产精品久久久久久人妻精品电影| 亚洲狠狠婷婷综合久久图片| 这个男人来自地球电影免费观看| 久久久久性生活片| 麻豆一二三区av精品| 两个人的视频大全免费| 美女黄网站色视频| 亚洲精华国产精华精| 一卡2卡三卡四卡精品乱码亚洲| 日本熟妇午夜| 国产精品久久久av美女十八| 91在线精品国自产拍蜜月 | 国产成人aa在线观看| 脱女人内裤的视频| 久久国产精品影院| 国产精品香港三级国产av潘金莲| 男女之事视频高清在线观看| 亚洲人成电影免费在线| 国产又黄又爽又无遮挡在线| 国产亚洲精品久久久久久毛片| 日本五十路高清| 国内毛片毛片毛片毛片毛片| 国产麻豆成人av免费视频| 久久午夜综合久久蜜桃| 国产一区二区三区视频了| 老汉色av国产亚洲站长工具| 久9热在线精品视频| 美女被艹到高潮喷水动态| 婷婷精品国产亚洲av在线| 噜噜噜噜噜久久久久久91| 两性夫妻黄色片| 伦理电影免费视频| 老熟妇乱子伦视频在线观看| 国产一区二区在线观看日韩 | 757午夜福利合集在线观看| 国产成人系列免费观看| or卡值多少钱| xxxwww97欧美| 国产精品国产高清国产av| 丁香欧美五月| 国产伦人伦偷精品视频| 可以在线观看的亚洲视频| 极品教师在线免费播放| 老鸭窝网址在线观看| 日本撒尿小便嘘嘘汇集6| 又黄又粗又硬又大视频| 色在线成人网| 色播亚洲综合网| 欧美大码av| 国产精品综合久久久久久久免费| 亚洲激情在线av| 亚洲国产欧美一区二区综合| 特大巨黑吊av在线直播| 免费在线观看视频国产中文字幕亚洲| 最新中文字幕久久久久 | 国产麻豆成人av免费视频| 亚洲av成人一区二区三| 男女午夜视频在线观看| 欧美日韩乱码在线| 亚洲第一欧美日韩一区二区三区| 久久久久国产精品人妻aⅴ院| 久久天堂一区二区三区四区| a在线观看视频网站| 最近最新中文字幕大全电影3| 精品电影一区二区在线| 午夜福利免费观看在线| 精品欧美国产一区二区三| 亚洲第一欧美日韩一区二区三区| 国产精品98久久久久久宅男小说| 国产免费av片在线观看野外av| 又大又爽又粗| 天堂影院成人在线观看| 悠悠久久av| 天天添夜夜摸| 婷婷丁香在线五月| 99视频精品全部免费 在线 | 天堂影院成人在线观看| 一进一出抽搐gif免费好疼| 亚洲精品中文字幕一二三四区| 国产成人欧美在线观看| 午夜福利在线观看免费完整高清在 | 亚洲精品粉嫩美女一区| 日本一二三区视频观看| 日本三级黄在线观看| 国产精品久久久久久久电影 | 亚洲av免费在线观看| 麻豆成人午夜福利视频| 高清在线国产一区| 亚洲电影在线观看av| 床上黄色一级片| 操出白浆在线播放| 久久久久国内视频| 亚洲人与动物交配视频| 国产伦精品一区二区三区四那| 最好的美女福利视频网| 亚洲av熟女| 久久伊人香网站| 亚洲电影在线观看av| 琪琪午夜伦伦电影理论片6080| 国产97色在线日韩免费| 成人永久免费在线观看视频| 婷婷六月久久综合丁香| 日本一二三区视频观看| 人人妻人人看人人澡| 最新中文字幕久久久久 | 91老司机精品| 精品人妻1区二区| 欧美激情在线99| 日本一本二区三区精品| 日韩欧美国产一区二区入口| 久久精品91无色码中文字幕| 99热这里只有是精品50| 又粗又爽又猛毛片免费看| 成人午夜高清在线视频| www.熟女人妻精品国产| 成人国产一区最新在线观看| 免费搜索国产男女视频| 日韩大尺度精品在线看网址| 嫩草影视91久久| 日韩欧美免费精品| 99久国产av精品| 午夜福利在线观看免费完整高清在 | 亚洲人成网站在线播放欧美日韩| 色吧在线观看| av女优亚洲男人天堂 | 久久天堂一区二区三区四区| 欧美色欧美亚洲另类二区| 老熟妇乱子伦视频在线观看| 国产精品九九99| 久久久国产成人精品二区| 曰老女人黄片| 日本 av在线| 99热6这里只有精品| 日韩精品中文字幕看吧| 十八禁网站免费在线| 午夜久久久久精精品| 国产精品一及| 国产精品永久免费网站| avwww免费| 国产成人av教育| 好男人电影高清在线观看| 男人的好看免费观看在线视频| 熟女电影av网| 免费搜索国产男女视频| 搡老熟女国产l中国老女人| 国产欧美日韩精品亚洲av| 精品久久久久久久久久久久久| www日本黄色视频网| 欧美色欧美亚洲另类二区| 每晚都被弄得嗷嗷叫到高潮| a在线观看视频网站| 小说图片视频综合网站| 亚洲欧美日韩卡通动漫| 91九色精品人成在线观看| 亚洲中文av在线| 怎么达到女性高潮| 国产精品久久久久久精品电影| 老司机福利观看| 五月伊人婷婷丁香| 久久久久国产一级毛片高清牌| 男人舔奶头视频| 别揉我奶头~嗯~啊~动态视频| 日韩欧美 国产精品| 国产精品女同一区二区软件 | 国语自产精品视频在线第100页| 国产精品久久久久久人妻精品电影| 欧美日韩瑟瑟在线播放| 亚洲av熟女| 在线十欧美十亚洲十日本专区| 久久中文字幕一级| 欧美日韩国产亚洲二区| 久久久国产精品麻豆| 亚洲av成人一区二区三| 亚洲无线在线观看| 色综合婷婷激情| 国产精品爽爽va在线观看网站| 久久久久久久久中文| 亚洲中文av在线| 亚洲国产欧美网| 国产精品自产拍在线观看55亚洲| 黑人操中国人逼视频| 99国产综合亚洲精品| 韩国av一区二区三区四区| 国内毛片毛片毛片毛片毛片| 又黄又粗又硬又大视频| 香蕉丝袜av| 久久精品亚洲精品国产色婷小说| 国产精品精品国产色婷婷| 亚洲中文日韩欧美视频| 国产一区二区在线av高清观看| 亚洲 欧美一区二区三区| 亚洲av成人av| 91老司机精品| 国产欧美日韩精品亚洲av| 看免费av毛片| 变态另类丝袜制服| 美女被艹到高潮喷水动态| 成年女人永久免费观看视频| 丁香六月欧美| 视频区欧美日本亚洲| 亚洲中文日韩欧美视频| 天天添夜夜摸| 不卡av一区二区三区| 两个人视频免费观看高清| 日韩国内少妇激情av| cao死你这个sao货| 国产精品1区2区在线观看.| 久久久久国内视频| 亚洲电影在线观看av| 国产淫片久久久久久久久 | 国产精品 国内视频| 黄色日韩在线| 在线观看午夜福利视频| 国产精品久久久久久久电影 | 国产麻豆成人av免费视频| 欧美又色又爽又黄视频| 国内精品久久久久久久电影| 人人妻人人澡欧美一区二区| 老司机午夜福利在线观看视频| 99re在线观看精品视频| svipshipincom国产片| 91麻豆精品激情在线观看国产| 欧美大码av| 十八禁网站免费在线| 一级毛片精品| 舔av片在线| 欧美精品啪啪一区二区三区| 亚洲国产精品成人综合色| 亚洲熟女毛片儿| 最近在线观看免费完整版| 嫩草影视91久久| 狂野欧美激情性xxxx| 中文字幕人成人乱码亚洲影| 精品日产1卡2卡| 最新中文字幕久久久久 | 日韩中文字幕欧美一区二区| 亚洲精品久久国产高清桃花| 亚洲一区二区三区色噜噜| 国产真实乱freesex| 欧美又色又爽又黄视频| 99久久综合精品五月天人人| 久久99热这里只有精品18| 亚洲精品456在线播放app | 日韩欧美免费精品| 婷婷亚洲欧美| 男人的好看免费观看在线视频| 日韩 欧美 亚洲 中文字幕| 熟女少妇亚洲综合色aaa.| 久久精品国产清高在天天线| 天堂网av新在线| 精品久久久久久久毛片微露脸| 国产伦在线观看视频一区| 岛国在线免费视频观看| 熟女电影av网| 欧美日韩一级在线毛片| 欧美+亚洲+日韩+国产| 亚洲第一欧美日韩一区二区三区| 在线永久观看黄色视频| 免费在线观看日本一区| 国产精品女同一区二区软件 | 此物有八面人人有两片| 久久久久性生活片|