• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    利用固態(tài)核磁共振研究100LiO1/2-(100-x)PO5/2-xTeO2快離子導(dǎo)電玻璃的結(jié)構(gòu)

    2020-12-25 01:35:48張宗輝任進軍胡麗麗
    物理化學(xué)學(xué)報 2020年11期
    關(guān)鍵詞:精密機械高功率麗麗

    張宗輝 ,任進軍 ,*,胡麗麗 ,*

    1中國科學(xué)院上海光學(xué)精密機械研究所,高功率激光單元技術(shù)實驗室,上海 201800

    2中國科學(xué)院大學(xué),材料與光電研究中心,北京 100049

    1 Introduction

    Phosphate glasses have been widely applied in high power laser devices1-3, biological materials4-7, and fast ionic conducting glasses8,9. Phosphate ionic conducting glasses,which can be used in “all-solid-state” batteries, are attracting more attention. “All-solid-state” battery is considered to be a very important solution for next-generation rechargeable batteries due to the simple structure, high energy density, and great safety. The properties of phosphate ionic conducting glasses, as potential solid-state electrolyte or cathode materials,can be improved by incorporating various components due to the flexible compositions and admirable vitrification abilities10,11.For instance, a series of Na2O-FeO-P2O5glasses were evaluated as the cathodes for sodium-ion batteries, the conductivity increased with the increase of FeO and 30Na2O-40FeO-30P2O5glass exhibited high reversible discharge capacity as 115 mAh·g-1with a Na anode12. In the AgI-P2O5conducting glass system, the addition of tungsten oxide (WO3) can adjust the glass transition temperature, thermal expansion coefficient, refractive index, optical band edge, electrical conductivity, and improve considerably glass stability against water and humidity in the environment, which are important for drawing conductive fibers13,14.

    The properties of fast ionic conducting glasses are strongly related to the glass network structures. The structure investigations can help to establish the connection between the glass structure and the composition. However, further structural investigations are rarely reported. With the help of mature vibration spectroscopy technologies, such as FTIR and Raman spectra, the structures of ionic conducting glasses can be analyzed. FTIR and Raman spectroscopy was used to study the structures of solid-state glass electrolytes with the compositions ofxLi2O-(1-x)[yB2O3-(1-y)P2O5], in which more P2O5could convert the [BO3] into [BO4] and reduce the Li+ion conductivity,while more B2O3could increase [BO3] thus increasing the Li+ion conductivity of glass electrolyte15.

    Recent years, advanced solid-state nuclear magnetic resonance (SSNMR) spectroscopy technologies have shown outstanding advantages on probing the structures of vitreous materials, due to their flexible and powerful capabilities on detecting the glass networks within short- and medium-range16-20.The structures of AgI-AgPO3-Ag2WO4ionic conducting glasses were investigated using multiple SSNMR technologies, the successive conversion from P―O―P into P―O―W linkages were observed, and the Q(2)-like chain were broken into Q(1)and Q(0)species linked tungsten species and this structural transformation increased the glass rigidity and stability against hydrolysis reactions19.

    In this work, the structures of the glasses with the compositions of 100LiO1/2-(100-x)PO5/2-xTeO2(x= 0, 10, 20,25, 30) are investigated using Ramanspectroscopy and multiple SSNMR technologies. The evolution of phosphorus species is tracked using31P MAS NMR and Raman spectra. The connectivities between phosphorus species are identified by 2D refocused INADEQUATE spectra.125Te WURST-QCPMG experiments are employed to probing the local chemical environments of Te atoms. The correlations between different structure units are discussed based on a random distribution model. Summarized from all discussions, a comprehensive depiction of glass networks is presented.

    2 Experimental

    2.1 Sample preparation and characterization

    All these glass samples with the compositions of 100LiO1/2-(100-x)PO5/2-xTeO2(x= 0, 10, 20, 25, 30) were prepared from LiPO3(99.9%), Li2CO3(99.9%) and TeO2(99.99%). These raw materials were weighed according to the compositions with a total weight of 5 g, and then mixed in a platinum crucible. All these glasses were melted at 800 °C for 20 min and then the melts were cast on a preheated stainless-steel mold. These glass samples are labeled as 0Te, 10Te, 20Te, 25Te and 30Te forx=0, 10, 20, 25, 30, respectively. The differential scanning calorimetry (DSC) curves were obtained using a METTLER TOLEDO TGA/DSC-1600 differential scanning calorimeter.During these measurements, glass samples were heated under N2atmosphere with a heating rate of 10 K·min-1. Raman spectra were obtained by a Renishaw inviaRaman microscope with an excitation wavelength of 488 nm.

    2.2 Solid-state NMR experiments

    In this work, all NMR measurements were operated on a Bruker Avance III HD 500 MHz spectrometer (11.7 T). All31P single pulse MAS NMR spectra were obtained at 202.5 MHz using a 4 mm probe with experimental conditions as followed:the spinning rate is 12 kHz, the length of 90° pulse is 2.5 μs, the recycle delays are 320 s for all samples. And crystalline NH4H2PO4(chemical shift = 1.12 ppm) were employed to calibrate the chemical shifts of31P.

    Fig. 1 The pulse scheme of refocused INADEQUATE and homologous coherence transfer pathway.

    To identify different31P spices and obtain the correlations between these31P species, two-dimensional (2D) refocused INADEQUATE experiments were adopted, in which the31P species involved in P―O―P linkages can be detected by a double quantum (DQ) coherence process created based onJ-coupling effect through P―O―P bond, while the isolated31P species will be filtered out21,22. Fig. 1 shows the pulse scheme of the refocused INADEQUATE and homologous coherence transfer pathway. In 2D refocused INADEQUATE spectra, the F2 dimension and the F1 dimension show the regular one quantum coherence spectrum and double quantum coherence resonance frequency, respectively. The double quantum coherence resonance frequency in the F1 dimension equals the sum of their offset frequencies and autocorrelation peaks will appear at both sides of the diagonal. In this work, 2D refocused INADEQUATE experiments were done using a 2.5 mm probe with a spinning rate of 25 kHz. The length ofπ/2 pulse is 2.0 μs and the recycle delay is 60 s. The DQ filtered coherence was created using an excitation sequence of 90°-τ-180°-τ- 90°, and the mixing timeτwas optimized to be 3.32 ms.

    The chemical environment of125Te nuclei was detected using the static wideband uniform-rate smooth truncation quadrupolar Carr-Purcell-Meiboom-Gill (WURST-QCPMG) technique23.The WURST-80 pulse shape was employed using an 8-step phase cycling. The pulses length of WURST excitation and refocusing were both 50 μs, and the excitation bandwidth was 700 kHz. To compensate the line shape distortions, which originate from transverse relaxation during the formation of frequency-dispersed echoes, the frequency was swept twice in two opposite directions and these two spectra after Fourier transformation were summed into a final spectrum23. The recycle delays were 100 s for all glass samples. The chemical shifts of125Te are calibrated by CdTe. All processing and deconvolutions of solid-state NMR spectra were done by DMFIT software package24.

    3 Results

    3.1 DSC curves and Raman spectra

    Fig. 2 The DSC curves of the glasses with the compositions of 100LiO1/2-(100-x)PO5/2-xTeO2. The line on the top is the Tg depended on composition (x).

    Fig. 3 The Raman spectra of the glasses with the compositions of 100LiO1/2-(100-x)PO5/2-xTeO2. The vibration positions are marked by T1 [v(TeOTe)sym], T2 [v(TeO4)asym], T3 [v(TeO3)],P1 [v(POP)long-chain], P2 [v(POP)short-chain], P3 [v(PO3)sym],P4 [v(PO2)sym] and P5 [v(PO2)asym].

    Fig. 2 shows the DSC curves of 100LiO1/2-(100-x)PO5/2-xTeO2(x= 0, 10, 20, 25, 30) glasses. The glass transition temperature (Tg) of these glasses is almost constant within a measurement error of 10 °C, which is due to the little change of bridging oxygen fractions in these glasses (as discussed below).Fig. 3 shows the Raman spectra of glass 0Te, 10Te, 20Te, 25Te and 30Te. The assignments of Raman vibration bands in this work refer to the previous literature25-30. In glass 0Te (i.e.LiPO3), all phosphorus species should be metaphosphate Q(2)0Tespecies, where the Q(n)mTerepresents the phosphorus species with n bridging oxygen atoms (the oxygen atoms in P―O―P and P―O―Te linkages are both considered to be bridging oxygen atoms) and m Te atoms are connected to this [PO4] tetrahedron.The band at 1175 cm-1corresponds to the symmetric stretching vibration of (PO2) units involving two P―O―Li linkages(v(PO2)sym). And the shoulder at 1255 cm-1can be assigned to the asymmetric stretching vibration of (PO2) units (v(PO2)asym).The bands at 695 cm-1are ascribed to the symmetric stretching vibration of the bridging oxygen between P―O―P linkages(v(POP)sym) in long-chain phosphate structures, while the bands at 745 cm-1are ascribed tov(POP)symin short-chain phosphate structures. After TeO2is incorporated into glasses, a minor band at 1035 cm-1can be observed, which is the symmetric stretching vibrations of (PO3) involving three P―O―Li linkages in Q(1)0Tespecies. The vibration bands associated with (TeO) structural units can be found at 480 and 635 cm-1, which are due to the symmetric stretching vibration of Te―O―Te (v(TeOTe)sym) and the asymmetric stretching of the continuous network composed of[TeO4] trigonal bipyramid (tbp), respectively. The vibration band at 820 cm-1is ascribed to the [TeO3] trigonal pyramid (tp)25,29.

    With the increase of TeO2, the intensity ofv(POP)symin long chains is gradually suppressed, while the band ofv(POP)symin short chains is raised, indicating that long P―O―P chains are broken into short P―O―P chains and more Q(2)0Tespecies transform into Q(1)0Teand Q(2)1Tespecies. Simultaneously, the transformation from Q(2)0Tespecies to Q(2)1Tespecies results in a slight broadening and shifting to lower wavenumber ofv(PO2)symandv(PO2)asymbands, since the symmetric and asymmetricv(PO2) in Q(2)1Tespecies have lower vibration frequency than that in Q(2)0Tespecies. Besides, when TeO2is added into glasses, both three- and four-coordinated Te can be observed. Te-correlated vibration bands gradually rise as TeO2increases.

    3.2 31P MAS NMR spectra

    Fig. 4 shows the31P MAS NMR spectra and deconvolution models of all these glasses. For glass 0Te (i.e.LiPO3), a main peak at -22.7 ppm is observed, which is assigned to Q(2)0Tespecies. There is also a very small signal at -4.9 ppm corresponding to Q(1)0Tespecies. This is because the excess Li2O,due to a small number of volatilization of P2O5during the melting, provides more nonbridging oxygen atoms to form Q(1)0Tespecies. When TeO2is added into the glass, a new peak(at -13.6 ppm for 10Te glass) appears between the positions of Q(2)0Teand Q(1)0Te, which can be ascribed to Q(2)1Tespecies according to the chemical shift position. With the increase of TeO2, Q(2)0Tespecies decrease significantly while Q(2)1Teand Q(1)0Tespecies increase, which is consistent with the results of Raman spectra.

    3.3 31P refocused INADEQUATE spectra

    Fig. 4 (a) The 31P MAS NMR spectra of glasses in 100LiO1/2-(100-x)PO5/2-xTeO2. The spinning sidebands are marked by asterisks.(b) The deconvolutions of 31P MAS NMR spectra. Dash lines represent Q(2)0Te (red), Q(2)1Te (yellow) and Q(1)0Te (green) species, respectively.

    Fig. 5 The 2D 31P refocused INADEQUATE spectra of glass 30Te.Nine translucent red dots in (b) represent nine autocorrelation peaks involving six possible connectivities between Q(2)0Te(-20.0 ppm), Q(2)1Te (-10.6 ppm) and Q(1)0Te (-3.1 ppm) species.

    31P refocused INADEQUATE spectra are employed to identify the31P species and detect the correlations between31P species. Fig. 5 shows 2D31P refocused INADEQUATE spectrum of glass 30Te. In the F2 dimension, all peaks observed in ordinary31P single pulse MAS NMR spectra (see Fig. 4) can also be found, which indicates that there are no isolated31P species in 30Te glass. Six connectivities Q(1)0Te-Q(1)0Te, Q(1)0Te-Q(2)1Te,be observed, corresponding to nine correlation peaks marked by nine translucent red dots in Fig. 5. These results indicate that all the phosphorus species are connected with each other through P―O―P bond.

    3.4 Static 125Te WURST-QCPMG spectra

    Static125Te WURST-QCPMG spectra are generally preferred to probe the chemical environment of125Te rather than magic angle spinning due to the very wide125Te NMR chemical shift distributions18. Fig. 6 illustrates the125Te WURST-QCPMG spectra and deconvolution models. The deconvolution parameters are list in Table 1. There are two components in each spectrum. For 10Te glass, the positions of two components are 2898 and 2262 ppm, which can be assigned to three- and fourcoordinated Te ([TeO3] and [TeO4] species), respectively. [TeO4]species are dominant when the concentration of TeO2is low, but as more PO5/2is substituted by TeO2, the relative proportion of[TeO3] gradually increases.

    Fig. 6 The 125Te WURST-QCPMG spectra and the dash lines show the deconvolution shapes. The whole peaks are deconvoluted into threecoordinated (green) [TeO3] and four-coordinates (red) [TeO4].

    Table 1 The deconvolution parameters of 125Te WURST-QCPMG spectra.

    4 Discussion

    The deconvolution parameters of the31P MAS NMR spectra(shown in Fig. 4) are summarized in Table 2. With the increase ofxvalue, the proportion of Q(2)0Tespecies decreases while that of Q(1)0Teand Q(2)1Tespecies continuously increase. All the structures ofphosphorus and tellurium units are shown in Fig. 7.Both Q(2)0Teand Q(2)1Tespecies have one Li+ion on average while Q(1)0Tehas two Li+ions. The increase of Q(1)0Tewith TeO2indicates that Li+ions prefer to stay around [PO4] units rather than tellurium oxygen polyhedrons. However, a minor number of Li+ions still interact with tellurium oxygen polyhedrons to form [TeO3]. With the increase of TeO2, more Li+ions interact with tellurium oxygen polyhedrons and resulting in the formation of more [TeO3].

    The oxygen atoms in P―O―P, P―O―Te and Te―O―Te are all considered to be bridging oxygen (BO). Thus, the content of Te―BO― bond can be obtained as follows:

    whereF(TeOn) is the relative fraction of TeOnspecies listed in Table 1,N(Te) is the total content of Te under the stoichiometry of 100LiO1/2- (100-x)PO5/2-xTeO2. Similarly, the content of P―BO― bond can be calculated as follows:

    Table 2 The deconvolution parameters of 31P MAS NMR spectra.

    Fig. 7 The structural sketches of phosphorus of Q(2)0Te, Q(2)1Te,Q(1)0Te, three- and four-coordinated Te species. The single, double and dash lines represent the single, double and noninteger bonds,respectively. Every Te atom has a pair of lone electrons and TeOn represents n-coordinated Te.

    Thus, the fractions of P―BO― and Te―BO― bonds can be calculated as follows:

    Here, we propose a random distribution model. We assume that all P―BO― and Te―BO― randomly bond to form P―O―P, P―O―Te and Te―O―Te linkages, then the probabilities to form P―O―P, P―O―Te and Te―O―Te linkages are:

    And the total content of these three kinds of linkages is equal to the total content of BO as follows:

    Thus, the theoretical contents of P―O―P, P―O―Te and Te―O―Te (under the stoichiometry of 100LiO1/2-(100-x)PO5/2-xTeO2.) can be calculated according to the random distribution model as follows:

    Fig. 8 Comparison between the theoretical contents calculated according to random distribution model (red) and experimental contents (black) of the P―O―P (a), P―O―Te (b) and Te―O―Te (c) linkages. All the contents are relative to the stoichiometry of 100LiO1/2-(100-x)PO5/2-xTeO2.

    Simultaneously, the experimental contents of P―O―P,P―O―Te, Te―O―Te can be calculated from the deconvolutions of125Te WURST-QCPMG and31P MAS NMR spectra (list in Table 1 and Table 2) as follows:

    Fig. 8 shows the comparisons between the theoretical (red)and experimental (black) contents of P―O―P, P―O―Te and Te―O―Te linkages. For both P―O―P and Te―O―Te linkages, the experimental values are slightly higher than the theoretical ones. And for P―O―Te linkage, it is inverse. These indicate that P and Te atoms slightly prefer homonuclear connectivity than heteronuclear connectivity.

    In this glass system, the fractions of BO in total oxygen atoms can be calculated:

    Fig. 9 The fractions of bridging oxygen atom and Tg of the glasses with the compositions of 100LiO1/2-(100-x)PO5/2-xTeO2.

    Fig. 9 shows the change trends of the total fractions of BO and theTgvalues. With the increase of TeO2, the fraction of BO andTghave similar change trends that they almost remain constant within errors. This is not unexpected since the strength of the glass network depends on the fraction of BO. The similar BO fractions indicate the similar glass network connectivities and similarTgin this glass system.

    5 Conclusions

    The structures of the glasses in 100LiO1/2-(100-x)PO5/2-xTeO2 (x= 0, 10, 20, 25, 30) system are investigated by solidstate NMR technologies and Raman spectroscopy. When TeO2is incorporated into these glasses, long P―O―P chains involved in glass networks are broken into short chains and Q(2)0Tespecies gradually transform into Q(2)1Teand Q(1)0Tespecies. Q(2)0Te, Q(2)1Teand Q(1)0Te species are connected with each other through P―O―P. With the addition of TeO2, a minor number of Li+ions interact with tellurium oxygen polyhedrons resulting in the formation of [TeO3]. However, Li+ions prefer to stay around[PO4] units rather than tellurium oxygen polyhedrons. Therefore,only a small fraction of [TeO3] is formed, which increases with the content of TeO2. Most Te atoms exist as [TeO4] in all these glasses. With PO5/2 being gradually replaced by TeO2, both theTgand the fraction of bridging oxygen are almost unchanged,which means the glass network connectivity has no obvious change. The homonuclear connectivities P―O―P and Te―O―Te show slight priority over the heteronuclear connectivity P―O―Te. In summary, this study presents a comprehensive structure study of Li-doped tellurium phosphate ionic conducting glasses. This work could promote the understanding of the glass structure dependence on compositions and the development of new ionic conducting glasses.

    Acknowledgment:We thank Yujing Shen (Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences) and Sasa Yan (Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences) for theirassistance on the DSC and Raman measurements, respectively.

    猜你喜歡
    精密機械高功率麗麗
    EPIRUS Leonidas反無人機/反電子高功率微波系統(tǒng)
    軍事文摘(2023年15期)2023-09-20 02:08:18
    快點 快點
    昆山邁晟科精密機械有限公司
    模具制造(2022年1期)2022-02-23 01:13:34
    昆山邁晟科精密機械有限公司
    模具制造(2021年7期)2021-09-14 00:28:20
    昆山邁晟科精密機械有限公司
    模具制造(2021年6期)2021-08-06 01:07:54
    畫一畫
    昆山邁晟科精密機械有限公司
    模具制造(2020年12期)2020-02-06 08:05:18
    I love my family
    賴麗麗
    中國篆刻(2016年3期)2016-09-26 12:19:28
    一種90W高功率以太網(wǎng)供電系統(tǒng)的設(shè)計
    国产黄片美女视频| 色5月婷婷丁香| 午夜日韩欧美国产| 亚洲国产精品合色在线| avwww免费| 中国国产av一级| 久久国内精品自在自线图片| 国产aⅴ精品一区二区三区波| 日韩精品中文字幕看吧| 人人妻,人人澡人人爽秒播| 国产精品人妻久久久影院| 一夜夜www| 成人av在线播放网站| 国产 一区 欧美 日韩| 人妻制服诱惑在线中文字幕| 久久久午夜欧美精品| 深夜精品福利| 男人和女人高潮做爰伦理| 直男gayav资源| 少妇熟女aⅴ在线视频| av天堂在线播放| 国产精品三级大全| 在线免费观看不下载黄p国产| 中文字幕人妻熟人妻熟丝袜美| 欧美绝顶高潮抽搐喷水| 91av网一区二区| 露出奶头的视频| 久久久国产成人免费| 真实男女啪啪啪动态图| 女同久久另类99精品国产91| 久久精品国产亚洲av香蕉五月| 男女之事视频高清在线观看| 午夜精品国产一区二区电影 | 国产69精品久久久久777片| 国内精品久久久久精免费| 国产高清不卡午夜福利| 久久中文看片网| 嫩草影院入口| 亚洲天堂国产精品一区在线| 久久精品91蜜桃| 国产精品久久久久久精品电影| 女人十人毛片免费观看3o分钟| 最新在线观看一区二区三区| 日韩欧美在线乱码| 村上凉子中文字幕在线| 日本爱情动作片www.在线观看 | 久久这里只有精品中国| 中国美女看黄片| 精品99又大又爽又粗少妇毛片| 搞女人的毛片| 2021天堂中文幕一二区在线观| 久久久精品94久久精品| 99热这里只有是精品在线观看| 日日摸夜夜添夜夜添小说| 国产熟女欧美一区二区| 久久精品91蜜桃| 色在线成人网| 国产成年人精品一区二区| 久久天躁狠狠躁夜夜2o2o| 国产精品久久电影中文字幕| 亚洲经典国产精华液单| 深夜精品福利| 亚洲国产精品成人久久小说 | 亚洲第一区二区三区不卡| 免费电影在线观看免费观看| 日韩亚洲欧美综合| 欧美最黄视频在线播放免费| 欧美又色又爽又黄视频| 岛国在线免费视频观看| 尤物成人国产欧美一区二区三区| 午夜福利在线观看免费完整高清在 | 亚洲,欧美,日韩| 亚洲精品在线观看二区| 国产精品爽爽va在线观看网站| 能在线免费观看的黄片| 国产精品野战在线观看| 亚洲精品一区av在线观看| 最近视频中文字幕2019在线8| 中文字幕精品亚洲无线码一区| 精品久久久久久久人妻蜜臀av| 22中文网久久字幕| 免费看美女性在线毛片视频| 中文字幕免费在线视频6| 久久久久国产精品人妻aⅴ院| 精品久久久久久久久亚洲| 精品免费久久久久久久清纯| 尤物成人国产欧美一区二区三区| 一区二区三区高清视频在线| 舔av片在线| 最近的中文字幕免费完整| 亚洲av中文字字幕乱码综合| 国产精品无大码| 最近中文字幕高清免费大全6| 国产精品伦人一区二区| 成人亚洲欧美一区二区av| 国产私拍福利视频在线观看| 亚洲国产精品成人久久小说 | 国产三级中文精品| 亚洲最大成人av| aaaaa片日本免费| 搡老熟女国产l中国老女人| 欧美日本亚洲视频在线播放| 一夜夜www| 成年av动漫网址| 婷婷精品国产亚洲av| 久久久久久久久大av| 亚洲精品久久国产高清桃花| av在线老鸭窝| 久久久久久九九精品二区国产| 国产一区二区在线av高清观看| 51国产日韩欧美| 人人妻人人看人人澡| 久久久午夜欧美精品| 综合色丁香网| 老女人水多毛片| 成年女人看的毛片在线观看| or卡值多少钱| 国产精品久久电影中文字幕| 色哟哟哟哟哟哟| 五月玫瑰六月丁香| 熟女人妻精品中文字幕| 小蜜桃在线观看免费完整版高清| 欧美日韩精品成人综合77777| 美女内射精品一级片tv| 免费观看精品视频网站| 亚洲自拍偷在线| 99国产精品一区二区蜜桃av| 淫妇啪啪啪对白视频| 在线观看av片永久免费下载| 日本a在线网址| 成年av动漫网址| 99视频精品全部免费 在线| 97超视频在线观看视频| 国产日本99.免费观看| 少妇熟女aⅴ在线视频| 99久久精品热视频| 欧美xxxx性猛交bbbb| 国产精品不卡视频一区二区| 精品久久久久久久久亚洲| 一边摸一边抽搐一进一小说| 国产在线男女| 少妇人妻一区二区三区视频| 一级毛片我不卡| 国内精品久久久久精免费| 此物有八面人人有两片| av卡一久久| 真实男女啪啪啪动态图| 村上凉子中文字幕在线| 99久久精品国产国产毛片| 一级毛片aaaaaa免费看小| 日产精品乱码卡一卡2卡三| 一区二区三区四区激情视频 | 国产在视频线在精品| 国产午夜福利久久久久久| 欧美性猛交黑人性爽| 欧美丝袜亚洲另类| 国产亚洲精品久久久久久毛片| 欧美精品国产亚洲| 亚洲精品456在线播放app| 免费av不卡在线播放| 久久人人爽人人爽人人片va| 精品午夜福利视频在线观看一区| 国产免费一级a男人的天堂| 亚洲无线在线观看| 欧美极品一区二区三区四区| 一进一出抽搐gif免费好疼| 黄色视频,在线免费观看| 老司机福利观看| 欧美日韩一区二区视频在线观看视频在线 | www日本黄色视频网| 日韩欧美精品免费久久| 国产欧美日韩精品一区二区| 少妇人妻一区二区三区视频| 久久久色成人| 国产白丝娇喘喷水9色精品| 久久中文看片网| 国产精品一区www在线观看| av在线亚洲专区| 精品国产三级普通话版| 人妻少妇偷人精品九色| 日韩精品中文字幕看吧| 91久久精品国产一区二区三区| 晚上一个人看的免费电影| 成人亚洲欧美一区二区av| 国产一区二区激情短视频| 久久久国产成人精品二区| 亚洲精品一卡2卡三卡4卡5卡| 亚洲国产欧洲综合997久久,| 成人鲁丝片一二三区免费| 变态另类成人亚洲欧美熟女| 听说在线观看完整版免费高清| 精品久久久久久成人av| 人妻夜夜爽99麻豆av| 18禁在线播放成人免费| 99热这里只有是精品50| 欧美日韩精品成人综合77777| 国产亚洲av嫩草精品影院| 亚洲精华国产精华液的使用体验 | 嫩草影院入口| 国产伦一二天堂av在线观看| 久久人人爽人人爽人人片va| 校园春色视频在线观看| 日产精品乱码卡一卡2卡三| 精品久久久久久久末码| 成人永久免费在线观看视频| 色综合亚洲欧美另类图片| 国产精品美女特级片免费视频播放器| 亚洲成人av在线免费| 男女边吃奶边做爰视频| av黄色大香蕉| 亚洲国产精品sss在线观看| 最后的刺客免费高清国语| 国产亚洲精品综合一区在线观看| 免费不卡的大黄色大毛片视频在线观看 | 免费无遮挡裸体视频| 国产亚洲91精品色在线| 欧洲精品卡2卡3卡4卡5卡区| 欧美日本亚洲视频在线播放| 简卡轻食公司| 插逼视频在线观看| 狠狠狠狠99中文字幕| 中文字幕久久专区| 色综合亚洲欧美另类图片| 在线免费观看不下载黄p国产| 亚洲精品一卡2卡三卡4卡5卡| 亚洲无线在线观看| 国内精品久久久久精免费| 3wmmmm亚洲av在线观看| a级毛色黄片| 欧美区成人在线视频| 乱人视频在线观看| 日日摸夜夜添夜夜添小说| 精品国产三级普通话版| 干丝袜人妻中文字幕| 国内精品美女久久久久久| 男女之事视频高清在线观看| 午夜日韩欧美国产| 在线免费观看的www视频| 国产日本99.免费观看| 亚洲中文字幕日韩| 一区二区三区四区激情视频 | 又粗又爽又猛毛片免费看| 毛片一级片免费看久久久久| 亚洲性久久影院| 日韩三级伦理在线观看| 99久国产av精品| 免费在线观看影片大全网站| 国产精品久久视频播放| 人妻制服诱惑在线中文字幕| 中国国产av一级| 99热这里只有是精品50| 欧美bdsm另类| 三级毛片av免费| 免费av不卡在线播放| 国产精品免费一区二区三区在线| 亚洲高清免费不卡视频| 美女被艹到高潮喷水动态| 搡女人真爽免费视频火全软件 | 国产精品久久久久久久电影| 欧美zozozo另类| 看片在线看免费视频| 久久这里只有精品中国| 女的被弄到高潮叫床怎么办| 亚洲乱码一区二区免费版| 亚洲最大成人手机在线| 波野结衣二区三区在线| 欧美zozozo另类| 国产精品人妻久久久久久| 亚洲一级一片aⅴ在线观看| 亚洲精品456在线播放app| 国产爱豆传媒在线观看| 99久国产av精品国产电影| 又黄又爽又免费观看的视频| 我要搜黄色片| 亚洲国产日韩欧美精品在线观看| 国产精品日韩av在线免费观看| 又爽又黄a免费视频| 亚洲乱码一区二区免费版| 最近在线观看免费完整版| .国产精品久久| 深爱激情五月婷婷| 波多野结衣巨乳人妻| 美女黄网站色视频| 尤物成人国产欧美一区二区三区| 成人国产麻豆网| 最新在线观看一区二区三区| 人人妻,人人澡人人爽秒播| 男人和女人高潮做爰伦理| 亚洲经典国产精华液单| 91久久精品国产一区二区成人| 亚洲中文日韩欧美视频| 国产一区二区亚洲精品在线观看| 精品久久久噜噜| avwww免费| 国产69精品久久久久777片| 国产高清视频在线播放一区| 毛片女人毛片| 成年女人看的毛片在线观看| 男人的好看免费观看在线视频| 国内精品一区二区在线观看| 欧美日韩乱码在线| 91狼人影院| 国产精品三级大全| 免费人成在线观看视频色| 香蕉av资源在线| 人妻久久中文字幕网| 日本五十路高清| 一本一本综合久久| 大香蕉久久网| 国产黄a三级三级三级人| 国产精品永久免费网站| 日韩制服骚丝袜av| 久久精品国产亚洲av天美| 午夜影院日韩av| 国产美女午夜福利| 大型黄色视频在线免费观看| 国产黄色视频一区二区在线观看 | 黄色一级大片看看| or卡值多少钱| 亚洲图色成人| 91久久精品电影网| 亚洲av第一区精品v没综合| 在线国产一区二区在线| 国产一区二区亚洲精品在线观看| 免费一级毛片在线播放高清视频| 少妇的逼好多水| 丝袜喷水一区| 99热只有精品国产| 丝袜喷水一区| 亚洲18禁久久av| 国内久久婷婷六月综合欲色啪| eeuss影院久久| 日本黄色片子视频| 国产三级在线视频| 欧美色欧美亚洲另类二区| 午夜福利高清视频| 最近的中文字幕免费完整| 国产高潮美女av| 一本一本综合久久| 国产女主播在线喷水免费视频网站 | 中国美白少妇内射xxxbb| 精品久久国产蜜桃| 波多野结衣巨乳人妻| 变态另类丝袜制服| 啦啦啦韩国在线观看视频| 99热只有精品国产| 国内精品久久久久精免费| 97超视频在线观看视频| 精品久久久噜噜| 99热只有精品国产| 国产色婷婷99| 国产一区二区在线av高清观看| 亚洲三级黄色毛片| 精品久久久久久久久av| 亚洲丝袜综合中文字幕| 亚洲18禁久久av| 国产精品一区二区免费欧美| 亚洲av免费在线观看| 国产又黄又爽又无遮挡在线| 丰满人妻一区二区三区视频av| 精品人妻一区二区三区麻豆 | 成人二区视频| 91av网一区二区| 老司机午夜福利在线观看视频| 少妇人妻一区二区三区视频| 午夜福利成人在线免费观看| avwww免费| 精品久久久久久成人av| 丰满的人妻完整版| 成年av动漫网址| 热99在线观看视频| 一本精品99久久精品77| 国产精品国产三级国产av玫瑰| 色尼玛亚洲综合影院| 久久99热这里只有精品18| 亚洲国产精品久久男人天堂| 菩萨蛮人人尽说江南好唐韦庄 | 久久午夜福利片| 亚洲av二区三区四区| 男女视频在线观看网站免费| 婷婷精品国产亚洲av| 六月丁香七月| 日本黄色视频三级网站网址| 麻豆国产av国片精品| 99久久九九国产精品国产免费| 亚洲国产欧美人成| a级一级毛片免费在线观看| 色综合站精品国产| 日韩成人伦理影院| 两个人视频免费观看高清| 国产毛片a区久久久久| 欧美zozozo另类| 一个人看的www免费观看视频| av视频在线观看入口| 亚洲最大成人中文| 国产精品久久视频播放| 国产视频一区二区在线看| 最近手机中文字幕大全| av在线蜜桃| 乱系列少妇在线播放| 22中文网久久字幕| 桃色一区二区三区在线观看| 日韩中字成人| 亚洲美女搞黄在线观看 | 天堂av国产一区二区熟女人妻| 麻豆国产97在线/欧美| 人妻丰满熟妇av一区二区三区| 亚洲内射少妇av| 国产精品野战在线观看| 国产精品女同一区二区软件| 少妇熟女aⅴ在线视频| 少妇猛男粗大的猛烈进出视频 | 国产成人91sexporn| 午夜久久久久精精品| 国产精品,欧美在线| 国产高清三级在线| 国产成人福利小说| 欧美日韩国产亚洲二区| 色播亚洲综合网| 国产视频一区二区在线看| 久久午夜亚洲精品久久| 国产精品久久久久久亚洲av鲁大| 成年女人毛片免费观看观看9| 色噜噜av男人的天堂激情| 亚洲国产精品国产精品| 国产精品人妻久久久影院| 日韩一区二区视频免费看| 久久久精品94久久精品| 伊人久久精品亚洲午夜| 午夜福利在线观看吧| 亚洲国产高清在线一区二区三| 亚洲国产色片| 蜜臀久久99精品久久宅男| 一进一出抽搐动态| 深夜a级毛片| 一卡2卡三卡四卡精品乱码亚洲| 精品一区二区免费观看| 精品一区二区三区av网在线观看| 久久久精品94久久精品| 亚洲欧美日韩东京热| 99久久无色码亚洲精品果冻| 亚洲欧美精品自产自拍| 狂野欧美白嫩少妇大欣赏| 午夜福利18| 蜜桃久久精品国产亚洲av| 国产精品免费一区二区三区在线| 天堂av国产一区二区熟女人妻| 美女xxoo啪啪120秒动态图| 国产成人freesex在线 | 在线播放国产精品三级| 丰满人妻一区二区三区视频av| 99精品在免费线老司机午夜| 欧美性感艳星| 国产精品1区2区在线观看.| 久久九九热精品免费| 久久精品人妻少妇| 亚洲av不卡在线观看| 久久99热这里只有精品18| 天堂网av新在线| a级毛片a级免费在线| 国产探花极品一区二区| 高清毛片免费观看视频网站| 97碰自拍视频| 欧美成人免费av一区二区三区| 日日撸夜夜添| 麻豆一二三区av精品| 综合色丁香网| 国产亚洲精品久久久久久毛片| 午夜爱爱视频在线播放| 深夜a级毛片| 久久精品国产鲁丝片午夜精品| 国产欧美日韩精品亚洲av| 欧美日本视频| 一区二区三区免费毛片| 欧美一区二区精品小视频在线| 啦啦啦啦在线视频资源| 日日撸夜夜添| 在线国产一区二区在线| 国产成人a∨麻豆精品| 色哟哟哟哟哟哟| 99热这里只有是精品在线观看| 成人国产麻豆网| 精品久久久噜噜| 国产精品精品国产色婷婷| 欧美绝顶高潮抽搐喷水| 美女cb高潮喷水在线观看| 欧美一区二区精品小视频在线| 欧美中文日本在线观看视频| 丰满的人妻完整版| 中文字幕av在线有码专区| 亚洲av第一区精品v没综合| 熟女电影av网| 麻豆精品久久久久久蜜桃| 在线观看一区二区三区| 联通29元200g的流量卡| 免费观看人在逋| 国产亚洲精品久久久久久毛片| 综合色丁香网| 国产视频一区二区在线看| 国产黄色视频一区二区在线观看 | 波多野结衣高清无吗| 成熟少妇高潮喷水视频| 天堂动漫精品| 成人永久免费在线观看视频| 最近手机中文字幕大全| 最好的美女福利视频网| 久久精品国产鲁丝片午夜精品| 成年女人永久免费观看视频| 欧美不卡视频在线免费观看| 老司机影院成人| 最好的美女福利视频网| 国产大屁股一区二区在线视频| 久久久久久国产a免费观看| 久久久久国产精品人妻aⅴ院| 日本欧美国产在线视频| 亚洲精品日韩av片在线观看| 观看免费一级毛片| 深爱激情五月婷婷| 成人特级黄色片久久久久久久| 久久人人爽人人片av| 九九久久精品国产亚洲av麻豆| 日日摸夜夜添夜夜添小说| 欧美zozozo另类| 悠悠久久av| 亚洲欧美精品综合久久99| 日韩欧美三级三区| 伦精品一区二区三区| 最后的刺客免费高清国语| 日日啪夜夜撸| 中文在线观看免费www的网站| 一级毛片电影观看 | 级片在线观看| 听说在线观看完整版免费高清| 国产老妇女一区| 久久人人爽人人片av| 国产精品久久久久久精品电影| 日韩欧美在线乱码| 99riav亚洲国产免费| 亚洲精品一区av在线观看| 亚洲天堂国产精品一区在线| 黄色视频,在线免费观看| 亚洲人成网站在线播放欧美日韩| 夜夜夜夜夜久久久久| 久久中文看片网| 国产伦一二天堂av在线观看| 日本欧美国产在线视频| 精品久久久久久久久亚洲| 精品国内亚洲2022精品成人| 91在线精品国自产拍蜜月| 12—13女人毛片做爰片一| 亚洲av电影不卡..在线观看| 九色成人免费人妻av| 欧美不卡视频在线免费观看| 久久精品夜色国产| 香蕉av资源在线| 欧美日韩国产亚洲二区| 午夜精品在线福利| 美女免费视频网站| 欧美最黄视频在线播放免费| 一个人观看的视频www高清免费观看| 22中文网久久字幕| 国产av一区在线观看免费| 乱人视频在线观看| 精品一区二区三区视频在线观看免费| 免费看日本二区| 亚洲熟妇熟女久久| 99久久九九国产精品国产免费| 最近2019中文字幕mv第一页| 免费av毛片视频| 国产成人一区二区在线| 好男人在线观看高清免费视频| 色噜噜av男人的天堂激情| 赤兔流量卡办理| 日韩高清综合在线| 亚洲乱码一区二区免费版| 成人美女网站在线观看视频| 亚洲aⅴ乱码一区二区在线播放| 大型黄色视频在线免费观看| 国产在视频线在精品| 一个人免费在线观看电影| 三级国产精品欧美在线观看| 免费黄网站久久成人精品| 露出奶头的视频| 亚洲国产高清在线一区二区三| 国产精品久久久久久久久免| 国产一区二区亚洲精品在线观看| 精品不卡国产一区二区三区| 男人狂女人下面高潮的视频| 少妇的逼好多水| 亚洲专区国产一区二区| 亚洲一区高清亚洲精品| 亚洲内射少妇av| 在线a可以看的网站| 成人鲁丝片一二三区免费| 国产av不卡久久| av福利片在线观看| 干丝袜人妻中文字幕| 国产黄a三级三级三级人| 在线观看66精品国产| 夜夜夜夜夜久久久久| 天堂√8在线中文| 老熟妇乱子伦视频在线观看| 国产中年淑女户外野战色| 久久久久久久久久黄片| 国产毛片a区久久久久| 麻豆乱淫一区二区| 国产亚洲91精品色在线| 网址你懂的国产日韩在线| 精品欧美国产一区二区三| 亚洲真实伦在线观看| 亚洲图色成人| 搡老妇女老女人老熟妇| 男女啪啪激烈高潮av片| 男女那种视频在线观看| 夜夜爽天天搞|