• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Health Phys.Abstracts,Volume 119,Number 2

    2020-12-20 21:07:20
    輻射防護 2020年5期

    EstimationofExternalContaminationandExposureRatesDuetoFissionProductRelease

    S.A.Dewji1,2, K.Bales2,3, E.Asano1,2,4, K.Veinot5, K.Eckerman6, S.Hart2, L.Finklea7, A.Ansari7

    (1.Department of Nuclear Engineering, Texas A & M University, College Station, TX;2.Oak Ridge National Laboratory, Oak Ridge, TN;3.Department of Radiation Oncology, University of Texas Health Science Center at San Antonio, San Antonio, TX;4.Nuclear Engineering Department, University of Tennessee, Knoxville, Knoxville, TN;5.Y-12 National Security Complex, Oak Ridge, TN;6.Easterly Scientific, Knoxville, TN;7.Centers for Disease Control and Prevention, Atlanta, GA)

    Abstract:In the event of a radiological incident, the release of fission products into the surrounding environment and the ensuing external contamination present a challenge for triage assessment by emergency response personnel.Reference exposure rate and skin dose rate calibration data for emergency response personnel are currently lacking for cases where receptors are externally contaminated with fission products.Simulations were conducted to compute reference exposure rate coefficients and skin dose rate coefficients from photon-emitting fission products of radiological concern.To accomplish this task, simplified mathematical skin phantoms were created using surface area and height specifications from International Commission on Radiological Protection Publication 89.Simulations were conducted using Monte Carlo radiation transport code using newborn, 1-y-old, 5-y-old, 10-y-old, 15-y-old, and adult phantoms for 22 photon-emitting radionuclides.Exposure rate coefficient data were employed in a case study simulating the radionuclide inventory for a 17 × 17 Westinghouse pressurized water reactor, following three burn-up cycles at 14,600 MWd per metric ton of uranium.The decay times following the final cycle represent the relative activity fractions over a period of 0.5-30 d.The resulting data can be used as calibration standards for triage efforts in emergency response protocols.

    Keywords: emergency planning; exposure, radiation; fission products; skin dose

    Health Phys.119(2):163-175; 2020

    OrganDosesfromChestRadiographsinTuberculosisPatientsinCanadaandTheirUncertaintiesinPeriodsfrom1930to1969

    David C.Kocher1, A.Iulian Apostoaei1, Brian A.Thomas1, David Borrego2, Choonsik Lee2, Lydia B.Zablotska3

    (1.Oak Ridge Center for Risk Analysis, Inc., Oak Ridge, TN;2.Radiation Epidemiology Branch, National Cancer Institute, Bethesda, MD;3.Department of Epidemiology and Biostatistics, School of Medicine, University of California, San Francisco, San Francisco, CA)

    Abstract:This paper describes a study to estimate absorbed doses to various organs from film-based chest radiographs and their uncertainties in the periods 1930 to 1948, 1949 to 1955, and 1956 to 1969.Estimated organ doses will be used in new analyses of risks of cancer and other diseases in tuberculosis patients in Canada who had chest fluoroscopic and radiographic examinations in those periods.In this paper, doses to lungs, female breast, active bone marrow, and heart from a single chest radiograph in adults and children of ages 1, 5, 10, and 15 y in the Canadian cohort and their uncertainties are estimated using(1)data on the tube voltage(kV), total filtration(mm Al), tube-current exposure-time product(mA s), and tube output(mR s〗-1)in each period;(2)assumptions about patient orientation, distance from the source to the skin of a patient, and film size; and(3)new calculations of sex-and age-specific organ dose conversion coefficients(organ doses per dose in air at skin entrance).Variations in estimated doses to each organ across the three periods are less than 20% in adults and up to about 30% at younger ages.Uncertainties in estimated organ doses are about a factor of 2 to 3 in adults and up to a factor of 4 at younger ages and are due mainly to uncertainties in the tube voltage and tube-current exposure-time product.

    Keywords: dose, organ; radiation, medical; X rays; X-ray machines

    Health Phys.119(2):176-191; 2020

    Neuroman:VoxelPhantomsfromSurfaceModelsof300HeadStructuresIncluding12PairsofCranialNerves

    Jin Seo Park1

    (1.Department of Anatomy, Dongguk University School of Medicine, Republic of Korea)

    Abstract:For a precise simulation of electromagnetic radiation effects, voxel phantoms require detailed structures to approximate humans.The phantoms currently used still do not have sophisticated structures.This paper presents voxel and surface models of 300 head structures with cranial nerves and reports on a technique for voxel reconstruction of the cranial nerves having very thin and small structures.In real-color sectioned images of the head(voxel size: 0.1 mm), 300 structures were segmented using Photoshop.A surface reconstruction was performed automatically on Mimics.Voxel conversion was run on Voxel Studio.The abnormal shapes of the voxel models were found and classified into three types: thin cord, thin layers, and thin parts in the structures.The abnormal voxel models were amended using extended, filled, and manual voxelization methods devised for this study.Surface models in STL format and as PDF files of the 300 head structures were produced.The STL format has good scalability, so it can be used in most three-dimensional surface model software.The PDF file is very user friendly for students and researchers who want to learn the head anatomy.Voxel models of 300 head structures were produced(TXT format), and their voxel quantity and weight were measured.A voxel model is difficult to handle, and the surface model cannot use the radiation simulation.Consequently, the best method for making precise phantoms is one in which the flaws of the voxel and surface models complement each other, as in the present study.

    Keywords: electromagnetic fields; human organs; medical imaging; phantom

    Health Phys.119(2):192-205; 2020

    Revisiting35and94GHzMillimeterWaveExposuretotheNon-HumanPrimateEye

    James E.Parker1, Charles W.Beason1, Stephen P.Sturgeon2, William B.Voorhees2, Samuel S.Johnson2, Kaitlin S.Nelson2, Leland R.Johnson2, Jeffrey N.Whitmore2

    (1.General Dynamics Information Technology, JBSA Fort Sam Houston, TX 78234;2.Air Force Research Laboratory, 711th Human Performance Wing,Airman Systems Directorate, Bioeffects Division, Radio Frequency Bioeffects Branch, JBSA Fort Sam Houston, TX 78234.)

    Abstract:A previous study reported thermal effects resulting from millimeter wave exposures at 35 and 94 GHz on non-human primates, specifically rhesus monkeys’(Macacamulatta)corneas, but the data exhibited large variations in the observed temperatures and uncertainties in the millimeter wave dosimetry.By incorporating improvements in models and dosimetry, a non-human primate experiment was conducted involving corneal exposures that agreed well with a three-layer, one-dimensional, thermodynamic model to predict the expected surface temperature rise.The new data indicated that the originally reported safety margins for eye exposures were underestimated by 41 ± 20% over the power densities explored.As a result, the expected minimal visible lesion thresholds should be raised to 10.6 ± 1.5 and 7.1 ± 1.0 J cm-2at 35 and 94 GHz, respectively, provided that the power density is less than 6 W cm-2for subjects that are unable to blink.If the blink reflex was active, a power density threshold of 20 W cm-2could be used to protect the eye, although the eyelid could be burned if the exposure was long enough.

    Keywords: health effects; microwaves; modeling, dose assessment; radiation, non-ionizing

    Health Phys.119(2):206-215; 2020

    ARadonBackground-subtractionAlgorithmforElectronicPersonalDosimeters

    R.Fabian, J.Bell, A.Brandl1

    (1.Colorado State University, Fort Collins, CO)

    Abstract:Many first responders are outfitted with electronic personal dosimeters to recognize and be alerted to radiological hazards during their response operations.These dosimeters provide invaluable measurement data for force protection, allowing the first responder to assess a response situation and take protective measures for themselves and other individuals involved based on instrument readings of dose rate or cumulative dose.However, capabilities of common electronic personal dosimeters to identify and distinguish various contributions to the instrument reading, in particular from natural radiological sources, are rather limited.An algorithm has been developed for two-channel electronic personal dosimeters that quantifies the signal contribution from radon progeny and allows for background subtraction from radon and radon progeny in the instrument reading.This algorithm will be particularly useful in operational scenarios where first responders may be subject to rapidly changing levels of natural background radiation, which could mimic the presence of anthropogenic sources of ionizing radiation.

    Keywords: algorithm; radiation, background; radioactivity, natural; radon progeny

    Health Phys.119(2):216-221; 2020

    UncertaintiesinRadiationDosesforaCase-controlStudyofThyroidCanceramongPersonsExposedinChildhoodto131IfromChernobylFallout

    Vladimir Drozdovitch1, Ausrele Kesminiene2, Monika Moissonnier2, Ilya Veyalkin3, Evgenia Ostroumova2

    (1.Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, DHHS, 9609 Medical Center Drive, Bethesda, MD 20892;2.International Agency for Research on Cancer, Lyon, France; 3.Republican Research Center for Radiation Medicine and Human Ecology, Gomel, Belarus)

    Abstract:Uncertainties in thyroid doses due to131I intake were evaluated for 2,239 subjects in a case-control study of thyroid cancer following exposure to Chernobyl fallout during childhood and adolescence carried out in contaminated regions of Belarus and Russia.Using new methodological developments that became available recently, a Monte Carlo simulation procedure was applied to calculate 1,000 alternative vectors of thyroid doses due to131I intake for the study population of 2,239 subjects accounting for sources of shared and unshared errors.An overall arithmetic mean of the stochastic thyroid doses in the study was estimated to be 0.43 Gy and median dose of 0.16 Gy.The arithmetic mean and median of deterministic doses estimated previously for 1,615 of 2,239 study subjects were 0.48 Gy and 0.20 Gy, respectively.The geometric standard deviation of individual stochastic doses varied from 1.59 to 3.61 with an arithmetic mean of 1.94 and a geometric mean of 1.89 over all subjects of the study.These multiple sets of thyroid doses were used to update radiation-related thyroid cancer risks in the study population exposed to131I after the Chernobyl accident.

    Keywords:131I; dosimetry; Chernobyl; thyroid

    Health Phys.119(2):222-235; 2020

    IEEECommitteeonManandRadiation—COMARTechnicalInformationStatement:HealthandSafetyIssuesConcerningExposureoftheGeneralPublictoElectromagneticEnergyfrom5GWirelessCommunicationsNetworks

    J.T.Bushberg, C.K.Chou, K.R.Foster, R.Kavet, D.P.Maxson, R.A.Tell, M.C.Ziskin1

    (1.Committee on Man and Radiation(COMAR), IEEE Engineering in Medicine and Biology Society)

    Abstract:This COMAR Technical Information Statement(TIS)addresses health and safety issues concerning exposure of the general public to radiofrequency(RF)fields from 5G wireless communications networks, the expansion of which started on a large scale in 2018 to 2019.5G technology can transmit much greater amounts of data at much higher speeds for a vastly expanded array of applications compared with preceding 2-4G systems; this is due, in part, to using the greater bandwidth available at much higher frequencies than those used by most existing networks.Although the 5G engineering standard may be deployed for operating networks currently using frequencies extending from 100 s to 1,000 s of MHz, it can also operate in the 10s of GHz where the wavelengths are 10 mm or less, the so-called millimeter wave(MMW)band.Until now, such fields were found in a limited number of applications(e.g., airport scanners, automotive collision avoidance systems, perimeter surveillance radar), but the rapid expansion of 5G will produce a more ubiquitous presence of MMW in the environment.While some 5G signals will originate from small antennas placed on existing base stations, most will be deployed with some key differences relative to typical transmissions from 2-4G base stations.Because MMW do not penetrate foliage and building materials as well as signals at lower frequencies, the networks will require “densification,” the installation of many lower power transmitters(often called “small cells” located mainly on buildings and utility poles)to provide for effective indoor coverage.Also, “beamforming” antennas on some 5G systems will transmit one or more signals directed to individual users as they move about, thus limiting exposures to non-users.In this paper, COMAR notes the following perspectives to address concerns expressed about possible health effects of RF field exposure from 5G technology.First, unlike lower frequency fields, MMW do not penetrate beyond the outer skin layers and thus do not expose inner tissues to MMW.Second, current research indicates that overall levels of exposure to RF are unlikely to be significantly altered by 5G, and exposure will continue to originate mostly from the “uplink” signals from one’s own device(as they do now).Third, exposure levels in publicly accessible spaces will remain well below exposure limits established by international guideline and standard setting organizations, including ICNIRP and IEEE.Finally, so long as exposures remain below established guidelines, the research results to date do not support a determination that adverse health effects are associated with RF exposures, including those from 5G systems.While it is acknowledged that the scientific literature on MMW biological effect research is more limited than that for lower frequencies, we also note that it is of mixed quality and stress that future research should use appropriate precautions to enhance validity.The authorship of this paper includes a physician/biologist, epidemiologist, engineers, and physical scientists working voluntarily and collaboratively on a consensus basis.

    Keywords: microwaves; radiation, low-level; radiation, non-ionizing; safety standards

    Health Phys.119(2):236-246; 2020

    DesignandCharacterizationofanExtremely-Sensitive,Large-VolumeGamma-RaySpectrometerforEnvironmentalSamples

    James M.Seekamp1, Jordan D.Noey1, Emily H.Kwapis1, Long Kiu Chung1, Nasser A.Shubayr2, Travis Smith1, David J.Trimas1, Kimberlee J.Kearfott1

    (1.Department of Nuclear Engineering and Radiological Sciences, University of Michigan, 2355 Bonisteel Boulevard, Ann Arbor, MI 48109-2104;2.Diagnostic Radiology Department, Faculty of Applied Medical Sciences, Jazan University, Almaarfah Rd.Jazan, Saudi Arabia, P.O.Box: 114 Jazan, KSA, 45142)

    Abstract:A large volume gamma spectrometer was designed and constructed to analyze foodstuffs and environmental samples having low radionuclide concentrations.This system uses eight 11-cm × 42.5-cm × 5.5-cm NaI(Tl)detectors, chosen due to their relatively high sensitivity and availability and arranged in an octagonal configuration.The sensitive volume of the system is ~28 cm in diameter and ~42 cm deep.Shielding consists of an 86-cm × 86-cm square, 64-cm-tall lead brick enclosure with 18-cm-thick lead walls lined by 0.3-cm-thick copper plates.An aluminum top was machined to suspend the detectors within this shield.The shielding reduces background counts by 72% at 100 keV and 42% at 1,000 keV.The positional variability in sensitivity of the well was determined by both simulation and experiment.A 2.1-L volume of nearly uniform sensitivity, varying less than 10%, exists in the well’s center.Energy resolutions of 14.6% and 7.8% were measured for241Am and137Cs, respectively.Energy resolution shows a 0.2% variation for both241Am and137Cs as a function of position within all regions of the well’s central sensitive volume.Dead time was also determined to be less than 35% for all sources measured in the system, the largest of which had an activity of 1,760 kBq.Simulated results for various source geometries show higher counts for smaller samples, especially at lower energies due to less attenuation of low energy photons.Minimum detectable activities were determined for all source energies used, less than 5.1 Bq kg-1for reasonable background and sample counting times.

    Keywords: operational topics; contamination, environmental; radiation, gamma; spectroscopy, gamma

    Health Phys.119(2):252-260; 2020

    CompromiseofPersonalProtectiveClothingfromLiquidExposure

    Scott O.Schwahn1, Nathaniel D.Foster2

    (1.Oak Ridge National Laboratory, PO Box 2008, Oak Ridge, TN 37831-2008;2.Brookhaven National Laboratory, PO Box 5000, Upton, NY 11973-5000)

    Abstract:Introduction: Following critiques of multiple personal contamination events from entries into the Oak Ridge National Laboratory’s Spallation Neutron Source Transfer Bay, it was considered that the most likely causes for contamination were personal protective clothing doffing errors or moisture(sweat)allowing contamination to wick through the protective clothing.Radiological protection staff looked more closely, however, at the specific area of the clothing where contamination was highest; under enhanced lighting and photochromic manipulation, there appeared to have been some type of moisture in the area.Recognizing the possibility that moisture may have allowed for migration of contamination through the clothing, further experiments were undertaken to determine under which conditions this transport might have occurred.Objective: The objective for this work was to identify the susceptibility of different types of personal protective clothing to various liquids encountered in the workplace.Method: Several tests were performed to determine if perspiration had enabled migration of contamination and to identify what other liquids might have affected contamination transport.Two layers of personal protective clothing were subjected to static conditions and dynamic conditions to include active rubbing of the materials while wet.Food dye added to each of the liquids tested enabled visual indications of liquid breakthrough.Additional tests were conducted to see if solid contamination could be transported through the materials along with the liquids.Results: All but one type of non-rubberized personal protective clothing in use at Oak Ridge National Laboratory were permanently compromised to some extent by the solvents used for decontamination.Conclusion: It was determined that most common cleaning agents immediately and permanently destroyed the hydrophobic nature of several of the tested protective clothing materials, potentially allowing for radioactive contamination to penetrate through the material to the worker.Work around wet surfaces or performing wet decontamination will only be performed in protective clothing known to prevent transport of the wetting agent.

    Keywords: contamination, external; decontamination; operational topics; surface contamination

    Health Phys.119(2):261-265; 2020

    六月丁香七月| 97热精品久久久久久| 亚洲av欧美aⅴ国产| 色网站视频免费| 日日摸夜夜添夜夜添av毛片| 亚洲人成网站高清观看| 亚洲国产精品国产精品| 成年av动漫网址| 乱系列少妇在线播放| 大香蕉97超碰在线| 一区二区三区四区激情视频| 久久人人爽人人爽人人片va| 一本—道久久a久久精品蜜桃钙片| 丝袜喷水一区| 国产在线男女| 亚洲av成人精品一二三区| 亚洲中文av在线| 国产精品久久久久久精品古装| 男人爽女人下面视频在线观看| 大片免费播放器 马上看| 美女内射精品一级片tv| 大片电影免费在线观看免费| 99精国产麻豆久久婷婷| 国产爽快片一区二区三区| 免费观看性生交大片5| 久久99精品国语久久久| 久久精品熟女亚洲av麻豆精品| 啦啦啦视频在线资源免费观看| 这个男人来自地球电影免费观看 | 久久这里有精品视频免费| 欧美极品一区二区三区四区| 一级av片app| 女的被弄到高潮叫床怎么办| 性色avwww在线观看| 99久国产av精品国产电影| 国产精品熟女久久久久浪| 黄色视频在线播放观看不卡| 人妻少妇偷人精品九色| 少妇人妻精品综合一区二区| 在线免费十八禁| 亚洲av免费高清在线观看| 国内精品宾馆在线| 热99国产精品久久久久久7| 99久久精品国产国产毛片| 精品一区二区三区视频在线| 亚洲综合精品二区| 国产免费一区二区三区四区乱码| 六月丁香七月| 高清不卡的av网站| 亚洲色图综合在线观看| 人人妻人人添人人爽欧美一区卜 | 插阴视频在线观看视频| 大片免费播放器 马上看| 最近中文字幕高清免费大全6| 一级毛片久久久久久久久女| 免费大片18禁| 久久 成人 亚洲| 免费观看无遮挡的男女| 精品少妇久久久久久888优播| 免费av中文字幕在线| 国产欧美另类精品又又久久亚洲欧美| 一区二区av电影网| 日本vs欧美在线观看视频 | 精品人妻视频免费看| 中文天堂在线官网| 在线看a的网站| 欧美精品人与动牲交sv欧美| 边亲边吃奶的免费视频| 欧美精品人与动牲交sv欧美| 欧美亚洲 丝袜 人妻 在线| 黄片wwwwww| 日韩不卡一区二区三区视频在线| 99热网站在线观看| 国产一区亚洲一区在线观看| 3wmmmm亚洲av在线观看| 观看av在线不卡| 少妇被粗大猛烈的视频| 欧美日韩视频精品一区| 免费观看a级毛片全部| 七月丁香在线播放| 免费观看a级毛片全部| 在线观看一区二区三区| 亚洲精品乱久久久久久| 自拍欧美九色日韩亚洲蝌蚪91 | 97在线视频观看| 亚洲av电影在线观看一区二区三区| 91久久精品国产一区二区三区| 欧美日韩视频高清一区二区三区二| 男男h啪啪无遮挡| 男人爽女人下面视频在线观看| 麻豆精品久久久久久蜜桃| 国产69精品久久久久777片| 午夜精品国产一区二区电影| 如何舔出高潮| 99久久人妻综合| 男女无遮挡免费网站观看| 午夜免费男女啪啪视频观看| 国产成人freesex在线| 色综合色国产| 99精国产麻豆久久婷婷| 午夜福利高清视频| 亚洲欧洲国产日韩| 亚洲精品亚洲一区二区| 久久久久精品久久久久真实原创| 一本—道久久a久久精品蜜桃钙片| 美女xxoo啪啪120秒动态图| 99久久综合免费| 久久久久精品性色| 国产v大片淫在线免费观看| 亚洲av在线观看美女高潮| 另类亚洲欧美激情| 一个人看视频在线观看www免费| 成人亚洲精品一区在线观看 | 99热网站在线观看| 九色成人免费人妻av| 日韩成人av中文字幕在线观看| 91精品伊人久久大香线蕉| 国产成人a∨麻豆精品| 日韩欧美精品免费久久| 国产片特级美女逼逼视频| 啦啦啦啦在线视频资源| 韩国高清视频一区二区三区| 久久精品国产a三级三级三级| av在线老鸭窝| 成人午夜精彩视频在线观看| 人妻一区二区av| 欧美最新免费一区二区三区| 国产成人精品久久久久久| 国产精品成人在线| av免费在线看不卡| 亚洲精品国产色婷婷电影| 嫩草影院新地址| 国产黄片视频在线免费观看| av卡一久久| 欧美zozozo另类| 国内精品宾馆在线| 午夜激情福利司机影院| 麻豆乱淫一区二区| 极品教师在线视频| 99热这里只有是精品50| 免费看光身美女| 22中文网久久字幕| 少妇人妻一区二区三区视频| 日韩大片免费观看网站| 欧美一区二区亚洲| 性色avwww在线观看| 插阴视频在线观看视频| 日韩一区二区三区影片| av黄色大香蕉| 在线观看一区二区三区激情| 人人妻人人爽人人添夜夜欢视频 | 久久精品国产a三级三级三级| 国产欧美日韩精品一区二区| 黄色一级大片看看| 国产免费福利视频在线观看| 这个男人来自地球电影免费观看 | 色吧在线观看| 激情 狠狠 欧美| 青青草视频在线视频观看| 午夜老司机福利剧场| 免费看日本二区| 联通29元200g的流量卡| 国产探花极品一区二区| av.在线天堂| 亚洲美女黄色视频免费看| 国产亚洲午夜精品一区二区久久| 18禁在线无遮挡免费观看视频| 在线免费十八禁| 直男gayav资源| 久久久久久久久久久免费av| 大话2 男鬼变身卡| 26uuu在线亚洲综合色| 免费av中文字幕在线| 性色avwww在线观看| 蜜桃亚洲精品一区二区三区| 国产精品熟女久久久久浪| 热re99久久精品国产66热6| 中文字幕久久专区| 一级毛片黄色毛片免费观看视频| 欧美日韩在线观看h| 九色成人免费人妻av| 高清欧美精品videossex| 中文字幕亚洲精品专区| 色5月婷婷丁香| 免费观看在线日韩| 最新中文字幕久久久久| 伦理电影免费视频| 亚洲欧美清纯卡通| 亚洲精品中文字幕在线视频 | 亚洲国产最新在线播放| 久热久热在线精品观看| 日日摸夜夜添夜夜添av毛片| 永久免费av网站大全| 亚洲av男天堂| 91在线精品国自产拍蜜月| 最近2019中文字幕mv第一页| 免费黄频网站在线观看国产| 亚洲国产日韩一区二区| 国产精品国产三级专区第一集| 最近最新中文字幕免费大全7| 亚洲色图综合在线观看| 国产 精品1| 亚洲精品一区蜜桃| 伊人久久精品亚洲午夜| 亚洲欧美日韩无卡精品| 搡老乐熟女国产| 51国产日韩欧美| 国产精品一区二区性色av| 插逼视频在线观看| 99久久精品热视频| 国产av国产精品国产| 成年免费大片在线观看| 成人美女网站在线观看视频| 精品国产一区二区三区久久久樱花 | 久久精品久久久久久久性| 最近最新中文字幕大全电影3| 不卡视频在线观看欧美| 在线观看av片永久免费下载| 久久久久久久久大av| 亚洲,一卡二卡三卡| 亚洲人与动物交配视频| 少妇精品久久久久久久| 国产男女超爽视频在线观看| 中文欧美无线码| 国产男女内射视频| 2021少妇久久久久久久久久久| 久久久久久人妻| 日本黄色日本黄色录像| 国产精品偷伦视频观看了| 久久影院123| 国产 精品1| 黄色欧美视频在线观看| 精品国产露脸久久av麻豆| 国产精品一及| 国精品久久久久久国模美| 丝瓜视频免费看黄片| 性高湖久久久久久久久免费观看| 2022亚洲国产成人精品| 国产男女内射视频| 中文字幕精品免费在线观看视频 | 内地一区二区视频在线| 国产精品国产av在线观看| 欧美区成人在线视频| 五月伊人婷婷丁香| 亚洲国产欧美人成| 六月丁香七月| 女的被弄到高潮叫床怎么办| 国产精品人妻久久久久久| 两个人的视频大全免费| 国产精品av视频在线免费观看| 一级毛片久久久久久久久女| 亚洲欧美日韩另类电影网站 | 肉色欧美久久久久久久蜜桃| 精品一区二区免费观看| 欧美成人a在线观看| 国产乱来视频区| 亚洲精品一二三| 久久99蜜桃精品久久| 国产视频首页在线观看| av女优亚洲男人天堂| 免费少妇av软件| 亚洲电影在线观看av| 七月丁香在线播放| 能在线免费看毛片的网站| 国产精品久久久久久久久免| 另类亚洲欧美激情| 成人毛片60女人毛片免费| 最近最新中文字幕免费大全7| 在线观看免费高清a一片| 晚上一个人看的免费电影| 国产精品人妻久久久久久| 男女边摸边吃奶| 又粗又硬又长又爽又黄的视频| 五月天丁香电影| 直男gayav资源| 久久国产精品大桥未久av | av播播在线观看一区| 久久久精品94久久精品| 国产人妻一区二区三区在| 成人一区二区视频在线观看| 欧美日韩综合久久久久久| 免费播放大片免费观看视频在线观看| av国产精品久久久久影院| 国产乱来视频区| 久久av网站| 国内少妇人妻偷人精品xxx网站| 一边亲一边摸免费视频| 国内精品宾馆在线| 中文字幕久久专区| 亚洲av欧美aⅴ国产| 免费av中文字幕在线| 国产精品一二三区在线看| 九九爱精品视频在线观看| 久久久久久久久久人人人人人人| 亚洲美女视频黄频| 女人十人毛片免费观看3o分钟| 18禁动态无遮挡网站| 伊人久久精品亚洲午夜| 黄片无遮挡物在线观看| 天堂8中文在线网| 成年av动漫网址| av.在线天堂| 在线观看三级黄色| 亚洲国产最新在线播放| 高清在线视频一区二区三区| 九九在线视频观看精品| 黑人高潮一二区| 在现免费观看毛片| 赤兔流量卡办理| 日本与韩国留学比较| 啦啦啦视频在线资源免费观看| 亚洲av在线观看美女高潮| 日本黄大片高清| 麻豆国产97在线/欧美| 水蜜桃什么品种好| 日韩成人伦理影院| av免费观看日本| 国产成人a∨麻豆精品| 亚洲精品456在线播放app| 亚洲成色77777| 亚洲自偷自拍三级| 国产精品一区www在线观看| 人妻 亚洲 视频| 日产精品乱码卡一卡2卡三| 校园人妻丝袜中文字幕| 狠狠精品人妻久久久久久综合| 人妻制服诱惑在线中文字幕| 视频区图区小说| 最近手机中文字幕大全| 久热这里只有精品99| 亚洲av国产av综合av卡| 在线免费十八禁| 亚洲第一av免费看| 亚洲精品日韩av片在线观看| 在现免费观看毛片| 欧美日本视频| av在线观看视频网站免费| 日韩成人av中文字幕在线观看| 欧美成人午夜免费资源| 永久网站在线| 精品一区在线观看国产| 最近的中文字幕免费完整| 人人妻人人爽人人添夜夜欢视频 | 人人妻人人看人人澡| 久久国产乱子免费精品| 日本爱情动作片www.在线观看| 国产在线一区二区三区精| 三级国产精品欧美在线观看| 久久ye,这里只有精品| 欧美丝袜亚洲另类| 亚洲丝袜综合中文字幕| 欧美日韩在线观看h| 最后的刺客免费高清国语| 精品久久久噜噜| 在线观看免费日韩欧美大片 | 高清毛片免费看| 国产av精品麻豆| 免费久久久久久久精品成人欧美视频 | 成人免费观看视频高清| 日韩大片免费观看网站| 人妻少妇偷人精品九色| 91狼人影院| 最近最新中文字幕免费大全7| 热99国产精品久久久久久7| 在线播放无遮挡| 国产一区二区在线观看日韩| 国模一区二区三区四区视频| 又爽又黄a免费视频| 全区人妻精品视频| 一边亲一边摸免费视频| 欧美3d第一页| .国产精品久久| 高清av免费在线| 如何舔出高潮| h日本视频在线播放| 国产成人91sexporn| 99久国产av精品国产电影| 少妇的逼水好多| 美女主播在线视频| 免费观看的影片在线观看| 亚洲,欧美,日韩| 菩萨蛮人人尽说江南好唐韦庄| 一本一本综合久久| 日本黄色日本黄色录像| 久久久成人免费电影| 大香蕉97超碰在线| 国产成人午夜福利电影在线观看| 国产精品国产三级专区第一集| 久久6这里有精品| 男女无遮挡免费网站观看| 2022亚洲国产成人精品| 欧美zozozo另类| 国产一区有黄有色的免费视频| 汤姆久久久久久久影院中文字幕| 视频中文字幕在线观看| av黄色大香蕉| 日韩av在线免费看完整版不卡| 国产黄片视频在线免费观看| 老师上课跳d突然被开到最大视频| 亚洲精品自拍成人| 一区二区三区四区激情视频| 在线观看人妻少妇| 国产精品福利在线免费观看| 成人无遮挡网站| 18+在线观看网站| 一区二区av电影网| 国产精品久久久久久精品电影小说 | 看十八女毛片水多多多| 男女边吃奶边做爰视频| 蜜桃久久精品国产亚洲av| 中文天堂在线官网| 啦啦啦中文免费视频观看日本| av线在线观看网站| 国产亚洲5aaaaa淫片| 久久国产亚洲av麻豆专区| 国产日韩欧美在线精品| 欧美精品一区二区免费开放| 日韩免费高清中文字幕av| 久热这里只有精品99| 精品久久久久久电影网| 男人爽女人下面视频在线观看| 欧美日本视频| 99久久中文字幕三级久久日本| 国产 精品1| 黄色一级大片看看| 国产视频首页在线观看| 中文字幕人妻熟人妻熟丝袜美| 亚洲一区二区三区欧美精品| 18禁裸乳无遮挡免费网站照片| 日韩欧美一区视频在线观看 | 你懂的网址亚洲精品在线观看| 色吧在线观看| 国产精品国产三级国产专区5o| 最近中文字幕2019免费版| 亚洲国产精品一区三区| 亚洲人成网站高清观看| 成人黄色视频免费在线看| 一本一本综合久久| 欧美激情极品国产一区二区三区 | 成人特级av手机在线观看| 亚洲美女搞黄在线观看| 久久久午夜欧美精品| av国产久精品久网站免费入址| 尾随美女入室| 国国产精品蜜臀av免费| 欧美高清性xxxxhd video| 久久久午夜欧美精品| 啦啦啦视频在线资源免费观看| 午夜免费观看性视频| 在线观看一区二区三区| 国产精品久久久久久精品电影小说 | 久久久久久九九精品二区国产| 啦啦啦视频在线资源免费观看| 国产av一区二区精品久久 | 在线观看一区二区三区| 精华霜和精华液先用哪个| 在现免费观看毛片| 亚洲久久久国产精品| 午夜激情久久久久久久| 蜜桃久久精品国产亚洲av| 婷婷色麻豆天堂久久| 国产精品久久久久久av不卡| 亚洲精品一二三| 久久人人爽人人爽人人片va| 亚洲图色成人| 国产黄频视频在线观看| 男人爽女人下面视频在线观看| h日本视频在线播放| 免费久久久久久久精品成人欧美视频 | 97超视频在线观看视频| 男人狂女人下面高潮的视频| 熟女电影av网| 黄色怎么调成土黄色| 国产淫语在线视频| 亚洲国产精品专区欧美| 青春草国产在线视频| 午夜福利网站1000一区二区三区| av卡一久久| 亚洲av中文字字幕乱码综合| 久久久久久久久大av| 国产v大片淫在线免费观看| 日韩人妻高清精品专区| 婷婷色综合www| 伦理电影大哥的女人| 18禁在线播放成人免费| 久热这里只有精品99| 久久99热这里只有精品18| 天堂俺去俺来也www色官网| 日韩欧美 国产精品| videossex国产| 中国美白少妇内射xxxbb| 国产亚洲欧美精品永久| 直男gayav资源| 精品国产乱码久久久久久小说| 欧美精品亚洲一区二区| 人人妻人人澡人人爽人人夜夜| 视频中文字幕在线观看| 少妇的逼水好多| 色哟哟·www| 成人综合一区亚洲| 日本wwww免费看| 久久精品久久久久久久性| 久久热精品热| 国语对白做爰xxxⅹ性视频网站| 伦理电影大哥的女人| 视频中文字幕在线观看| 人人妻人人看人人澡| 国产国拍精品亚洲av在线观看| 久久久久久人妻| 亚洲精品乱码久久久久久按摩| 在线观看美女被高潮喷水网站| 一级av片app| 中文字幕亚洲精品专区| 99热这里只有是精品在线观看| 欧美 日韩 精品 国产| 亚洲av不卡在线观看| 亚洲精品456在线播放app| 欧美变态另类bdsm刘玥| 国产爱豆传媒在线观看| 天堂8中文在线网| 91精品一卡2卡3卡4卡| 精品久久久久久久久av| 免费黄频网站在线观看国产| 精品久久久久久电影网| 亚洲精品乱码久久久v下载方式| 免费观看a级毛片全部| 婷婷色av中文字幕| 亚洲精品久久久久久婷婷小说| 熟女人妻精品中文字幕| 成人毛片60女人毛片免费| 我要看黄色一级片免费的| 欧美日韩一区二区视频在线观看视频在线| 卡戴珊不雅视频在线播放| 黄色配什么色好看| 色视频在线一区二区三区| 欧美激情国产日韩精品一区| 国产精品精品国产色婷婷| 欧美高清成人免费视频www| 麻豆国产97在线/欧美| 亚洲三级黄色毛片| 国产男女内射视频| 青春草视频在线免费观看| 丰满人妻一区二区三区视频av| 熟妇人妻不卡中文字幕| 精品国产三级普通话版| 久久精品国产鲁丝片午夜精品| 亚洲怡红院男人天堂| 久久久久久久久久久丰满| 亚洲国产精品专区欧美| 国产爽快片一区二区三区| 26uuu在线亚洲综合色| 天堂俺去俺来也www色官网| av播播在线观看一区| 欧美3d第一页| 亚洲欧洲国产日韩| 久久精品国产a三级三级三级| 在线观看一区二区三区| 啦啦啦啦在线视频资源| 国产真实伦视频高清在线观看| 久久精品夜色国产| 日韩一本色道免费dvd| 国产中年淑女户外野战色| freevideosex欧美| 性色av一级| 日日啪夜夜撸| 99热这里只有是精品在线观看| 亚洲美女黄色视频免费看| 色视频www国产| av免费观看日本| 久久精品国产鲁丝片午夜精品| 日韩制服骚丝袜av| videos熟女内射| 亚洲国产欧美在线一区| 男人添女人高潮全过程视频| 国国产精品蜜臀av免费| 日韩欧美一区视频在线观看 | 日本猛色少妇xxxxx猛交久久| 精品一区二区三卡| 日韩av免费高清视频| 午夜免费观看性视频| 多毛熟女@视频| 中文资源天堂在线| 国产av国产精品国产| 黑丝袜美女国产一区| 18禁裸乳无遮挡免费网站照片| av在线蜜桃| 国产精品久久久久久精品电影小说 | 少妇人妻久久综合中文| 亚洲av成人精品一区久久| 大片电影免费在线观看免费| 国产av一区二区精品久久 | 少妇熟女欧美另类| av播播在线观看一区| 亚洲精品国产av蜜桃| 99久久中文字幕三级久久日本| 国产淫语在线视频| 舔av片在线| 黄色配什么色好看| 久久午夜福利片| 亚洲av日韩在线播放| 人妻少妇偷人精品九色| 在线观看免费日韩欧美大片 | 99久久中文字幕三级久久日本| 国产精品麻豆人妻色哟哟久久| 日韩中文字幕视频在线看片 | 免费播放大片免费观看视频在线观看| 久久久久国产精品人妻一区二区| 中文欧美无线码| 国产久久久一区二区三区| 十分钟在线观看高清视频www | 狂野欧美激情性bbbbbb| 久久99蜜桃精品久久| 蜜桃久久精品国产亚洲av| 亚洲精品乱久久久久久| 日韩一区二区视频免费看|