杜藝 梁順 柯劍婷 魏玉婷 裴雪峰
【摘要】 目的 分析在不同缺氧狀態(tài)下大鼠腎組織中缺氧誘導(dǎo)因子-1αmRNA(HIF-1αmRNA)水平表達(dá)和血清超氧化物歧化酶(SOD)及丙二醛(MDA)含量變化, 探討阻塞性睡眠呼吸暫停低通氣綜合征(OSAHS)腎損傷的特點。方法 30只大鼠, 采用隨機(jī)數(shù)字表法分為正常對照組、間歇性缺氧組和持續(xù)性缺氧組, 每組10只。正常對照組大鼠不予任何處理, 剩余兩組分別放入間歇性缺氧/再氧合動物艙建立慢性間歇性缺氧(CIH)和持續(xù)性缺氧大鼠模型。造模15 d后, 收集三組大鼠24 h尿液, 檢測尿蛋白定量, 酶聯(lián)免疫吸附試驗(ELISA)方法檢測各組血清SOD及MDA水平, 蘇木精—伊紅染色法(HE)染色觀察腎組織形態(tài)學(xué)改變做腎小管損傷評分, 實時熒光定量聚合酶鏈反應(yīng)(PCR)檢測腎組織HIF- lα mRNA的表達(dá)量。比較三組一般情況、血清SOD、MDA、24 h尿蛋白定量、腎小管損傷程度評分、HIF-1αmRNA水平, 分析HIF-1α mRNA和血清MDA與24 h尿蛋白定量、腎小管損傷程度的相關(guān)性。結(jié)果 正常對照組大鼠反應(yīng)敏捷, 毛發(fā)光亮, 精神狀況良好。持續(xù)性缺氧組和間歇性缺氧組大鼠行動遲緩, 毛發(fā)稀疏, 消瘦。正常對照組體重(210.03±15.71)g明顯高于間歇性缺氧組的(185.94±6.79)g和持續(xù)性缺氧組的(169.18±10.23)g, 間歇性缺氧組體重高于持續(xù)性缺氧組, 差異均有統(tǒng)計學(xué)意義(P<0.05)。正常對照組血清SOD水平明顯高于間歇性缺氧組和持續(xù)性缺氧組, 24 h尿蛋白定量、血清MDA、腎小管損傷程度評分均明顯低于間歇性缺氧組和持續(xù)性缺氧組, 差異均有統(tǒng)計學(xué)意義(P<0.05)。間歇性缺氧組血清MDA、腎小管損傷程度評分均明顯高于持續(xù)性缺氧組, 血清SOD水平明顯低于持續(xù)性缺氧組, 差異均有統(tǒng)計學(xué)意義(P<0.05)。間歇性缺氧組和持續(xù)性缺氧組24 h尿蛋白定量比較差異無統(tǒng)計學(xué)意義(P>0.05)。正常對照組HIF-1αmRNA水平(0.23±0.18)明顯低于間歇性缺氧組的(0.78±0.33)、持續(xù)性缺氧組的(0.52±0.13), 而間歇性缺氧組HIF-1αmRNA水平高于持續(xù)性缺氧組, 差異均有統(tǒng)計學(xué)意義(P<0.05)。HIF-1α mRNA與24 h尿蛋白定量、腎小管損傷程度呈正相關(guān)(r=0.65、0.78, P<0.05);血清MDA與24 h尿蛋白定量、腎小管損傷程度呈正相關(guān)(r=0.68、0.72, P<0.05)。結(jié)論 慢性缺氧抑制大鼠生長發(fā)育, 出現(xiàn)腎功能損傷, CIH以腎小管的損傷更加明顯, CIH與持續(xù)性缺氧相比較高水平的 HIF-1αmRNA表達(dá)提示機(jī)體處于缺氧應(yīng)激狀態(tài), CIH腎損害可能與氧化應(yīng)激狀態(tài)及高水平的HIF-1αmRNA表達(dá)有關(guān)。
【關(guān)鍵詞】 間歇性缺氧;氧化應(yīng)激;缺氧誘導(dǎo)因子
DOI:10.14163/j.cnki.11-5547/r.2020.32.084
【Abstract】 Objective? ?To analyze the expression of hypoxia-inducible factor-1 α mRNA (HIF-1 α mRNA) and the changes of superoxide dismutase (SOD) and malondialdehyde (MDA) in rats under different hypoxia conditions, and to discuss the characteristics of renal injury in obstructive sleep apnea hypopnea syndrome (OSAHS). Methods? ?A total of 30 rats were randomly divided into normal control group, intermittent hypoxia group and persistent hypoxia group according to random numerical table, with 10 rats in each group. The rats in the normal control group were not treated, and the remaining two groups were put into intermittent hypoxia/reoxygenation animal cabins to establish chronic intermittent hypoxia (CIH) and persistent hypoxia rat models. After 15 d of modeling, the 24 h urine of the three groups of rats was collected, and the urine protein was measured. The enzyme-linked immunosorbent assay (ELISA) method was used to detect the serum SOD and MDA levels in each group. Hematoxylin-Eosin (HE) staining was used to observe the morphological changes of renal tissues to score renal tubular damage, and real-time fluorescent quantitative polymerase chain reaction (PCR) to detect the expression of HIF-1α mRNA in renal tissues. The general condition, serum SOD, MDA, 24-h urinary protein quantification, renal tubular injury score, HIF-1 α mRNA level were compared among the three groups, and the correlation between HIF-1 α mRNA, serum MDA and 24-h urinary protein quantification, renal tubular injury degree was analyzed. Results? ?The rats in the normal control group had quick response, bright hair and good mental condition. The rats in the persistent hypoxia group and the intermittent hypoxia group were slow, with sparse hair and weight loss. The weight (210.03±15.71) g of normal control group was obviously higher than (185.94±6.79) g of persistent hypoxia group and (169.18±10.23) g of intermittent hypoxia group, and intermittent hypoxia group was higher than persistent hypoxia group, and the difference was statistically significant (P<0.05). The serum SOD of normal control group was obviously higher than intermittent hypoxia group and persistent hypoxia group, and 24-h urinary protein quantification, renal tubular injury score were obviously lower than intermittent hypoxia group and persistent hypoxia group, and the difference was statistically significant (P<0.05). The serum MDA and renal tubular injury score of intermittent hypoxia group were obviously higher than persistent hypoxia group, and serum SOD was obviously lower than persistent hypoxia group, and the difference was statistically significant (P<0.05). There was no statistically significant difference in 24-h urinary protein quantification between intermittent hypoxia group and persistent hypoxia group (P>0.05). HIF-1αmRNA (0.23±0.18) of normal control group was obviously lower than (0.78±0.33) of intermittent hypoxia group and (0.52±0.13) of persistent hypoxia group, and HIF-1αmRNA of intermittent hypoxia group was higher than persistent hypoxia group, and the difference was statistically significant (P<0.05). HIF-1α mRNA was positively correlated with 24-h urinary protein quantification and renal tubular injury (r=0.65, 0.78, P<0.05). Serum MDA was positively correlated with 24-h urinary protein quantification and renal tubular injury (r=0.68, 0.72, P<0.05). Conclusion? ?Chronic hypoxia inhibits the growth and development of rats, resulting in renal function injury. The injury of renal tubules in CIH was more obvious. Compared with persistent hypoxia, the higher level of HIF-1αmRNA expression in CIH suggests that the body is in a state of hypoxic stress. CIH renal damage may be related to oxidative stress and high levels of HIF-1αmRNA expression.
【Key words】 Intermittent hypoxia; Oxidative stress; Hypoxia-inducible factor
阻塞性睡眠呼吸暫停低通氣綜合征(obstructive sleep apnea hypopnea syndrome, OSAHS)是臨床常見的睡眠呼吸疾病, 可導(dǎo)致全身多系統(tǒng)功能損害[1]。與持續(xù)性缺氧不同, 睡眠呼吸暫停慢性間歇低氧是OSAHS 特有的特殊低氧模式。反復(fù)的低氧-復(fù)氧, 類似缺血再灌注, 細(xì)胞線粒體產(chǎn)生較多的活性氧簇(reactive oxygen species, ROS), 引起機(jī)體氧化應(yīng)激, 是OSAHS導(dǎo)致機(jī)體損害的重要病理生理機(jī)制[2]。腎臟因其為高血流、高灌注臟器, 對氧供給與張力的變化更為敏感, 更易受到缺氧的損傷[3]。近年來對OSAHS腎損傷的研究逐漸受到重視。OSAHS腎損傷主要表現(xiàn)為夜間多尿、蛋白尿、腎小管功能受損等, 后期可發(fā)展為慢性腎衰竭, 但相關(guān)機(jī)制尚不清楚[4]。本實驗根據(jù)OSAHS的典型病理生理特征, 建立慢性間歇性缺氧(chronic intermittent hypoxia, CIH)大鼠模型, 觀察與持續(xù)缺氧方式對 Wistar大鼠腎功能、缺氧誘導(dǎo)因子-1αmRNA(hypoxia-inducible?factor-lamRNA, HIF-1αmRNA)的表達(dá)、氧化應(yīng)激影響的異同, 以期對OSAHS的臨床治療提供實驗依據(jù)。
1 材料與方法
1. 1 材料來源 健康雄性Wistar大鼠30只, 4~6周齡, 體重18~200 g, 由中山大學(xué)實驗動物中心提供, 飼養(yǎng)于本院實驗動物中心。所有大鼠適應(yīng)性飼養(yǎng)3 d, 自由飲水飲食, 飼養(yǎng)環(huán)境溫度19~23℃, 空氣濕度為 50%~60%。
1. 2 試劑 ELISA試劑盒購于上海銘睿生物科技有限公司, CIH/再氧合動物艙(廣州市華粵儀器有限公司);ABI Prism 7300 SDS PCR儀為美國ABI公司產(chǎn)品;兔抗HIF-1多克隆抗體購自北京博奧森生物有限公司;Trizol購自ABI基因公司;引物序列由上海生物工程技術(shù)服務(wù)公司合成;綠色熒光核酸染料熒光定量PCR試劑盒購自廣州達(dá)暉生物公司。
1. 3 分組及模型制備 將30只大鼠采用隨機(jī)數(shù)字表法分為正常對照組、間歇性缺氧組和持續(xù)性缺氧組, 每組10只。每天上午8:00至下午4:00將間歇性缺氧組和持續(xù)性缺氧組大鼠分別放置于間歇性缺氧組艙和持續(xù)性缺氧艙內(nèi)。間歇性缺氧組模型的建模方法:根據(jù)N2稀釋原理, 循環(huán)充入N2和O2, 每一循環(huán)為9 min,?4 min充入N2, 5 min充入O2, 使箱內(nèi)氧濃度在6%和21%切換;由測氧儀監(jiān)測間歇性低氧艙中的氧濃度, 調(diào)節(jié)氣體流量, 使每一循環(huán)間歇性低氧艙內(nèi)的最低氧濃度達(dá)6%左右, 持續(xù)45 s左右, 然后再恢復(fù)至21%。該循環(huán)每天重復(fù)8 h, 共15 d, 建立間歇性低氧大鼠模型[5, 6]。持續(xù)性缺氧組放入氧濃度為(7.0±0.5)%的缺氧艙內(nèi)。在實驗過程中將整個實驗艙罩上黑布, 模擬夜晚大鼠睡眠環(huán)境, 實驗艙內(nèi)及室內(nèi)溫度20~25℃, 濕度45%~55%。實驗結(jié)束后, 所有大鼠放置普通飼養(yǎng)籠中飼養(yǎng)且給予人工日光照射, 全天飲食及活動自由, 模擬白天狀態(tài)。正常對照組放置無蓋箱內(nèi)常規(guī)飼養(yǎng), 不予任何處理。每天除實驗時間外, 所有大鼠放置相同自然環(huán)境下生活和飼養(yǎng)。
1. 4 標(biāo)本獲取及檢測 造模15 d后, 所有大鼠稱重、代謝籠24 h尿量收集, 磺基水楊酸比濁法測定尿蛋白含量。后麻醉大鼠, 尾靜脈收集血清, ELISA方法檢測血清超氧化物歧化酶(superoxide dismutase, SOD)、丙二醛( malondialdehyde, MDA), 脊椎脫臼法處死大鼠。行腎靜脈注射磷酸緩沖鹽溶液(PBS), 腎洗至蒼白再將腎取出, 部分腎組織放置于-70℃液氮保存, 用于熒光定量 PCR 檢測;剩余組織放置于10%甲醛中性溶液中固定, 用于病理切片觀察。
1. 5 腎臟小管損傷指數(shù)計算 腎組織常規(guī)固定, 脫水, 石蠟包埋, 切成4 μm 厚切片, 行HE染色。光鏡下觀察形態(tài), 參考Paller等[7]的方法進(jìn)行評分, 隨機(jī)選擇10個無重疊視野(×200), 每個視野下隨機(jī)選擇10處腎小管, 共100處腎小管計分, 依計分高低判定腎小管損傷程度。
1. 6 實時熒光定量PCR測定HIF-1 mRNA 引物設(shè)計使用 Primers 軟件, 上游:5'-AGCCCTAGATGGCTTTGTGA-3', 下游:5'-TATCGAGGCTGTGTCGACTG-3'; β-actin:上游引物:5'-GACGGTCAGGTCATCACTATCG-3', 下游引物:5'-ACGGATGTCAACGTCACACTTC-3'。實時定量PCR反應(yīng)參數(shù):預(yù)變性94℃ 15 min, 然后94℃變性20 s, 60℃退火40 s, 72℃延伸30 s, 共35個循環(huán)。每個循環(huán)后采集熒光生成擴(kuò)增曲線, 并在反應(yīng)后生成熔點曲線。計算方法:待測樣品mRNA相對表達(dá)量=2-ΔCT×100%;ΔCT=目標(biāo)基因CT值-內(nèi)參(以管家基因β-actin為內(nèi)參) CT值, 采用儀器自帶軟件分析各組HIF-1 mRNA的相對表達(dá)量[8]。
1. 7 觀察指標(biāo) 比較三組一般情況、血清SOD、MDA、24 h尿蛋白定量、腎小管損傷程度評分、HIF-1αmRNA水平, 分析HIF-1α mRNA和血清MDA與24 h尿蛋白定量、腎小管損傷程度的相關(guān)性。
1. 8 統(tǒng)計學(xué)方法 采用SPSS21.0 軟件進(jìn)行統(tǒng)計分析, 定量資料以均數(shù)±標(biāo)準(zhǔn)差( x-±s)表示, 各組間均數(shù)比較采用單因素方差分析, 以 P<0.05 為差異有統(tǒng)計學(xué)意義。利用Pearson檢測進(jìn)行腎組織HIF-1αmRNA、血清MDA水平與尿蛋白定量及腎小管損傷指數(shù)評分的相關(guān)性分析。
綜上所述, 慢性缺氧抑制大鼠生長發(fā)育, 出現(xiàn)腎功能損傷, CIH以腎小管的損傷更加明顯, CIH與持續(xù)性缺氧相比較高水平的 HIF-1αmRNA表達(dá)提示機(jī)體處于缺氧應(yīng)激狀態(tài), CIH腎損害可能與氧化應(yīng)激狀態(tài)及高水平的HIF-1αmRNA表達(dá)有關(guān)。
參考文獻(xiàn)
[1] Carlos Z, Vanesa GP, Alberto R. Obstructive sleep apnea syndrome is a systemic disease. Eur J Intern Med, 2008(19):390-398.
[2] Forman HJ, Torres M, Fukuto J. Redox signaling. Mol Cell Bi, 2002, 23(4):49-62.
[3] 竇占軍, 王蓓, 郭婧, 等. 氧化應(yīng)激對阻塞性睡眠呼吸暫停低通氣綜合征腎損害的作用與抗氧化治療現(xiàn)狀. 中國藥物與臨床, 2017, 17(8):1160-1162.
[4] Mavanur M, Sanders M, Unruh M. Sleep disordered breathing in patients with chronic kidney disease. Indian Med Res, 2010(131):277-284.
[5] 馬雪, 史清海, 伏建峰. 缺氧動物及細(xì)胞實驗?zāi)P偷难芯窟M(jìn)展. 西北國防醫(yī)學(xué)雜志, 2016, 37(8):535-538.
[6] Costa-Silva JH, Zoccal DB, Machado BH. Chronic intermittent hypoxia alters gluta-matergic control of sympathetic and respiratory activities in the commissural NTS of rats. Am J Physiol Regul Integr Comp Physiol, 2012, 302(6):785-793.
[7] Paller MS, Hoidal JR, Ferris TF. Oxygen free radicals in ischemic acute renal failure in the rat. J Clin Invest, 1984, 74(4):1156-1164.
[8] 陳鳳花, 王琳, 胡麗華. 實時熒光定量RT-PCR內(nèi)參基因的選擇. 臨床檢驗雜志, 2005, 23(5):393-395.
[9] Xie J, Wei YX, Liu S, et al. Obstructive sleep apnea hypopnea syndrome as a reason for active management of pulmonary embolism. Chinese Medical Journal, 2015, 128(16):2147-2153.
[10] Chou YT, Lee PH, Yang CT. Obstructive sleep apnea:a stand alone risk factor for chronic kidney disease. Nephr Di Tr, 2011, 26(7):2244-2250.
[11] 李婷, 李秀翠, 梁冬施, 等. 慢性間歇性低氧對大鼠腎臟氧化應(yīng)激損傷及HIF-1α表達(dá)的影響. 中國病理生理雜志, 2015, 31(2):348-353.
[12] 曾勇, 王躍建, 陳偉雄, 等. 阻塞性睡眠呼吸暫停低通氣綜合征對兒童身高體重的影響. 臨床耳鼻咽喉頭頸外科雜志, 2013, 27(4):204-211.
[13] 許曉麗, 何志婷, 劉瓊, 等. 腎康丸對慢性間歇性缺氧致腎損傷大鼠西部醫(yī)學(xué)2019, 31(8):1185-1189.
[14] Wang X, Wang Y, Cai Z, et al. Alterations of IGF-1, complement C3 and superoxide dismutase in patients with moderate-to-severe obstructive sleep apnea hypopnea syndrome. Biomarkers in Medicine, 2018, 12(9):217-228.
[15] Zhou YH, Yu JP, Liu YF, et al. Effects of Ginkgo biloba Extract on Inflammatory Mediators(SOD, MDA, TNF-α, NF-κBp65, IL-6)in TNBS-Induced Colitis in Rats. Mediators of Inflammation, 2017, 2006(5):l-9.
[16] Punjabi NM, Soeken JD, Katzel LI. Sleep disordered preq thing and overweight men. Am J Respir Crit Care Med, 2000(165):677-683.
[17] 楊偉, 胡相卡, 陳香, 等. EGCG通過HIF-1α信號通路對順鉑誘導(dǎo)大鼠腎損傷的保護(hù)作用. 中藥藥理與臨床, 2016, 32(1):40-43.
[18] Nicholl DD, Ahmed SB, Loewen AH. Declining kidney function increases the prevalence of sleep. Apnea Nocturnal Hypoxia Chest, 2012, 141(6):1422-1430.
[19] 姚軍萍, 汪興洪, 蘇貴平. 多發(fā)性骨髓瘤中缺氧誘導(dǎo)因子-1α和VEGF的表達(dá)及相關(guān)性研究. 皖南醫(yī)學(xué)院學(xué)報, 2012, 31(1):21-22.
[20] Zhong R, Xu H, Chen G, et al. The role of hypoxia-inducible factor lain radiation-induced autophagic cell death in breast cancer cells. Tumor Biology, 2015, 36(9):7077-7083.
[收稿日期:2020-04-30]