楊珍珍,朱昌雄,田云龍,李紅娜
微生物燃料電池去除廢水中抗生素類污染物的研究進(jìn)展*
楊珍珍,朱昌雄,田云龍,李紅娜**
(中國農(nóng)業(yè)科學(xué)院農(nóng)業(yè)環(huán)境與可持續(xù)發(fā)展研究所農(nóng)業(yè)清潔流域創(chuàng)新團(tuán)隊(duì),北京 100081)
抗生素被廣泛用于醫(yī)療、畜牧以及水產(chǎn)養(yǎng)殖等領(lǐng)域,大量抗生素未經(jīng)代謝就進(jìn)入環(huán)境,由此引起的細(xì)菌耐藥性問題嚴(yán)重威脅著生態(tài)環(huán)境和人體健康。因而,如何有效控制廢水中的抗生素和抗性基因污染成為近年來的研究重點(diǎn)。微生物燃料電池(Microbial fuel cells,MFCs)利用微生物催化降解有機(jī)物,在產(chǎn)電的同時(shí)實(shí)現(xiàn)廢水處理和污染控制,是近些年研究較多的一種處理技術(shù)。本文綜述了MFCs對廢水中抗生素、抗性基因等污染物的去除效果、降解機(jī)理以及降解過程中微生物群落的變化規(guī)律,分析了MFCs與其它技術(shù)耦合的效果和機(jī)制,概述了應(yīng)用MFCs構(gòu)建傳感器在線監(jiān)測抗生素等方面的研究進(jìn)展。結(jié)果表明:MFCs對多種抗生素都具有良好的去除效果,隨著反應(yīng)器構(gòu)型、抗生素種類以及濃度和運(yùn)行時(shí)間等參數(shù)的不同,抗生素、抗性基因的去除效果以及陽極微生物群落有較大差異;MFCs與人工濕地等技術(shù)的耦合,有利于增強(qiáng)抗生素的去除效果,為MFCs的實(shí)際應(yīng)用提供了新方向;利用MFCs作為生物傳感器可實(shí)現(xiàn)廢水中抗生素含量的在線監(jiān)測,但目前尚處于起步階段?;谏鲜鼋Y(jié)論,MFCs可以有效地去除廢水中的抗生素,但對抗生素耐藥基因的控制效果還亟待研究;如何實(shí)現(xiàn)MFCs的長期穩(wěn)定運(yùn)行并實(shí)際應(yīng)用是后續(xù)研究的重點(diǎn)方向。
微生物燃料電池;廢水;抗生素;抗性基因;微生物群落
在人類和獸醫(yī)醫(yī)學(xué)中,抗生素作為一類重要的藥物被世界各地廣泛用于疾病治療和預(yù)防[1]??股刂饕譃榛前奉悾⊿ulfonamides,簡稱SAs)、四環(huán)素類(Tetracyclines,簡稱TCs)、氟喹諾酮類(Fluoroquinolones,簡稱FQs)、大環(huán)內(nèi)酯類(Macrolides,簡稱MCs)、β-內(nèi)酰胺類等。其中SAs、TCs和MCs在養(yǎng)殖中廣泛用于感染性疾病的治療和預(yù)防[2-3]。中國抗生素的年使用量多達(dá)9.27萬t,其中52%是獸用抗生素。據(jù)估計(jì),人和動(dòng)物每年排泄的抗生素有5.4萬t,畜牧業(yè)排放的抗生素占84%,處理后還有5.38萬t的抗生素被排入環(huán)境[4]。聯(lián)合國環(huán)境大會(huì)《2017年前沿報(bào)告》指出,預(yù)計(jì)到2030年,抗生素在家畜中的使用量將增長67%。此外用于水產(chǎn)養(yǎng)殖的抗生素,75%可能會(huì)流入周圍環(huán)境。由于抗生素的過度使用,動(dòng)物體、水體、土壤中的微生物群落發(fā)生改變,誘導(dǎo)了抗生素耐藥菌(Antibiotic resistant bacteria,簡稱ARB)和抗生素耐藥基因(Antibiotic resistance genes,簡稱ARGs)的產(chǎn)生[5],而且抗生素耐藥基因可能通過垂直基因轉(zhuǎn)移(Vertical Gene Transfer,簡稱VGT)和水平基因轉(zhuǎn)移(Horizontal Gene Transfer,簡稱HGT)在非致病性和致病性細(xì)菌之間進(jìn)行轉(zhuǎn)移,進(jìn)而產(chǎn)生更多的ARB[6]。抗生素耐藥性的產(chǎn)生和傳播,不僅降低了抗生素對人類和動(dòng)物病原體的治愈潛力,而且部分抗生素的降解產(chǎn)物比母體表現(xiàn)出更強(qiáng)的毒性。因此,抗生素、ARB和ARGs對環(huán)境和人類健康都存在重大風(fēng)險(xiǎn)[7-8],研究合適有效的處理方法來處理抗生素廢水具有重要的意義。
已有研究表明,去除廢水中抗生素類污染物常用的方法有氯消毒[9-10]、芬頓[11-12]、光催化[13-16]、臭氧氧化[17-18]等化學(xué)法,這些方法在抗生素濃度較高時(shí)也有很好的降解效果,但其反應(yīng)條件苛刻、處理成本高且可能產(chǎn)生有害的副產(chǎn)物。相比之下,生物法[19-20]較簡單且有效,但其好氧處理時(shí)曝氣較耗費(fèi)能量,且會(huì)產(chǎn)生大量的污泥;厭氧消化只能處理高濃度的有機(jī)廢水且需要較長的時(shí)間。微生物燃料電池(Microbial fuel cells,簡稱MFCs)是一種新型的生物電化學(xué)處理技術(shù),它將厭氧降解和電化學(xué)氧化結(jié)合起來,不需要能量輸入可廣泛用于水體、土壤中污染物的去除,同時(shí)可產(chǎn)生電能[21],近些年受到越來越多的關(guān)注。相較于其它好氧、厭氧處理,MFCs污泥產(chǎn)量較低,并可用于低濃度廢水的處理。目前MFCs常被用來處理市政廢水[22-24]、農(nóng)業(yè)廢水[25-26]、工業(yè)廢水(食品生產(chǎn)廢水[27-30]、染料廢水[31-34])等,常用的MFCs種類有雙室MFCs、單室MFCs、底棲MFCs[35-38]、堆疊型MFCs[39-40]等。除此之外,MFCs可以與厭氧消化[41-42]、人工濕地(Constructed Wetland,簡稱CW)[43-45]、生物膜電極反應(yīng)器(Bio-film electrode reactor,簡稱BER)[46-48]等進(jìn)行整合以達(dá)到去除污染物的目的。近些年,在各種廢水的處理中,MFCs的功率密度和去除效率有很大提高,對化學(xué)耗氧量(Chemical oxygen demand,簡稱COD)和一些常規(guī)污染物有良好的去除效果,COD的去除率可高達(dá)90%,出水中COD的濃度可小于20mg·L?1[49]。除了常規(guī)有機(jī)污染物,MFCs對一些難生物降解的有機(jī)污染物,如酚類、有機(jī)染料類、鹵代烴類以及其它難降解類(抗生素)等也有較好的去除效果。研究發(fā)現(xiàn),馴化后的MFCs可有效處理含酚廢水,同時(shí)利用苯胺類、硝基酚類物質(zhì)產(chǎn)電[50-51]。而且通過控制進(jìn)水中共基質(zhì)的濃度、硝基苯酚濃度,MFCs對硝基苯酚和COD的去除率可大于94%[52]。除了將MFCs單獨(dú)用于去除含酚廢水,樊芳等[53-54]分別構(gòu)建了厭氧流化床與MFCs耦合來處理含酚廢水,均取得了較好的效果;利用MFCs處理偶氮染料廢水時(shí)發(fā)現(xiàn)脫色希瓦氏菌S12分泌的黃素類電極介體可極大促進(jìn)生物膜的產(chǎn)電效率,而且MFCs在產(chǎn)電條件下可更好地維持電極生物膜的活性,保證了污染物降解轉(zhuǎn)化的效率[55]。將MFCs與人工濕地[56]、生物膜電極反應(yīng)器[57]、微生物電解池(Microbial Electrolysis Cell,簡稱MEC)[58]等進(jìn)行耦合用于處理偶氮染料廢水,結(jié)果表明相比于單個(gè)MFC,耦合系統(tǒng)對染料的脫色率有較大提高,其中脫色率達(dá)91.24%,COD的去除率高達(dá)85.65%,而且有穩(wěn)定的電壓輸出;已有的研究結(jié)果表明對于難降解的有機(jī)污染物,MFCs及其耦合系統(tǒng)均表現(xiàn)出較好的去除效果。
抗生素及其降解產(chǎn)物對微生物具有一定毒性,較難降解,利用傳統(tǒng)的生物方法會(huì)產(chǎn)生更多ARB、ARGs,因此,可利用MFCs實(shí)現(xiàn)有效處理。本文通過對Web of Science近5a有關(guān)MFCs處理抗生素廢水的文獻(xiàn)進(jìn)行查找,并通過人工篩選,確定出MFCs處理SAs、TCs、FQs和氯霉素(Chloramphenicol,簡稱CAP)等抗生素的相關(guān)文獻(xiàn),綜述了近5a來MFCs在抗生素廢水處理方面的研究進(jìn)展,以期為抗生素廢水的處理以及ARB和ARGs的去除提供新的思路。
微生物燃料電池(MFCs)結(jié)合了厭氧生物降解和電刺激,有利于廢水中抗生素的去除,其去除效果受反應(yīng)器構(gòu)型、電極材料、抗生素種類和濃度、運(yùn)行時(shí)間等因素的影響。經(jīng)典的雙室MFCs由陽極室、陰極室和質(zhì)子交換膜組成,由于操作簡單,常用于實(shí)驗(yàn)室規(guī)模的研究。目前利用雙室MFCs降解SAs[59-61]、TCs[62]、FQs[63]、CAP[64]均取得了較好的效果,且有持續(xù)的電壓輸出。雙室MFCs雖對抗生素類污染物有一定去除能力,但由于陰陽極室存在間隔,傳質(zhì)阻力大、功率密度低,且陰極液和質(zhì)子交換膜成本高,故難以放大。單室MFCs,可直接利用空氣中的氧作為電子受體,不需要陰極室,因此成本可大大降低[65]。Zhang等[66]研究了單室MFCs對頭孢唑啉鈉(Cefazolin Sodium,簡稱CFZS)抗生素的去除情況,研究發(fā)現(xiàn),單室MFCs在處理CFZS污染廢水時(shí)具有耐CFZS能力強(qiáng)、去除效果好等優(yōu)點(diǎn)。除了使用常規(guī)的電極材料,對電極材料進(jìn)行改性也是提升MFCs性能的熱點(diǎn)之一,Wang等[67]研究了未改性碳布、石墨烯改性和石墨烯/聚苯胺改性碳布的空氣陰極MFCs對土霉素(Oxytetracycline,簡稱OTC)降解情況,結(jié)果表明,石墨烯/聚苯胺改性的MFC最大功率密度為32.2mW·m?2,分別是石墨烯改性和未改性MFC的1.8倍和6.1倍,這表明通過電極改性可顯著提高M(jìn)FCs的性能。
抗生素的種類和濃度對MFCs的運(yùn)行效果有很大影響。Zhou等[68]研究了MFCs對典型抗生素的降解性能,結(jié)果表明,未加入抗生素時(shí)MFCs的產(chǎn)電量最高,在反應(yīng)器中加入金霉素(chlortetracycline,簡稱CTC)、磺胺嘧啶(Sulfadiazine,簡稱SDZ)、羅紅霉素和諾氟沙星時(shí),MFCs的性能受到抑制,而且輸出電壓隨著抗生素濃度的降低而提高;各種抗生素得到了很好的降解,氨氮和總磷的去除率均明顯提高。這些結(jié)果表明盡管抗生素對產(chǎn)電性能有明顯的抑制作用,但是MFC在污染控制方面的效果還是非常顯著的。Wang等[62]探究了CTC和OTC在MFCs中的降解情況和其毒性的變化,結(jié)果表明,60mg·L?1的CTC和OTC在7d內(nèi)降解效率分別為74.2%和78%,MFCs處理在很大程度上能消除OTC和CTC的毒性。Zhang等[64]研究了雙室MFCs對CAP的降解性能。結(jié)果表明,50mg·L?1的CAP在MFCs中12h能達(dá)到84%的去除率??梢姡瑢Σ煌N類的抗生素,MFCs的降解能力有所區(qū)別。Miran等[59]在MFCs間歇模式下,對不同濃度的磺胺甲惡唑(Sulfamethoxazole,簡稱SMX)進(jìn)行處理,結(jié)果表明SMX濃度為0.2mmol·L?1、外電阻為400Ω時(shí),產(chǎn)電量可高達(dá)400mV。隨著SMX初始濃度由0.04mmol·L?1增至0.79mmol·L?1,MFCs對SMX的去除率由0.67μmol·h?1升至13.36μmol·h?1。Zhang等[66]研究發(fā)現(xiàn)盡管CFZS的加入增加了MFCs的啟動(dòng)時(shí)間(由50h增至300h),但啟動(dòng)后MFCs的產(chǎn)電性能和未加入CFZS的MFCs基本一致。Wang等[67]研究了空氣陰極MFCs對OTC降解情況,結(jié)果表明,隨著OTC濃度的增加,MFCs的發(fā)電性能和OTC降解性能逐漸降低。但當(dāng)OTC添加量小于50mg·L?1時(shí),反應(yīng)5d的降解效率可達(dá)90%以上。這些研究表明抗生素在一定的濃度范圍內(nèi)會(huì)提高M(jìn)FCs產(chǎn)電性能和降解效率,超過合適濃度范圍就會(huì)對MFCs產(chǎn)生一定的毒害作用。
MFCs的運(yùn)行時(shí)間和條件對其降解抗生素的能力和產(chǎn)電能力也有較大影響。Zhang等[66]研究了單室MFCs對CFZS的去除情況,結(jié)果表明,未加入CFZS的MFCs運(yùn)行時(shí)間越久對CFZS的耐性更強(qiáng),當(dāng)MFCs運(yùn)行一段時(shí)間后,即使加入較高濃度的CFZS,也對MFCs的產(chǎn)電性能和降解性能影響不大。長期運(yùn)行的MFCs對FQs抗生素具有更好的去除效果,電壓輸出也有所提高,這與MFCs生物膜活性的提高一致。此外,在不同的溫度和鹽度下對環(huán)丙沙星的MFC處理發(fā)現(xiàn),即使在10℃的低溫或3%的鹽度下,MFCs對環(huán)丙沙星的去除率也能分別達(dá)到50%以上和近80%[63]。可見,MFCs可有效地去抗生素類,且長期運(yùn)行的MFCs有較高的抗生素去除能力和電壓輸出。
綜上可以看出,雙室、單室MFCs對抗生素類污染物都有一定的去除能力;抗生素的種類、濃度可影響MFCs的去除效率和產(chǎn)電能力,抗生素濃度在一定范圍內(nèi)對MFCs的影響不大;經(jīng)長期馴化的MFCs對抗生素有更好的耐受力,這些研究為抗生素廢水的處理提供了新的思路。
在MFCs去除抗生素的研究領(lǐng)域,除了MFCs的產(chǎn)電性能和抗生素的去除效果,一些學(xué)者開始將研究重點(diǎn)放在抗生素去除過程中微生物群落、ARGs的變化。Wang等[62]研究發(fā)現(xiàn),MFCs處理CTC和OTC過程中陽極生物膜中的微生物群落豐度最高的是變形菌門,其次是厚壁菌門和擬桿菌門,這些菌門主要有兩大功能菌群,即產(chǎn)電菌群(伯克氏菌、)和降解抗生素菌群(固氮螺菌屬、寡養(yǎng)單胞菌)。其中降解CTC的MFCs陽極富集了大量的,這是因?yàn)?,盡管CTC和OTC的結(jié)構(gòu)相似,但CTC中含有氯原子,能降解葡萄糖,可為CTC脫氯提供電子供體(乳酸、乙酸、氫等),因此,在CTC陽極大量聚集。Zhang等[64]研究MFCs處理CAP時(shí)發(fā)現(xiàn)了類似的現(xiàn)象,即MFCs陽極生物膜中微生物按功能可分為兩類,即產(chǎn)電菌(固氮菌屬、從毛單胞菌)和CAP降解相關(guān)菌(固氮弧菌屬、紅球菌、從毛單胞菌、亞硝化菌和金桿菌),這些菌之間復(fù)雜的相互作用,使得CAP快速降解。Xue等[69]對MFCs降解SMX過程中細(xì)菌群落變化的研究結(jié)果與Wang等[62]一致,同時(shí)也表明變形菌門可通過共代謝轉(zhuǎn)化SMX,降低SMX的毒性。變形菌門的地桿菌科在胞外電子轉(zhuǎn)移中起重要作用,此外細(xì)胞表面含有很多電子梭的胞外聚合物,這兩類細(xì)菌在產(chǎn)電中發(fā)揮著主導(dǎo)作用[70]。當(dāng)加入SMX后,產(chǎn)堿菌屬、假單胞菌屬、無色桿菌屬等具有降解功能的菌屬豐度增加。Wang等[61]研究了MFCs對SDZ的降解,結(jié)果表明,SDZ對反應(yīng)器中微生物的活性有很大影響,需要對MFCs進(jìn)行長期的馴化才可實(shí)現(xiàn)SDZ的生物降解。對反應(yīng)器中微生物群落的分析發(fā)現(xiàn),在實(shí)驗(yàn)過程中產(chǎn)甲烷菌、分枝桿菌、梭狀芽孢桿菌、硫桿菌、腸桿菌、假單胞菌、寡養(yǎng)單胞菌等的相對豐度與SDZ的去除有很大關(guān)聯(lián)。以上研究表明,MFCs降解各種抗生素,起主要作用的微生物群落大體上一致,均為擬桿菌門、厚壁菌門、變形菌門。針對不同的抗生素,微生物在科、屬水平上有差異;抗生素的加入對MFCs中微生物活性影響較大,通過利用抗生素對MFCs中微生物進(jìn)行馴化,能達(dá)到很好的降解抗生素的目的。
由于ARGs 是由微生物攜帶的,因此,導(dǎo)致ARGs變化的主要機(jī)制是微生物群落結(jié)構(gòu)的變化[71]。Zhang等[72]研究MFCs中產(chǎn)甲烷菌對SDZ降解、ARGs的發(fā)育和微生物群落演變的影響時(shí)發(fā)現(xiàn),通過對產(chǎn)甲烷菌的抑制,產(chǎn)電菌群和控制胞外電子轉(zhuǎn)移的功能基因豐度增加,提高了MFCs的產(chǎn)電性能,但對SDZ的去除率降低。SDZ去除率的降低使得殘留的抗生素增多,增加了系統(tǒng)中基因的發(fā)育,導(dǎo)致ARGs的豐度增加。這表明在MFCs中,通過抑制產(chǎn)甲烷菌的生長,MFCs的產(chǎn)電性能、SDZ的去除率和ARGs的豐度存在一種權(quán)衡關(guān)系。Yan等[73]探討在OTC長期存在時(shí)MFCs中細(xì)菌群落及ARGs的變化,發(fā)現(xiàn)OTC生物降解的主要功能菌屬是真細(xì)菌屬,MFCs中總ARGs和可移動(dòng)遺傳元件的標(biāo)準(zhǔn)化拷貝數(shù)分別為每個(gè)細(xì)胞1.7364個(gè)和0.0065個(gè),明顯低于傳統(tǒng)厭氧處理。此外,MFCs出水中ARGs的含量與進(jìn)水中OTC的濃度無明顯相關(guān),表明MFCs相較于傳統(tǒng)的厭氧處理更可能降低ARGs的數(shù)量和傳播。Xue等[69]也發(fā)現(xiàn)與傳統(tǒng)處理方法相比,MFCs處理抗生素產(chǎn)生的ARGs更少,因此,MFCs是減少抗生素污染的一個(gè)可選擇途徑。
可見,利用MFCs對各種抗生素進(jìn)行處理時(shí),陽極的微生物群落中變形菌門、擬桿菌門和厚壁菌門是優(yōu)勢菌,對于不同的抗生素類污染物,微生物在科、屬水平有所不同。從已有的研究來看,MFCs有降低ARGs的數(shù)量和控制進(jìn)一步傳播的可能,但還需要更多的科學(xué)實(shí)驗(yàn)來驗(yàn)證。
目前對SAs和TCs抗生素的代謝機(jī)理研究較多,不同的抗生素其代謝途徑差別很大。對SAs來說,其去除主要是通過生物降解,而TCs則主要是吸附。Wang等[60]研究雙室MFCs中SMX的降解情況,結(jié)果表明,SMX首先被水解為4-氨基苯亞磺酸和3-氨基-5-甲基異惡唑(3A5MI),之后3A5MI 由于惡唑環(huán)的打開可以進(jìn)一步被降解為4-氨基-2-丁醇。SMX及其降解產(chǎn)物3A5MI在MFCs反應(yīng)器中能被有效降解,20mg·L?1的SMX在12h內(nèi)大約可降解85%,抗菌性實(shí)驗(yàn)表明,MFCs處理后SMX的毒性顯著降低。隨后他們研究了雙室MFCs對磺胺嘧啶(Sulfadiazine,簡稱SDZ)的降解,結(jié)果表明,SDZ在反應(yīng)過程中可被降解為2-氨基嘧啶、2-氨基-4-羥基嘧啶和苯亞磺酸。通過與已有的SDZ生物降解機(jī)理進(jìn)行比較,發(fā)現(xiàn)SDZ的磺胺部分(對氨基磺酸)在MFCs體系中被降解為苯亞磺酸。此外,在腐植酸和富里酸共存時(shí),能促進(jìn)MFCs對SDZ的去除[61]。Wang等[62]探究了MFCs對金霉素(Chlortetracycline,簡稱CTC)和土霉素(Oxytetracycline,簡稱OTC)的降解情況和其毒性的變化,結(jié)果表明,OTC和CTC能被很快被降解,且OTC的降解能力大于CTC。利用液相色譜-質(zhì)譜分析推測了CTC和OTC可能的降解途徑:CTC先脫水、脫氯,隨后側(cè)鏈的甲基和-N(CH3)2官能團(tuán)被氧化,此外,芳環(huán)上的雙鍵也被氧化形成3-羥基環(huán)己酮,最后降解為H2O和CO2;OTC的降解途徑與CTC類似,由于OTC不含氯原子,脫水后形成脫水OTC,脫水OTC在弱酸性環(huán)境中迅速降解為兩種液相色譜-質(zhì)譜無法分辨的中間體,隨后轉(zhuǎn)化為3-羥基環(huán)己酮,最后形成H2O和CO2。有關(guān)MFCs對SAs和TCs,特別是SMX、SDZ、CTC、OTC代謝途徑的研究已較為透徹,但對其它抗生素的研究還需要更深入。
目前MFCs對抗生素去除的研究較多,但對于ARB和ARGs的去除研究較少。MFCs的主要問題是輸出功率低,因此怎樣利用和改善MFCs產(chǎn)生的電能也是當(dāng)前的研究重點(diǎn)。部分研究者開始尋求MFCs與其它反應(yīng)器的耦合來去除抗生素、ARB和ARGs,常見的兩種模式是MFCs與電吸附和CW耦合。
電吸附是利用帶電電極吸附廢水中的金屬離子、鹽類和有機(jī)物,從而達(dá)到去除污染物的目的,在低電壓下即可運(yùn)行(0.5~1.5V)[74],具有容量大、無二次污染、可再生等優(yōu)點(diǎn)[75]。MFCs與電吸附的耦合可充分利用MFCs產(chǎn)生的少量電能,同時(shí)實(shí)現(xiàn)污染物的電吸附和能量回收。Yang等[76]首次研究了連續(xù)流狀態(tài)下的電吸附-MFCs對TC的去除,其對TC的去除率可達(dá)51.48%,隨著串聯(lián)MFCs數(shù)量的增加,TC的吸附量增加,說明較高的電壓和電流可以提高TC的去除率。Zhao等[77]構(gòu)建了電吸附-MFCs耦合的系統(tǒng),用于對廢水中的OTC進(jìn)行去除。含高濃度抗生素的廢水流經(jīng)電吸附裝置,去除部分抗生素,隨后作為MFCs電池的進(jìn)水用于產(chǎn)電,產(chǎn)生的電供給電吸附裝置。結(jié)果表明,在以3g·L?1的醋酸鈉為底物、3個(gè)MFC為電能供給、抗生素濃度為2mg·L?1的情況下,該系統(tǒng)對OTC的去除率達(dá)到了98.8%。可見,電吸附和MFCs的耦合對廢水中的TC和OTC有很好的降解效果,是一種高效節(jié)能的廢水處理模式。
通常雙室MFCs的陽極要求厭氧環(huán)境,陰極需要好氧環(huán)境。MFCs需要盡可能大的陽極面積,增加微生物的附著,提高電化學(xué)活性。CW的底部為厭氧區(qū),上層和空氣接觸為好氧區(qū),是一種占地面積較大的生物處理技術(shù),而且具有能凈化難降解有機(jī)物的潛能。因此將MFCs與CW耦合起來可以形成一種兼顧去除污染物和產(chǎn)電的新型污水處理技術(shù)[78-79]。李驊等[45]研究了MFC-CW系統(tǒng)對不同濃度抗生素的去除效果和產(chǎn)電特性,并探討了不同共基質(zhì)濃度對抗生素去除和產(chǎn)電的影響。結(jié)果表明,系統(tǒng)對SMX的去除以生物降解為主,對TC的去除以吸附為主;進(jìn)水抗生素濃度越高,出水中抗生素濃度也越高,系統(tǒng)開路電壓越低;共基質(zhì)濃度越高,系統(tǒng)開路電壓和系統(tǒng)內(nèi)阻越大,而系統(tǒng)庫倫效率越低。即進(jìn)水抗生素濃度和共基質(zhì)濃度需控制在一定范圍內(nèi),才能使系統(tǒng)在產(chǎn)電、抗生素降解方面達(dá)到優(yōu)化平衡。Li等[80]先構(gòu)建MFC-CW,然后再與BER聯(lián)用來降解SMX。BER以MFC-CW產(chǎn)生的電能為能源并對SMX廢水進(jìn)行預(yù)處理,出水進(jìn)入MFC-CW進(jìn)一步去除SMX。實(shí)驗(yàn)結(jié)果表明,2mg·L?1、4mg·L?1的SMX在BER中的去除率達(dá)90%,在整個(gè)系統(tǒng)中的去除率達(dá)99%;當(dāng)水力停留時(shí)間減少時(shí),SMX在BER中的去除率也降低,但是在整個(gè)系統(tǒng)的去處理仍大于97%;MFC-CW的陽極處對SMX的去除起主要作用。從以上可以看出,MFCs與其它技術(shù)的耦合能有效降解多種抗生素,進(jìn)水中共基質(zhì)濃度和抗生素濃度可影響對抗生素的去除和產(chǎn)電性能。
除了去除抗生素,MFC-CW也可對ARB和ARGs的去除有一定效果。Zhang等[81]研究了MFC-CW在處理TC和SMX過程中,ARGs(、、、、、和)的發(fā)育。研究表明,tet和sul基因在MFC-CW中的相對豐度為:陽極層>陰極層>中間層>出水,這與不同層中抗生素的濃度一致;CW-MFCs出水中的抗生素對、、、和基因的相對豐度有顯著影響。Li等[80]利用BER-MFC-CW耦合系統(tǒng)處理SMX,研究了系統(tǒng)中sul基因的變化,結(jié)果表明,系統(tǒng)中基因的相對豐度排序?yàn)?>,MFC-CW出水中基因的豐度低于BER出水的豐度;在耦合系統(tǒng)中,進(jìn)水SMX濃度越高、水力停留時(shí)間越短,ARGs的相對豐度越高;此外,MFC-CW產(chǎn)生的生物電能可能降低微生物群落多樣性,并有助于降低BER中的ARGs豐度。這與Zhang等[82]的研究結(jié)果一致,但其出水中仍有ARGs的積累。綜上所述,BER-MFC-CW耦合系統(tǒng)是降低相應(yīng)ARGs豐度的潛在工具。Song等[83]構(gòu)建了上升流CW-MFCs,探究了水力停留時(shí)間和兩種電路操作模式(開路、閉路)對SDZ的去除、對ARGs積累和微生物群落變化的影響。結(jié)果表明,閉路模式下CW-MFCs出水的SDZ濃度更低,這是由于閉路模式下電極對SDZ的吸附能力更強(qiáng)、細(xì)菌的脫氫酶活性較高,而且閉合模式ARGs豐度高于開路模式;水力停留時(shí)間越短,電極上SDZ濃度越高,ARGs豐度越高;此外,在處理期間觀察到ARGs豐度明顯增加,陽極中目標(biāo)ARGs的相對豐度高于陰極和反應(yīng)器底部,SDZ誘導(dǎo)的ARGs潛在宿主富集可能是導(dǎo)致ARGs豐度增加的原因。此研究表明,上升流CW-MFCs雖然降低了SDZ的濃度,但是卻引起了ARGs的富集。Zhang等[84]設(shè)計(jì)了3個(gè)CW-MFC來評(píng)估運(yùn)行5000h的CW-MFC和填料生物膜中ARGs的動(dòng)態(tài)特性。實(shí)驗(yàn)結(jié)果表明,當(dāng)進(jìn)水抗生素濃度分別為400μg·L?1、1000μg·L?1、1600μg·L?1時(shí),CW-MFC獲得的相對較高的穩(wěn)定電壓分別為605.8mV、613.7mV和541.4mV;陰極層16S rRNA的基因水平高于陽極層和中間層,但和基因則相反;在連續(xù)高濃度抗生素的作用下,隨著運(yùn)行時(shí)間的延長,目標(biāo)ARGs的相對豐度增加;在運(yùn)行期間CW-MFC中生物膜的和基因程上升趨勢,但與填料生物膜相比具有較低的豐度,這與CW和電化學(xué)處理抗生素廢水有相同的結(jié)果;出水中除和,其它的ARGs與16S rRNA的基因拷貝數(shù)之間無顯著相關(guān)性,這可能是由于它們在復(fù)雜系統(tǒng)中特異的抗性機(jī)制引起的,表明降低廢水中的總微生物水平并不是抑制ARGs的有效方法。雖然ARGs可能通過廢水傳播,但該研究為CW-MFC中的ARGs和抗生素的研究提供了參考,需要進(jìn)一步的研究來確定抑制廢水中ARGs的有效方法。
綜上可以看出,MFCs與其它技術(shù)的耦合對抗生素的去除有很好的效果,但關(guān)于MFCs對ARB和ARGs的去除,不同的文獻(xiàn)結(jié)論不完全一致,對于MFCs是否確定能去除ARGs,并無確定結(jié)論。Yan等[85]認(rèn)為MFCs具有降低ARB、ARGs的潛力,因?yàn)镸FCs是基于厭氧生物技術(shù)構(gòu)建的,而已有研究結(jié)果表明厭氧生物技術(shù)可有效去除ARB、ARGs。另外MFCs與傳統(tǒng)好氧生物技術(shù)相比,需要較少的微生物數(shù)量,產(chǎn)生更低的污泥量,在一定程度上減少了ARGs的載體,而且MFCs與其它消耗電能反應(yīng)器的耦合也是對其產(chǎn)電進(jìn)行利用的一種途徑。
能量輸出低一直以來都是MFCs應(yīng)用所面臨的問題,以前的研究重點(diǎn)是在不同的MFCs配置下關(guān)注其能量輸出,如今的研究傾向于利用這種能量來驅(qū)動(dòng)低功率環(huán)境傳感器。MFCs的應(yīng)用主要有,(1)作為原位電池,在無法定期進(jìn)行常規(guī)系統(tǒng)檢查和電池更換的地方使用;(2)作為自供電生物傳感器,以監(jiān)測環(huán)境中污染物的變化[86]。MFCs作為現(xiàn)場在線環(huán)境監(jiān)測的自供電傳感器,可以監(jiān)測多種污染物的變化,例如,BOD[87-92]、重金屬[93-94]、對硝基苯酚[95]、抗生素[96-97]等。其原理是利用電活性微生物作為探針,目標(biāo)分析物存在或者濃度變化時(shí),將影響微生物的電子傳遞過程,從而產(chǎn)生電信號(hào)。通過不同環(huán)境下電池輸出功率的檢測,達(dá)到污染物檢測的目的。目前研究較多的是BOD和重金屬的在線監(jiān)測,BOD的在線監(jiān)測中BOD的監(jiān)測范圍經(jīng)大量探究已擴(kuò)展到2.0~1280mg·L?1,響應(yīng)時(shí)間的范圍為5~1200min[87-88,91]。重金屬也有一些探索,Khan等[93]利用PzntA啟動(dòng)子構(gòu)建大腸桿菌BL21表達(dá)zntR、ribB和oprF基因,該啟動(dòng)子可以檢測鋅(Zn2+)對核黃素和孔蛋白的影響,所構(gòu)建的MFC生物傳感器的最大電壓(160、183、260、292和342mV)與Zn2+濃度(分別為0、100、200、300和400μmol·L?1)呈線性關(guān)系(R2=0.9777)。將該傳感器應(yīng)用于不同濃度Zn2+的廢水中,結(jié)果表明,Zn2+濃度的檢測范圍為20~100μmol·L?1,而且所研制的MFC生物傳感器與傳統(tǒng)方法檢測的結(jié)果相當(dāng);并為生物傳感器系統(tǒng)開發(fā)了一個(gè)Android應(yīng)用程序,可以實(shí)時(shí)和原位檢測Zn2+濃度。
抗生素污染的治理不可避免地與環(huán)境中抗生素的檢測有關(guān),因此,實(shí)時(shí)實(shí)地檢測環(huán)境中的抗生素非常重要。傳統(tǒng)的抗生素檢測方法有高效液相色譜法,但該方法耗時(shí),且不適合原位分析[98]。近年來,基于MFCs的生物傳感器以其結(jié)構(gòu)簡單、易于操作、成本低廉等優(yōu)點(diǎn),在污水水質(zhì)快速實(shí)時(shí)監(jiān)測應(yīng)用中具有很大創(chuàng)新性[99]。Kim等[100]首次報(bào)道了利用MFCs的生物監(jiān)測系統(tǒng),在污水廠的進(jìn)口處安裝此系統(tǒng),研究發(fā)現(xiàn)包括Pb2+、Cu2+在內(nèi)的有毒物質(zhì),會(huì)抑制電壓的產(chǎn)生,證明了MFCs用于生物監(jiān)測系統(tǒng)的可能性。此后,優(yōu)化了一系列結(jié)構(gòu)和操作參數(shù),包括外電阻[101]、結(jié)構(gòu)[102]、電極材料[103]、接觸時(shí)間[104],以提高傳感器的靈敏度。Yi等[96]研究了利用MFCs監(jiān)測不同污染物時(shí)外電阻對傳感器靈敏度的影響,并揭示了其中的微生物學(xué)機(jī)理。結(jié)果表明,MFCs生物傳感器的最佳反應(yīng)條件隨污染物種類的不同而不同。阿維菌素、TC和重金屬的最佳檢測值分別為100Ω、330Ω和680Ω。這種差異主要是由于不同環(huán)境下的陽極微生物群落存在明顯差異。因此,MFCs生物傳感器應(yīng)根據(jù)具體污染物對外電阻進(jìn)行優(yōu)化。Zeng等[97]基于單室MFCs構(gòu)建了一種簡單、敏感的左氧氟沙星(Levofloxacin,簡稱 LEV)傳感器,此單室MFCs以FePO4納米顆粒代替?zhèn)鹘y(tǒng)的Pt/C作為陰極催化劑,在最優(yōu)COD濃度下(20mmol·L?1),可成功地檢測到濃度范圍為0.1~1000μg·L?1的LEV,并且在LEV濃度為0.1~100μg·L?1的范圍內(nèi)呈現(xiàn)出良好的線性關(guān)系。LEV在這一濃度范圍時(shí),單室MFCs對LEV的在線監(jiān)測具有持久的穩(wěn)定性,其響應(yīng)時(shí)間僅需10min。Catal等[105]通過檢測單室MFCs的基本性能,包括產(chǎn)電、功率密度、電流密度和庫侖效率,實(shí)現(xiàn)對硫酸新霉素的間接檢測和定量。研究表明,當(dāng)硫酸新霉素的濃度由20μg·L?1增至100μg·L?1時(shí),對單室MFCs的抑制率由9.8%線性增加到38.6%,在此過程中,單室MFCs的功率密度和總碳去除率同時(shí)降低,這說明硫酸新霉素對MFCs的抑制率結(jié)果與單室MFCs性能結(jié)果一致。結(jié)果表明,基于電活性生物膜的MFCs可用于廢水中硫酸新霉素的檢測。微型化是MFCs生物傳感器的研究方向之一,在醫(yī)療中有廣闊的應(yīng)用前景,例如作為可植入醫(yī)療設(shè)備的電源等??股貫E用的一個(gè)原因是針對某一病原體不確定哪種抗生素效果最好,而在實(shí)驗(yàn)室進(jìn)行藥敏試驗(yàn)診斷需要相對較長的時(shí)間,因此,利用抗生素進(jìn)行治療多是經(jīng)驗(yàn)性的。針對這一問題,Schneider等利用微升規(guī)模的雙室MFCs同時(shí)對10種不同的β-內(nèi)酰胺類抗生素進(jìn)行藥敏性測試,通過對每個(gè)MFC的電信號(hào)進(jìn)行連續(xù)監(jiān)測,可以在2~4h內(nèi)獲得不同抗生素的藥敏性結(jié)果。該研究使用的印刷電路技術(shù)為MFCs的電極制備提供了技術(shù)支撐。利用這一方法可以更早地有針對性地使用某種抗生素進(jìn)行治療,減少不必要的抗生素使用,更加經(jīng)濟(jì),也在一定程度上有利于降低ARGs的傳播[106]。
目前關(guān)于MFCs作為傳感器的應(yīng)用研究較少,專項(xiàng)監(jiān)測抗生素的更少。大部分文獻(xiàn)只是證實(shí)了MFCs應(yīng)用于傳感器有著很大的研究前景,包括優(yōu)化傳感器結(jié)構(gòu)、提高傳感器靈敏度以及對特定的水環(huán)境進(jìn)行監(jiān)測等。利用MFCs傳感器對環(huán)境中的抗生素進(jìn)行在線監(jiān)測或作為醫(yī)療部件,需要進(jìn)行更多的研究和探索。
MFCs將厭氧生物技術(shù)與電化學(xué)氧化結(jié)合起來,是一種新興的環(huán)境友好的污染處理技術(shù)。本文綜述了MFCs在抗生素去除方面的最新進(jìn)展和應(yīng)用,以及MFCs對ARB、ARGs去除效果的影響。首先,目前MFCs對抗生素的去除取得了較大的進(jìn)展,MFCs與其它技術(shù)耦合提高了抗生素的去除效果也是對其產(chǎn)電量的一種應(yīng)用。但目前尚處于實(shí)驗(yàn)室規(guī)模,運(yùn)行環(huán)境多為人工配制的廢水,在實(shí)際廢水中的運(yùn)行較少;況且對于長期運(yùn)行的研究不多,提高M(jìn)FC長期運(yùn)行的穩(wěn)定性是MFCs應(yīng)用的關(guān)鍵;對于MFCs的實(shí)際應(yīng)用需要擴(kuò)大反應(yīng)器的尺寸,這將導(dǎo)致內(nèi)阻的增加;此外提升MFCs性能需要對電極進(jìn)行改性,利用鉑或石墨烯等的改性雖然提高了MFCs的性能,但是費(fèi)用隨之增加,因此,需要探索合適的改性方法以及電極材料以滿足MFCs的實(shí)際應(yīng)用。
其次,雖然MFCs去除抗生素效果不錯(cuò),但對于ARGs的去除仍存在爭議。處理過程中ARGs的控制還是亟待開展研究的一個(gè)問題??股氐姆N類和濃度、不同抗生素間的相互作用以及抗生素與其它營養(yǎng)物質(zhì)或污染物的相互作用都會(huì)影響ARGs的行為,這都需要在利用MFCs處理抗生素廢水時(shí)加以研究;微生物作為ARGs的宿主,對ARGs的傳播起重要作用,但目前還沒有清楚地了解它們之間存在的關(guān)系,因此,進(jìn)一步闡明ARGs與微生物群落的關(guān)系,能為MFCs去除ARGs提供更多的信息。
最后,基于MFCs的生物傳感器雖然可以實(shí)時(shí)測量多種分析目標(biāo),但在穩(wěn)定性、靈敏度、重復(fù)性和選擇性等方面仍有待提高;此外,專門針對MFCs的能量收集系統(tǒng)也是將來的研究方向之一。
[1]Baran W,Adamek E,Ziemianska J,et al.Effects of the presence of sulfonamides in the environment and their influence on human health[J].J Hazard Mater,2011,196:1-15.
[2]Huang X,Liu C,Li K,et al.Occurrence and distribution of veterinary antibiotics and tetracycline resistance genes in farmland soils around swine feedlots in Fujian Province,China[J].Environmental Science and Pollution Research,2013,20(12):9066-9074.
[3]Zhang Y,Zhu H,Szewzyk U,et al.Enhanced Removal of sulfamethoxazole with manganese-adapted aerobic biomass[J]. International Biodeterioration & Biodegradation, 2017,116: 171-174.
[4]Zhang Q Q,Ying G G,Pan C G,et al.Comprehensive evaluation of antibiotics emission and fate in the river basins of China:source analysis,multimedia modeling,and linkage to bacterial resistance[J].Environmental Science & Technology,2015,49(11):6772-6782.
[5]Berendonk T U,Manaia C M,Merlin C,et al.Tackling antibiotic resistance: the environmental framework[J].Nature Reviews Microbiology,2015,13(5):310-317.
[6]Sommer M O A,Munck C,Toft-Kehler R V,et al.Prediction of antibiotic resistance: time for a new preclinical paradigm[J].Nat Rev Microbiol,2017,15(11):689-696.
[7]Rodriguez-Mozaz S,Chamorro S,Marti E,et al.Occurrence of antibiotics and antibiotic resistance genes in hospital and urban wastewaters and their impact on the receiving river[J].Water Research,2015,69:234-242.
[8]Wu D,Huang Z,Yang K,et al.Relationships between antibiotics and antibiotic resistance gene levels in municipal solid waste leachates in Shanghai,China[J].Environ Sci Technol,2015,49(7):4122-4128.
[9]Yoon Y,Chung H J,Di D Y W,et al.Inactivation efficiency of plasmid-encoded antibiotic resistance genes during water treatment with chlorine,UV,and UV/H2O2[J].Water Research,2017,123:783-793.
[10] Sullivan B A,Vance C C,Gentry T J,et al.Effects of chlorination and ultraviolet light on environmental tetracycline-resistant bacteria and tet(W) in water[J].Journal of Environmental Chemical Engineering,2017,5(1):777-784.
[11] ?zcan A,?zcan A A,Demirci Y.Evaluation of mineralization kinetics and pathway of norfloxacin removal from water by electro-Fenton treatment[J].Chemical Engineering Journal,2016,304:518-526.
[12] Wang Y,Zhang H,Feng Y,et al.Bio-Electron-Fenton(Bef) process driven by Sediment Microbial Fuel Cells (Smfcs) for antibiotics desorption and degradation[J].Biosens Bioelectron,2019,136:8-15.
[13] Wei Z,Liu J,Fang W,Xu M,et al.Photocatalytic hydrogen evolution with simultaneous antibiotic wastewater degradation via the visible-light-responsive bismuth spheres-G-C3n4 nanohybrid: waste to energy insight[J].Chemical Engineering Journal,2019,358:944-954.
[14] Fernandez L,Gamallo M,Gonzalez-Gomez M A,et al.Insight into antibiotics removal: exploring the photocatalytic performance of a Fe3O4/ZnO nanocomposite in a novel magnetic sequential batch reactor[J].J Environ Manage,2019,237:595-608.
[15] Amoli-Diva M,Irani E,Pourghazi K.Photocatalytic filtration reactors equipped with bi-plasmonic nanocomposite/poly acrylic acid-modified polyamide membranes for industrial wastewater treatment[J]. Separation and Purification Technology,2019,236:116257.doi.org/10.1016/j.seppur.
[16] Lou W,Kane A,Wolbert D,et al.Study of a photocatalytic process for removal of antibiotics from wastewater in a falling film photoreactor: scavenger study and process intensification feasibility[J].Chemical Engineering and Processing:Process Intensification,2017,122:213-221.
[17] Pak G,Salcedo D E,Lee H,et al.Comparison of antibiotic resistance removal efficiencies using ozone disinfection under different pH and suspended solids and humic substance concentrations[J].Environmental Science & Technology,2016,50(14):7590-7600.
[18] Michael-Kordatou I,Andreou R,Iacovou M,et al.On the capacity of ozonation to remove antimicrobial compounds,resistant bacteria and toxicity from urban wastewater effluents[J].Journal of Hazardous Materials,2017,323:414-425.
[19] 周婧,支蘇麗,宮祥靜,等.三類抗生素在兩種典型豬場廢水處理工藝中的去除效果[J].農(nóng)業(yè)環(huán)境科學(xué)學(xué)報(bào),2019,38(2):430-438.
Zhou J,Zhi S L,Gong X J,et al.The removal effect of three classes of antibiotics in two typical swine wastewater teratment systems[J].Journal of Agro-Environment Science,2019,38(2):430-438.(in Chinese)
[20] 陳建發(fā).三污泥法處理抗生素類制藥廢水[J].過程工程學(xué)報(bào),2019,19(3):644-650.
Chen J F.Treatment of antibiotic pharmaceutical wastewater by three sludge method[J].Chin. J. Process Eng.,2019,19(3):644-650.(in Chinese)
[21] 洛根[美].微生物燃料電池[M].馮玉杰,王鑫譯.北京:化學(xué)工業(yè)出版社,2009:1-167.
Bruce E L.Microbial fuel cell[M].Translated by Feng Y J,Wang X.Beijing:Chemical Industry Publisher,2009:1-167. (in Chinese)
[22] Feng Y,He W,Liu J,et al.A horizontal plug flow and stackable pilot microbial fuel cell for municipal wastewater treatment[J].Bioresour Technol,2014,156:132-138.
[23] Choi J,Ahn Y.Continuous electricity generation in stacked air cathode microbial fuel cell treating domestic wastewater[J].J Environ Manage,2013,130:146-152.
[24] Sciarria T P,Tenca A,D'Epifanio A,et al.Using olive mill wastewater to improve performance in producing electricity from domestic wastewater by using single-chamber microbial fuel cell[J].Bioresour Technol,2013,147:246-253.
[25] Du F Z,Li Z L,Yang S Q,et al.Electricity generation directly using human feces wastewater for life support system[J].Acta Astronautica,2011,68(9-10):1537-1547.
[26] Santoro C,Ieropoulos I,Greenman J,et al.Power generation and contaminant removal in single chamber microbial fuel cells(Scmfcs) treating human urine[J].International Journal of Hydrogen Energy,2013,38(26):11543-11551.
[27] Zhang B,Zhao H,Zhou S,et al.A novel uasb-mfc-baf integrated system for high strength molasses wastewater treatment and bioelectricity generation[J].Bioresour Technol,2009,100(23):5687-5693.
[28] Lu N,Zhou S G,Zhuang L,et al.Electricity generation from starch processing wastewater using microbial fuel cell technology[J].Biochemical Engineering Journal,2009,43(3):246-251.
[29] Koroglu E O,Ozkaya B,Denktas C,et al.Electricity generating capacity and performance deterioration of a microbial fuel cell fed with beer brewery wastewater[J].J Biosci Bioeng,2014,118(6):672-678.
[30] Wen Q,Wu Y,Cao D,et al.Electricity generation and modeling of microbial fuel cell from continuous beer brewery wastewater[J].Bioresour Technol,2009,100(18):4171-4175.
[31] Cheng X,He L,Lu H,et al.Optimal water resources management and system benefit for the marcellus shale-gas reservoir in pennsylvania and west virginia[J].Journal of Hydrology,2016,540:412-422.
[32] Sathian S,Rajasimman M,Radha G,et al.Performance of Sbr for the treatment of textile sye wastewater: optimization and kinetic studies[J].Alexandria Engineering Journal,2014,53(2):417-426.
[33] Nunes L J R,Matias J C O,Catal?o J P S.Analysis of the use of biomass as an energy alternative for the portuguese textile dyeing industry[J].Energy,2015,84:503-508.
[34] Karthikeyan S,Boopathy R,Sekaran G.In situ generation of hydroxyl radical by cobalt oxide supported porous carbon enhance removal of refractory organics in tannery dyeing wastewater[J].J Colloid Interface Sci,2015,448:163-174.
[35] Li Z,Yao L,Kong L,et al.Electricity generation using a baffled microbial fuel cell convenient for stacking[J].Bioresour Technol,2008,99(6):1650-1655.
[36] Donovan C,Dewan A,Peng H,et al.Power management system for a 2.5w remote sensor powered by a sediment microbial fuel cell[J].Journal of Power Sources,2011,196(3):1171-1177.
[37] Imran M,Prakash O,Pushkar P,et al.Performance enhancement of benthic microbial fuel cell by cerium coated electrodes[J].Electrochimica Acta,2019,295:58-66.
[38] Prakash O,Mungray A,Chongdar S,et al.Performance of polypyrrole coated metal oxide composite electrodes for benthic microbial fuel cell(BMFC)[J].Journal of Environmental Chemical Engineering,2020,8:102757.doi.org/10.1016/j.jece.2018.11.002
[39] Zhuang L,Zhou S.Substrate cross-conduction effect on the performance of serially connected microbial fuel cell stack[J].Electrochemistry Communications,2009,11(5):937-940.
[40] Liu S H,Lai C Y,Ye J W,et al.Increasing removal of benzene from groundwater using stacked tubular air-cathode microbial fuel cells[J].Journal of Cleaner Production,2018,194:78-84.
[41] Xie B,Liu B,Yi Y,et al.Microbiological mechanism of the improved nitrogen and phosphorus removal by embedding microbial fuel cell in anaerobic-anoxic-oxic wastewater treatment process[J].Bioresour Technol,2016,207:109-117.
[42] Huang J,Yang P,Guo Y,et al.Electricity generation during wastewater treatment: an approach using an afb-mfc for alcohol distillery wastewater[J].Desalination,2011,276(1-3):373-378.
[43] Zhao Y,Collum S,Phelan M,et al.Preliminary investigation of constructed wetland incorporating microbial fuel cell: batch and continuous flow trials[J].Chemical Engineering Journal,2013,229:364-370.
[44] Liu S,Song H,Wei S,et al.Bio-cathode materials evaluation and configuration optimization for power output of vertical subsurface flow constructed wetland - microbial fuel cell systems[J].Bioresour Technol,2014,166:575-583.
[45] 李驊,楊小麗,宋海亮,等.微生物燃料電池型人工濕地去除抗生素的效能研究[J].東南大學(xué)學(xué)報(bào)(自然科學(xué)版),2017,47(2):410-415.
Li H,Yang X L,Song H L,et al.Study on antibiotics removal by microbial fuel cell coupled constructed wetland[J].Journal of Southeast University( Natural Science Edition),2017,47(2):410-415.(in Chinese)
[46] Ren L,Ahn Y,Logan B E.A two-stage microbial fuel cell and anaerobic fluidized bed membrane bioreactor (Mfc-Afmbr) system for effective domestic wastewater treatment[J].Environ Sci Technol,2014,48(7):4199-4206.
[47] Ge Z,He Z.Effects of draw solutions and membrane conditions on electricity generation and water flux in osmotic microbial fuel cells[J].Bioresour Technol,2012,109:70-76.
[48] Li N,Liu L,Yang F.Power generation enhanced by a polyaniline–phytic acid modified filter electrode integrating microbial fuel cell with membrane bioreactor[J].Separation and Purification Technology,2014,132:213-217.
[49] He L,Du P,Chen Y,et al.Advances in microbial fuel cells for wastewater treatment[J].Renewable and Sustainable Energy Reviews,2017,71:388-403.
[50] 劉暉.微生物燃料電池法處理難降解污染物及其產(chǎn)電性能的研究[D].長沙:湖南大學(xué),2011:1-74.
Liu H.Electricity generation by degradation of resistant biodegradation organic pollutants using a microbial fuel cell[D].Changsha:Hunan University,2011:1-74.(in Chinese)
[51] 王俊杰.微生物燃料電池去除有機(jī)氯的應(yīng)用基礎(chǔ)研究[D].北京:中國科學(xué)院過程工程研究所,2019:1-96.
Wang J J.Basic research on application of microbial fuel cell to remove organic chlorine[D].Beijing:Institute of Process Engineering,Chinese Academy of Sciences,2019:1-96.(in Chinese)
[52] 孫茜.微生物燃料電池處理難降解有毒廢水實(shí)驗(yàn)研究[D].哈爾濱:哈爾濱工程大學(xué),2010:1-92.
Sun Q.Study on the refractory and toxic wastewater with microbial fuel cell[D].Harbin:Harbin Engineering Universtiy,2010:1-92.(in Chinese)
[53] 樊芳.含酚廢水中有毒物質(zhì)在微生物燃料電池中的遷移機(jī)理[D].青島:青島科技大學(xué),2018:1-77.
Fan F.Transfer of toxic substances in phenolic wastewater in microbial fuel cell[D].Qingdao:Qingdao University of Science & Technology,2018:1-77.(in Chinese)
[54] 劉新民.厭氧流化床微生物燃料電池處理含酚廢水性能和機(jī)理研究[D].北京:中國礦業(yè)大學(xué),2018:1-140.
Liu X M.Study on the properties and mechanism of phenolic wastewatertreatment in anaerobic fluidized bed microbial fuel cell[D].Beijing:China University of Mining and Technology,2018:1-140.(in Chinese)
[55] 楊永剛.微生物燃料電池的電子傳遞方式及其在典型有機(jī)污染物降解中的應(yīng)用研究[D].廣州:華南理工大學(xué),2011:1-136.
Yang Y G.Microbial fuel cells electron transfer pathway and its availability in typical organic pollutants degradation[D].Guangzhou:South China University of Technology,2011:1-136.(in Chinese)
[56] 方舟.人工濕地型微生物燃料電池同步降解偶氮染料與產(chǎn)電的特性及機(jī)理[D].南京:東南大學(xué),2017:1-152.
Fang Z.The characteristics and mechanisms of simultaneous azo dye degradation and bioelectrictiy generation using a constructed wetland-microbial fuel cell[D].Nanjing:Southeast University,2017:1-152.(in Chinese)
[57] 劉慎坦.濕地型燃料電池耦合生物膜電極法對難降解有機(jī)物的去除特性[D].南京:東南大學(xué),2015:1-235.
Liu S T.The removal characteristics of refractory organics using the method of coupling bio-film electrode reactor and constructed wetland-microbial fuel cell[D].Nanjing:Southeast University,2015:1-235.(in Chinese)
[58] 李陽.微生物電化學(xué)耦合系統(tǒng)強(qiáng)化處理偶氮染料廢水的研究[D].合肥:中國科學(xué)技術(shù)大學(xué),2016:1-78.
Li Y.Microbial electrochemical coupled system for enhancement of azo dye decolorization from wastewater[D].Hefei:University of Science and Technology of China,2016:1-78.(in Chinese)
[59] Miran W,Jang J,Nawaz M,et al.Biodegradation of the sulfonamide antibiotic sulfamethoxazole by sulfamethoxazole acclimatized cultures in microbial fuel cells[J].Sci Total Environ,2018,627:1058-1065.
[60] Wang L,Liu Y,Ma J,et al.Rapid degradation of sulphamethoxazole and the further transformation of 3-amino-5-methylisoxazole in a microbial fuel cell[J].Water Res,2016,88:322-328.
[61] Wang L,You L,Zhang J,et al.Biodegradation of sulfadiazine in microbial fuel cells: reaction mechanism, biotoxicity removal and the correlation with reactor microbes[J].J Hazard Mater,2018,360:402-411.
[62] Wang J,Zhou B,Ge R,et al.Degradation characterization and pathway analysis of chlortetracycline and oxytetracycline in a microbial fuel cell[J].Rsc Advances,2018,8(50):28613-28624.
[63] Yan W,Wang S,Ding R,et al.Long-term operation of electroactive biofilms for enhanced ciprofloxacin removal capacity and anti-shock capabilities[J].Bioresour Technol,2019,275:192-199.
[64] Zhang Q,Zhang Y,Li D.Cometabolic degradation of chloramphenicol via a meta-cleavage pathway in a microbial fuel cell and its microbial community[J].Bioresour Technol,2017,229:104-110.
[65] 劉斌,尚均頂,王許云.微生物燃料電池構(gòu)型研究進(jìn)展[J].當(dāng)代化工,2018,47(10):2173-2177.
Liu B,Shang J D,Wang X Y.Research progress in configuration of microbial fuel cells[J].Contemporary Chemical Industry,2018,47(10):2173-2177.(in Chinese)
[66] Zhang E,Yu Q,Zhai W,et al.High tolerance of and removal of cefazolin sodium in single-chamber microbial fuel cells operation[J].Bioresour Technol,2018,249:76-81.
[67] Wang Y,Wu J,Yang S,et al.Electrode modification and optimization in air-cathode single-chamber microbial fuel cells[J].Int J Environ Res Public Health,2018,15(7):1-16.
[68] Zhou Y,Zhu N,Guo W,et al.Simultaneous electricity production and antibiotics removal by microbial fuel cells[J].J Environ Manage,2018,217:565-572.
[69] Xue W,Li F,Zhou Q.Degradation mechanisms of sulfamethoxazole and its induction of bacterial community changes and antibiotic resistance genes in a microbial fuel cell[J].Bioresour Technol,2019,289:121632.10.1016/j.biortech.2019.121632
[70] Kiely P D,Rader G,Regan J M,et al.Long-term cathode performance and the microbial communities that develop in microbial fuel cells fed different fermentation endproducts[J].Bioresour Technol,2011,102(1):361-366.
[71] Cheng D N,Ngo H H,Guo W S,et al.Contribution of antibiotics to the fate of antibiotic resistance genes in anaerobic treatment processes of swine wastewater:a review[J].Bioresource Technology,2019,299:122654.10.1016/j.biortech.2019.122654
[72] Zhang S,Song H L,Cao X,et al.Inhibition of methanogens decreased sulfadiazine removal and increased antibiotic resistance gene development in microbial fuel cells[J].Bioresour Technol,2019,281:188-194.
[73] Yan W,Guo Y,Xiao Y,et al.The changes of bacterial communities and antibiotic resistance genes in microbial fuel cells during long-term oxytetracycline processing[J].Water Research,2018,142:105-114.
[74] Kong Y,Li W,Wang Z,et al.Electrosorption behavior of copper ions with poly(M-phenylenediamine) paper electrode[J].Electrochemistry Communications,2013,26:59-62.
[75] Ania C O,Beguin F.Mechanism of adsorption and electrosorption of bentazone on activated carbon cloth in aqueous solutions[J].Water Res,2007,41(15):3372-3380.
[76] Yang W,Han H,Zhou M,et al.Simultaneous electricity generation and tetracycline removal in continuous flow electrosorption driven by microbial fuel cells[J].Rsc Advances,2015,5(61):49513-49520.
[77] Zhao W J,Qu J,Zhou Y J,et al.Continuous flow electrosorption-microbial fuel cell system for efficient removal of oxytetracycline without external electrical supply[J].Bioresour Technol,2019,290:121751.10.1016/j.biortech.2019.121751
[78] 楊可昀.人工濕地耦合微生物燃料電池產(chǎn)電及去除抗生素的效能研究[D].南京:東南大學(xué),2016:1-65.
Yang K Y.Integration of constructed wetland with microbial fuel cell for power production and removal of antibiotics[D].Nanjing:Southeast University,2016:1-65.(in Chinese)
[79] 汪龍眠,謝雪歌,張毅敏.人工濕地-微生物燃料電池耦合技術(shù)發(fā)展現(xiàn)狀[A].創(chuàng)新驅(qū)動(dòng)助推綠色發(fā)展[C].廈門:中囯環(huán)境科學(xué)學(xué)會(huì)學(xué)術(shù)年會(huì),2017:3150-3154.
Wang L M,Xie X G,Zhang Y M.Development status of coupling technology between constructed wetland and microbial fuel cell[A].Innovation driven green development[C].Xiamen:Proceedings of the Annual Meeting of Chinese Society of Environmental Sciences,2017:3150-3154.(in Chinese)
[80] Li H,Song H L,Yang X L,et al.A continuous flow Mfc-Cw coupled with a biofilm electrode reactor to simultaneously attenuate sulfamethoxazole and its corresponding resistance genes[J].Sci Total Environ,2018,637/638:295-305.
[81] Zhang S,Song H L,Yang X L,et al.Fate of tetracycline and sulfamethoxazole and their corresponding resistance genes in microbial fuel cell coupled constructed wetlands[J].Rsc Advances,2016,6(98):95999-96005.
[82] Zhang S,Song H L,Yang X L,et al.A system composed of a biofilm electrode reactor and a microbial fuel cell-constructed wetland exhibited efficient sulfamethoxazole removal but induced sul genes[J].Bioresour Technol,2018,256:224-231.
[83] Song H L,Li H,Zhang S,et al.Fate of sulfadiazine and its corresponding resistance genes in up-flow microbial fuel cell coupled constructed wetlands:effects of circuit operation mode and hydraulic retention time[J].Chemical Engineering Journal,2018,350:920-929.
[84] Zhang S,Song H L,Yang X L,et al.Dynamics of antibiotic resistance genes in microbial fuel cell-coupled constructed wetlands treating antibiotic-polluted water[J].Chemosphere,2017,178:548-555.
[85] Yan W,Xiao Y,Yan W,et al.The effect of bioelectrochemical systems on antibiotics removal and antibiotic resistance genes:a review[J].Chemical Engineering Journal,2019,358:1421-1437.
[86] Huang J,Yang P,Guo Y,et al.Electricity generation during wastewater treatment: an approach using an AFB-MFC for alcohol distillery wastewater[J].Desalination,2011,276(1-3):373-378.
[87] Moon H,Chang I S,Kang K H,et al.Improving the dynamic response of a mediator-less microbial fuel cell as a biochemical oxygen demand(BOD) sensor[J].Biotechnology Letters,2004,26(22):1717-1721.
[88] Moon H,Chang I S,Jang J K,et al.On-line monitoring of low biochemical oxygen demand through continuous operation of a mediator-less microbial fuel cell[J].Journal of Microbiology and Biotechnology,2005,15(1):192-196.
[89] Hsieh M C,Cheng C Y,Liu M H,et al.Effects of operating parameters on measurements of biochemical oxygen demand using a mediatorless microbial fuel cell biosensor[J].Sensors,2016,16(1):35.
[90] Ayyaru S,Dharmalingam S.Enhanced response of microbial fuel cell using sulfonated poly ether ether ketone membrane as a biochemical oxygen demand sensor[J].Analytica Chimica Acta,2014,818:15-22.
[91] Modin O,Wilén B M.A novel bioelectrochemical BOD sensor operating with voltage input[J].Water Research,2012,46(18):6113-6120.
[92] Yamashita T,Ookawa N,Ishida M,et al.A novel open-type biosensor for the in-situ monitoring of biochemical oxygen demand in an aerobic environment[J].Scientific Reports,2016,6(1):1-9.
[93] Khan A,Salama E S,Chen Z,et al.A novel biosensor for zinc detection based on microbial fuel cell system[J].Biosensors and Bioelectronics,2020,147:111763.
[94] Adekunle A,Raghavan V,Tartakovsky B.On-line monitoring of heavy metals-related toxicity with a microbial fuel cell biosensor[J].Biosensors and Bioelectronics,2019,132:382-390..
[95] Chen Z,Niu Y,Zhao S,et al.A novel biosensor for p-nitrophenol based on an aerobic anode microbial fuel cell[J].Biosensors and Bioelectronics,2016,85:860-868.
[96] Yi Y,Xie B,Zhao T,et al.Effect of external resistance on the sensitivity of microbial fuel cell biosensor for detection of different types of pollutants[J].Bioelectrochemistry,2019,125:71-78.
[97] Zeng L,Li X,Shi Y,et al.Fepo4 based single chamber air-cathode microbial fuel cell for online monitoring levofloxacin[J].Biosens Bioelectron,2017,91:367-373.
[98] Zhou T,Han H,Liu P,et al.Microbial fuels cell-based biosensor for toxicity detection:a review[J].Sensors (Basel),2017,17(10): 1-21.
[99] Do M H,Ngo H H,Guo W,et al.Microbial fuel cell-based biosensor for online monitoring wastewater quality:a critical review[J].Science of the Total Environment,2019:135612.
[100]Kim M,Sik Hyun M,Gadd G M,et al.A novel biomonitoring system using microbial fuel cells[J].J Environ Monit,2007,9(12):1323-1328.
[101]Stein N E,Hamelers H V M,Buisman C N J.The effect of different control mechanisms on the sensitivity and recovery time of a microbial fuel cell based biosensor[J].Sensors and Actuators B:Chemical,2012,171-172:816-821.
[102]Di Lorenzo M,Thomson A R,Schneider K,et al.A small-scale air-cathode microbial fuel cell for on-line monitoring of water quality[J].Biosens Bioelectron,2014,62:182-188.
[103]Xu Z,Liu B,Dong Q,et al.Flat microliter membrane-based microbial fuel cell as "on-line sticker sensor" for self-supported in situ monitoring of wastewater shocks[J].Bioresour Technol,2015,197:244-251.
[104]Wang X,Gao N,Zhou Q.Concentration responses of toxicity sensor with shewanella oneidensis Mr-1 growing in bioelectrochemical systems[J].Biosens Bioelectron,2013,43:264-267.
[105]Catal T,Yavaser S,Enisoglu-Atalay V,et al.Monitoring of neomycin sulfate antibiotic in microbial fuel cells[J].Bioresour Technol,2018,268:116-120.
[106]Schneider G,Czeller M,Rostas V,et al.Microbial fuel cell-based diagnostic platform to reveal antibacterial effect of beta-lactam antibiotics[J].Enzyme Microb Technol,2015,73-74:59-64.
Research Progresses in Microbial Fuel Cells for Antibiotic Wastewater Treatment
YANG Zhen-zhen, ZHU Chang-xiong, Tian Yun-long, Li Hong-na
(Agricultural Clear Watershed Group, Institute of Environment and Sustainable Development in Agriculture, CAAS, Beijing 100081, China)
Antibiotics are widely used in the fields of medical treatment, animal husbandry, as well as aquaculture. A large amount of the parent antibiotics used are released into the environment through discharge via feces and urine, posing potential risks to human health and ecosystems. It also brings the issues of antibiotic resistant bacteria (ARB) and antibiotic resistance genes (ARGs). Antibiotic resistance has become the research focus in recent years. Microbial fuel cells (MFCs), which utilize microorganisms on the anode to produce electricity through biomass and simultaneously realize the purpose of wastewater treatment, has been widely studied these days. As a result, the aim of this paper was to review the degradation efficiency and degradation pathways of antibiotics, as well as the variation of microbial communities in MFCs. The effect and mechanism were also considered when MFCs was coupled with other technologies. Finally, the latest research on the on-line monitoring of antibiotics by MFCs sensor is also summarized. In total, the results indicated that MFCs showed a good removal effect on antibiotics. The removal efficiency of antibiotics and resistance genes and the microbial community of anodes are different with the reactor configuration, antibiotic types, as well as the initial concentrations and operation time. The coupling of MFCs and constructed wetlands is beneficial to enhance the removal efficiency of antibiotics, providing a new direction for the practical application of MFCs. As a biosensor, MFCs realizes the on-line monitoring of antibiotics content in wastewater by measuring the output voltage, but it is still in its infancy. However, it has been widely used in the on-line monitoring of biochemical oxygen demand and heavy metals, which can provide a reference for the on-line monitoring of antibiotics. Above all, MFCs can effectively remove antibiotics from wastewater, but the control of ARGs still needs to be further studied. The long-term stable operation and practical application of MFCs are the research focus in the future on the pollution control of antibiotic wastewaters. These conclusions will provide theoretical basis for the effective treatment of the follow-up antibiotic wastewater.
Microbial fuel cells; Wastewater; Antibiotics; Antibiotic resistance genes; Microbial communities
10.3969/j.issn.1000-6362.2020.05.002
楊珍珍,朱昌雄,田云龍,等.微生物燃料電池去除廢水中抗生素類污染物的研究進(jìn)展[J].中國農(nóng)業(yè)氣象,2020,41(5):275-287
2019?12?13
李紅娜,E-mail:lihongna828@163.com
中國科協(xié)青年人才托舉工程(2018QNRC001);北京市自然科學(xué)基金資助項(xiàng)目(6192029);中央級(jí)公益性科研院所基本科研業(yè)務(wù)費(fèi)專項(xiàng)(BSRF201903)
楊珍珍,E-mail:yangzhenz@126.com