張倩
摘 ?要:考慮了一階雙曲方程約束的最優(yōu)分布控制問(wèn)題,利用拉格朗日乘子方法給出一階雙曲最優(yōu)控制問(wèn)題的最優(yōu)性條件,即狀態(tài)方程、伴隨方程和變分不等式。雙曲方程中對(duì)流占主導(dǎo),標(biāo)準(zhǔn)的有限體積元方法會(huì)產(chǎn)生物理震蕩,該文采用高階迎風(fēng)有限體積元方法和變分離散相結(jié)合的方法對(duì)最優(yōu)性條件進(jìn)行數(shù)值離散。分別對(duì)最優(yōu)性解的控制、狀態(tài)和伴隨給出了誤差估計(jì)的結(jié)果。數(shù)值實(shí)驗(yàn)驗(yàn)證了方法的有效性和誤差分析的結(jié)果。
關(guān)鍵詞:雙曲最優(yōu)控制 ?有限體積元 ?最優(yōu)性條件 ?變分離散
中圖分類號(hào):O241.1 ? ? ? ? ? ? ? ? ? ? ? ? ?文獻(xiàn)標(biāo)志碼:A ? ? ? ? ? ? ? ? ? 文章編號(hào):1672-3791(2020)11(b)-0254-03
Abstract: In this paper, the optimal distributed control problem with constraints for first-order hyperbolic equations is considered. By using the Lagrange multiplier method, the optimality conditions of the first-order hyperbolic optimal control problem are given, which consist of the state equation, the adjoint equation and the variational inequality. Convection is dominant in hyperbolic equation, and the standard finite volume element method will produce physical oscillation. In this paper, the high-order upwind finite volume element method and the variational discretization method are used to discretize the optimality conditions. The error estimates for the control, state and adjoint of the optimal solutions are given. Numerical experiments verify the effectiveness of the method and the results of error analysis.
Key Words: Hyperbolic optimal control; Finite volume element; Optimality conditions; Variational discretization
3 ?數(shù)值實(shí)驗(yàn)
在這個(gè)算例中,取I=[0,1]。為了驗(yàn)證方法的有效性和誤差估計(jì)的結(jié)果,我們構(gòu)造精確解。首先構(gòu)造,通過(guò)伴隨方程我們可以得到伴隨的精確解為,再取最優(yōu)的狀態(tài),那么由方程可確定函數(shù)f和yd。同時(shí),我們?nèi)。瑄a=0.2和ub=0.8。
在表1中,我們分別列出了控制, 狀態(tài)和伴隨態(tài)的誤差結(jié)果和相應(yīng)的收斂階。從表中可以看出在L2范數(shù)下誤差的收斂階為,這驗(yàn)證了定理3誤差估計(jì)的結(jié)果。圖1是t=1時(shí)刻控制的精確解u*和由高階迎風(fēng)有限體積元方法求得的數(shù)值解的圖像。
參考文獻(xiàn)
[1] W. Gong, M. Hinze, Z. Zhou. A priori error analysis for finite element approximation of parabolic optimal control problems with pointwise control[J]. SIAM Journal on Control and Optimization,2015,52(1):97-119.
[2] S. Court, K. Kunisch, L. Pfeiffer. Optimal control problem for systems of conservation laws, with geometric parameter, and application to the Shallow-Water Equations[J].Interfaces & Free Boundaries,2018,21(3):1-3.
[3] L. John, P. Swierczynski, B. Wohlmuth. Energy corrected FEM for optimal Dirichlet boundary control problems[J]. Numerische Mathematik, 2018(139):913-938.
[4] R. Guo and T. Lin. An immersed finite element method for elliptic interface problems in three dimensions[J]. Journal of Computational Physics, 2020(414):109478.
[5] Q. Zhang,J. Yan,Z. Zhang. High-order upwind finite volume element method for first-order hyperbolic optimal control problems[J].ANZIAM Journal, 2016,57(4):482-498.
[6] Q. Zhang,K. Ito,Z. Li, et al. Immersed finite elements for optimal control problems of elliptic pdes with interfaces[J].JOURNAL OF Computational Physics,2015,298(C):305–319.
[7] 張倩.幾類PDE約束最優(yōu)控制問(wèn)題的數(shù)值方法研究[D].南京師范大學(xué),2016.
[8] 郁鵬飛,傅勤.一階雙曲型偏微分多智能體系統(tǒng)的迭代學(xué)習(xí)控制[J].中國(guó)科技論文,2019,14(11):1185-1191.