• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Establishment and validation of a nomogram for predicting the risk of liver inflammation in chronic HBV infection

    2023-11-20 01:31:10HUANGShengkaiSUNLong
    Journal of Hainan Medical College 2023年12期

    HUANG Sheng-kai, SUN Long

    Department of Infectious Disease, the First Affiliated Hospital of Hainan Medical College, Haikou 570102, China

    Keywords:

    ABSTRACT Objective: To establish a non-invasive quantitative and visual predictive model for assessing the occurrence of significant inflammation in chronic HBV infection, and to present nomogram to validate the efficacy.Methods: A total of 180 patients with chronic HBV infection that were admitted to the Department of Infectious Liver Diseases of the First Affiliated Hospital of Hainan Medical College from January 2019 to December 2021 with informed consent and underwent liver biopsy puncture were selected, and to prevent overfitting of the model, 131 patients and 49 patients were randomly divided into a model group and a validation group according to randomization, to collect the clinic information, serological examination, liver elastography and liver histopathology results.The patients were divided into non-significant inflammation and significant inflammation groups in the modeling group.The R 4.1.1 package and the rms package were used to build the column line graph model, while the Bootstrap method was applied to repeat the sampling 1 000 times for internal and external validation, and the H-L goodness of fit test and ROC curve were used to assess the calibration and discrimination of the column line graph model respectively.Results: A total of 180 patients with chronic HBV infection were included, and 92 patients (51.1%) had significant inflammation.In the modeling set, 67 patients(51.1%) had significant inflammation.In the modeled group, comparison of HBV DNA, PLT, ALT, AST, ALP, GGT, PAB, H.A, PⅢP, CⅣ, L.N, IL-6, LSM and HBeAg for non-significant inflammation and significant inflammation showed statistically significant differences(P<0.05).Nomogram were obtained using stepwise regression analysis to establish a predictive model for the risk of significant inflammation following chronic HBV infection.The χ2 values of the H-L goodness-of-fit test for the modelling and validation groups were 0.279 and 2.098, respectively, corresponding to P values of 0.87 and 0.35, suggesting that the nomogram has good predictive accuracy; the area under the ROC curve of the column line plot predicting the occurrence of significant inflammation after HBV infection for the modelling and validation groups was 0.895 [95%CI(0.843-0.948)] and 0.760 [95%CI(0.622-0.897)], suggesting that the column line plot model has good discrimination.Conclusion: After stepwise regression analysis, it was established that PLT, Ln(HBV-DNA), AST, CⅣ and LSM were more closely associated with the occurrence of significant inflammation after HBV infection, and a visualization of the occurrence of significant inflammation nomogram was established by comprehensive assessment, and the effectiveness was good.

    1.Introduction

    Hepatitis B virus (HBV) infection is a global health problem, with about 257 million people chronically infected with HBV worldwide and about 887,000 people die from HBV infection globally each year[1].Studies have shown that HBV itself does not directly kill liver cells, and the immune response caused by the virus is the main mechanism leading to liver cell damage and inflammation and necrosis[2], and the inflammation and necrosis of liver cells caused by HBV infection is an important pathophysiological process of disease progression[3].Significant liver inflammation (A 2) is one of the conditions for anti-hepatitis B virus therapy[4-6].Evaluation of liver histology significant liver inflammation and fibrosis is of great significance for antiviral therapy.Liver biopsy is still the gold standard, but its invasive and easy to repeat shortcomings limit its clinical application[7].At present, the column chart is mainly used for liver failure, liver cancer, liver fibrosis and other aspects of HBV infection, while there are few reports on liver inflammation[8, 9].The traditional prediction model can only prove the correlation between relevant indicators and liver inflammation, but cannot elaborate the correlation degree.The column graph is a quantitative prediction graph that displays the results of multi-factor regression analysis on the same plane by a cluster of disjoint line segments[10].With the advantages of being visible, readable, simple and practical, It has received more and more attention and application in the medical field[11].Based on the above factors, this study combined serological indicators with liver elastic imaging to construct a scoring system for significant liver tissue inflammation line chart, aiming to provide a non-invasive liver histological inflammation evaluation model for patients with chronic HBV infection and provide certain reference basis during the treatment against hepatitis B virus.

    2.Objects and Methods

    2.1 The research object

    A total of 180 patients with chronic HBV infection who signed informed consent and underwent liver biopsy biopsy in the Department of Infectious Diseases, The First Affiliated Hospital of Hainan Medical University from January 2019 to December 2021 were retrospectively selected.Inclusion criteria :(1) meet the diagnostic criteria for chronic HBV infection[6]; (2) If he/she has clear consciousness, he/she can sign the informed consent by himself/herself.Exclusion criteria :(1) complicated with diabetes,extrahepatic tumor, cardiovascular disease and other extrahepatic related diseases; (2) autoimmune hepatitis, other hepatitis virus, fatty liver, drug liver damage and other related intrahepatic factors; (3)Patients with incomplete data.To prevent overfitting of the model,patients were divided into modeling group (n=131) and validation group (n=49) by cluster randomization.This study was approved by the Ethics Committee of the First Affiliated Hospital of Hainan Medical University (Ethics Approval No.2020 (Scientific Research)No.(18)).

    1.2 The research methods

    Significant risk factors of inflammation found in patients with chronic HBV infection were collected in the references[12, 13].Including: (1) Basic data: age and gender of patients were collected and included.(2) Grading results of liver tissue inflammation:All included patients met the criteria for liver biopsy biopsy and had signed informed consent.The ultrasound doctor performed puncture, and the pathology doctor scored the degree of liver inflammation.According to the staging of liver tissue inflammation degree by Metavir scoring system, A 2 was classified as significant inflammation.(3) Hematological test: All patients were found to have fasting venous blood in the morning after hematological test within 48 hours before liver biopsy biopsy.Selected items were Hepatitis B surface antigen (HBsAg), Hepatitis Be antigen (HBeAg)and Hepatitis B core antibody (Hepatitis B core) antibody,HBcAb),HBV DNA quantification, Platelet count (PLT), Liver functions include Alanine aminotransferase (ALT), Aspartate aminotransferase(AST), and Alkaline phosphatase (Alkaline phosphatase)phosphatase (ALP), Gamma-glutamyl transpeptidase (GGT),Albumin (ALB), Globulin (GLB), Prealbumin (PAB), Interleukin-6(IL-6), The four categories of hepatic fibrosis include Hyaluronic Acid (HA), N-terminal peptide of type III procollagen (PIIIP) and type IV Collagen type IV,CIV), Laminin,L.N.(4) Liver stiffness values: Liver stiffness values (LSM) of patients were measured by the sonographer using 2D shear wave elasticity imaging (2D-SWE).

    1.3 Statistical processing

    R 4.1.1 software was used for statistical analysis.The counting data were expressed as numbers (percentages) using the χ2test.Normal distribution of measurement data was expressed by (±s) and t test was used.Non-conforming distributions were represented by median (interquartile spacing) [M(P25,P75)] and rank-sum test was used.Multivariate analysis used stepwise backward regression analysis.RMS package was used to analyze the regression model and draw the line graph model.Bootstrap method was used to repeat 1 000 samples for internal and external verification.H-l goodness of fit test and ROC curve were used to evaluate the calibration degree and differentiation degree of the line graph model, respectively.The level of bilateral test was α=0.05, and P < 0.05 was considered to be statistically significant.

    3.Results

    3.1 The general information

    A total of 180 patients with chronic HBV infection were included,including 6 cases of A0 (3.3%), 82 cases of A1 (45.6%), 72 cases of A2 (40%), 19 cases of A3 (10.6%), and 1 case of A4 (0.5%).There were 92 cases (51.1%) with significant inflammation (A 2).Randomization was performed in the modeling group of 131 cases and the validation group of 49 cases.

    3.2 Comparison of case data between the modeling group and the validation group

    The results showed that 67 cases (51.1%) in the modeling group developed significant inflammation.Between the modeling group and the verification group, there were no statistically significant differences in age, gender, and disease progression (whether significant inflammatory reactions occurred), indicating that the two random groups of data were comparable (Table 1).

    Tab 1 Evaluation results of the consistency test of case information between the modeling and validation groups

    3.3 Comparison of data of patients with non-significant inflammation and significant inflammation in the modeling group

    The HBV DNA, ALT, AST, ALB, ALP, PLT, GGT, PAB, IL-6, HA,PIIIP, CIV, L.N, HBeAg and LSM in patients with non-significant and significant inflammation were significantly different (P< 0.05)(Table 2).

    3.4 By using stepwise backward regression analysis, the optimal evaluation model of significant inflammation in patients after HBV infection was obtained

    With significant inflammation as the dependent variable, Ln(HBVDNA), PLT, ALT, AST, ALB, ALP, GGT, PAB, IL-6, HA, PIIIP, CIV,L.N, HBeAg, LSM as the independent variable, Stepwise backward regression method was used to obtain the optimal influence models as PLT, Ln(HBV-DNA) (Z=3.95, P<0.001), AST (Z=3.04, P=0.002),CIV, LSM (Z=2.50, P=0.012).

    3.5 Establishment and verification of a line graph model for risk prediction of significant liver inflammation in chronic HBV infection

    3.5.1 Establishment of a line graph model for predicting the risk of significant liver inflammation in chronic HBV infection

    A line graph model for risk prediction of significant liver inflammation in chronic HBV infection was established based on stepwise backward regression analysis (Figure 1).According to the plotted column graph model, the right endpoints since PLT were successively 50, 90, 26, 85 and 9 points, with a total score of 260 points.The higher the total score of the line graph model, the higher the risk of significant inflammation.

    3.5.2 Validation of the line graph model of the risk prediction model for chronic HBV infection with significant liver inflammation

    Fig 1 Nomogram model for predicting significant inflammation risk of chronic HBV infection

    Tab 2 Comparison of non-significant inflammation and significant inflammation data in the modeled group

    The χ2values of the Hosmer-Lemeshoe goodness of fit test (H-L goodness of fit test) for the modeling group and the verification group were 0.279 and 2.098, respectively, and the corresponding P values were 0.87 and 0.35, indicating that the established line graph model had good predictive accuracy (Fig.2, 3).The ROC area under ROC curve for predicting significant liver inflammation after HBV infection in the modeling group and the validation group was 0.895[95%CI (0.843-0.948)] and 0.760[95%CI (0.622-0.897)],respectively, suggesting that the model had good differentiation(Fig4, 5).

    Fig 2 Calibration curve of the risk of developing significant inflammation in HBV infection in modeling set predicted

    Fig 3 Calibration curve of the risk of developing significant inflammation in HBV infection in validation set predicted

    Fig 4 ROC curve of the risk of developing significant inflammation in HBV infection in modeling set predicted

    Fig 5 ROC curve of the risk of developing significant inflammation in HBV infection in validation set predicted

    4.Discussion

    The constant replication and release of Hepatitis B virus (HBV)antigen can cause persistent inflammatory response of hepatocytes,leading to fibrosis of hepatocytes and eventually cirrhosis[14].At present, there are a variety of prediction models for liver fibrosis in China, but there are few prediction models for liver inflammation.Long-term and repeated liver cell injury and inflammatory necrosis are the key to the development of liver fibrosis.In clinical practice,ALT, AST and other indicators are often used to evaluate the degree of liver inflammation, but the actual level of liver inflammation is still unclear in some patients, and liver biopsy is needed for further diagnosis[1,15-17].10%-49% of patients with chronic HBV infection have obvious pathological changes of hepatocyte inflammation and necrosis and liver fibrosis[18], which is inconsistent with the natural course of chronic hepatitis B.The true degree of liver inflammation in such patients and whether antiviral therapy should be used has gradually become a hot issue.

    This study evaluated the degree of liver inflammation in patients with chronic HBV infection in a non-invasive way by constructing a line graph model, and screened out 5 significant risk factors for liver injury, including PLT, HBV DNA, AST, CIV, and LSM, among which some studies showed that PLT was involved in liver injury through interaction with leukocytes and macrophages[19].Moreover,PLT reduction is a hallmark feature of chronic liver disease and cirrhosis[20].It can be seen from the column graph model constructed in this study that, with the decrease of PTL, the score assigned by PTL increases, which is consistent with the research results of Kondo et al[21].CIV is derived from the degradation of basement membrane and is an indicator of collagen degradation.The level of CIV increases when liver lesions occur and increases with the severity of the disease[22].The recurring liver cell damage and inflammation and necrosis in patients with chronic HBV infection will eventually develop into liver fibrosis or even cirrhosis.CIV is closely related to the degree of liver fibrosis.Therefore, the four indexes of liver fibrosis were included in the construction of the column graph model in this study.This is consistent with the report of Huang Liping et al., which showed the correlation between increased CIV level and liver inflammatory activity[23].It has been reported that the increased levels of HBV DNA and AST are correlated with the degree of liver inflammation[16,24].This study shows that the probability of liver histological change increases with the increased levels of HBVDNA and AST, so HBV DNA and AST are risk factors for liver inflammation.Previous studies have shown that LSM is significantly correlated with the fibrosis stage of patients with chronic liver disease[1,25-27].The results of this study show that the higher the LSM value is, the higher the probability of significant inflammation of liver tissue, indicating that LSM is an independent risk factor for predicting significant inflammation of liver tissue.Although the actual diagnostic value of LSM is affected by various factors such as cholestasis and severe steatosis[1,28], LSM is the result of in vitro detection.In this study, a line graph model was built based on the combined serological results of LSM to improve the accuracy of single serological or single LSM detection.

    In order to obtain a good prediction effect, patients with chronic HBV infection were divided into a modeling group and a validation group.Based on the risk factors screened by the modeling group, a risk prediction column graph model of significant liver inflammation in chronic HBV infection was constructed.At the same time, this model reflected the importance of various risk factors by means of visual scores, specifically quantified the risk level of significant liver inflammation, and focused more on clinical individual evaluation.This study evaluated and verified the predictive efficiency of the column graph model.The results showed that the χ2values of H-L goodness of fit test for the modeling group and the validation group were 0.279 (P=0.87) and 2.098 (P=0.35), respectively.The areas under the curve were 0.895[95%CI (0.843-0.948)] and 0.760[95%CI(0.622-0.897)], respectively, which indicated that the model had good prediction efficiency.A patient’s risk of significant liver inflammation can be dynamically assessed based on the risk factors in the model, and inflammation can be interfered with early.

    In summary, it was established that PLT, HBV DNA, AST, CIV,and LSM were more closely related to significant liver inflammation after HBV infection after progressive backward regression analysis.The column graph model constructed by the above risk factors can effectively evaluate and quantify the risk of significant liver inflammation after HBV infection.Shortcomings of this study:(1) The sample size included in this study were all from the same hospital, and the multi-center study was not conducted, which resulted in selection bias; (2) The evaluation results of the degree of liver inflammation were influenced by the puncture samples and the subjective bias of the pathologist to review the film.Therefore, this model needs to be further studied and perfected.

    Author’s contribution:

    Huang Sheng-kai conceived and designed the article, collected and sorted out data, and wrote the paper; Sun Long was responsible for the quality control and review of the article, and was responsible for the overall responsibility of the article.

    There is no conflict of interest in this article.

    在线观看一区二区三区激情| 国产一区有黄有色的免费视频| 亚洲一区中文字幕在线| 最近的中文字幕免费完整| 国产日韩欧美视频二区| 亚洲三区欧美一区| 国产精品久久久久久精品古装| 久久久久国产精品人妻一区二区| 亚洲四区av| 亚洲欧美中文字幕日韩二区| 欧美乱码精品一区二区三区| 成人18禁高潮啪啪吃奶动态图| 日本vs欧美在线观看视频| 国产精品秋霞免费鲁丝片| 久久99精品国语久久久| 午夜免费观看性视频| 少妇精品久久久久久久| 人人妻,人人澡人人爽秒播 | 亚洲精品美女久久av网站| 亚洲国产精品国产精品| 久久人人97超碰香蕉20202| 水蜜桃什么品种好| 热re99久久精品国产66热6| 夜夜骑夜夜射夜夜干| 亚洲婷婷狠狠爱综合网| 黄色毛片三级朝国网站| 18禁裸乳无遮挡动漫免费视频| 国产女主播在线喷水免费视频网站| 日韩,欧美,国产一区二区三区| 国产精品二区激情视频| 精品酒店卫生间| 成人亚洲欧美一区二区av| 男女下面插进去视频免费观看| 老鸭窝网址在线观看| 免费人妻精品一区二区三区视频| 国产欧美日韩综合在线一区二区| 操美女的视频在线观看| 久久久精品94久久精品| av国产精品久久久久影院| 在线观看免费高清a一片| 日日爽夜夜爽网站| 无限看片的www在线观看| 国产乱来视频区| 男女午夜视频在线观看| 亚洲,欧美精品.| 日韩熟女老妇一区二区性免费视频| 久久精品人人爽人人爽视色| 男女床上黄色一级片免费看| 人妻一区二区av| 亚洲精品久久成人aⅴ小说| 久久久久精品人妻al黑| 国产精品一区二区在线观看99| 又大又爽又粗| 亚洲国产av新网站| 男女国产视频网站| 毛片一级片免费看久久久久| 欧美精品亚洲一区二区| 中文字幕制服av| 黑人巨大精品欧美一区二区蜜桃| 精品国产一区二区三区久久久樱花| 亚洲国产av影院在线观看| 午夜福利视频精品| 免费黄频网站在线观看国产| 亚洲av欧美aⅴ国产| √禁漫天堂资源中文www| 亚洲国产精品成人久久小说| 国产午夜精品一二区理论片| 18在线观看网站| 国产片内射在线| 亚洲欧美一区二区三区国产| 久久av网站| 欧美亚洲 丝袜 人妻 在线| 久久久精品94久久精品| 婷婷成人精品国产| 亚洲久久久国产精品| 免费高清在线观看视频在线观看| 国产成人av激情在线播放| 一二三四在线观看免费中文在| 亚洲国产看品久久| 高清黄色对白视频在线免费看| 亚洲av福利一区| 啦啦啦中文免费视频观看日本| 晚上一个人看的免费电影| 精品人妻熟女毛片av久久网站| 两性夫妻黄色片| 中国国产av一级| 蜜桃国产av成人99| 国产成人精品在线电影| 午夜激情久久久久久久| 一边摸一边做爽爽视频免费| 欧美日本中文国产一区发布| 久久精品久久久久久噜噜老黄| 可以免费在线观看a视频的电影网站 | 久久久久精品国产欧美久久久 | 波多野结衣一区麻豆| 久久久久久久精品精品| 国产深夜福利视频在线观看| 高清黄色对白视频在线免费看| 男女边吃奶边做爰视频| 亚洲欧美日韩另类电影网站| 高清视频免费观看一区二区| 久久久精品国产亚洲av高清涩受| 好男人视频免费观看在线| av线在线观看网站| 国产精品久久久久久人妻精品电影 | 国产伦理片在线播放av一区| 日韩一区二区视频免费看| 青春草视频在线免费观看| 欧美黄色片欧美黄色片| 男女之事视频高清在线观看 | 午夜福利,免费看| 丝袜美腿诱惑在线| 91aial.com中文字幕在线观看| 国产精品人妻久久久影院| 青青草视频在线视频观看| 超碰成人久久| 婷婷成人精品国产| 成年动漫av网址| 人体艺术视频欧美日本| 只有这里有精品99| 亚洲av福利一区| 亚洲四区av| 国产av一区二区精品久久| 大香蕉久久成人网| 大片免费播放器 马上看| 男女午夜视频在线观看| 最新的欧美精品一区二区| 人人澡人人妻人| 青春草国产在线视频| 高清视频免费观看一区二区| 色吧在线观看| 青春草国产在线视频| 啦啦啦 在线观看视频| 亚洲av成人精品一二三区| 午夜91福利影院| 国产成人系列免费观看| 国产 一区精品| 黄色毛片三级朝国网站| 成年动漫av网址| 在线观看免费日韩欧美大片| 一区二区三区乱码不卡18| avwww免费| 亚洲一区二区三区欧美精品| 国产1区2区3区精品| 十八禁高潮呻吟视频| 男女之事视频高清在线观看 | 日本av手机在线免费观看| 伊人久久大香线蕉亚洲五| 欧美日韩亚洲综合一区二区三区_| 777米奇影视久久| 最近2019中文字幕mv第一页| 捣出白浆h1v1| 一边亲一边摸免费视频| 国产成人欧美| 波野结衣二区三区在线| 日韩av免费高清视频| 国产亚洲av高清不卡| 国产成人精品福利久久| 2018国产大陆天天弄谢| 亚洲精品在线美女| 精品免费久久久久久久清纯 | 又大又黄又爽视频免费| 各种免费的搞黄视频| 中国国产av一级| 欧美日韩视频高清一区二区三区二| 老司机影院成人| 亚洲av成人不卡在线观看播放网 | 一级毛片我不卡| 狠狠精品人妻久久久久久综合| 亚洲欧美成人精品一区二区| 国产成人精品久久二区二区91 | 免费在线观看视频国产中文字幕亚洲 | 伊人亚洲综合成人网| 国产精品人妻久久久影院| 日韩欧美精品免费久久| 亚洲av在线观看美女高潮| 午夜福利在线免费观看网站| 别揉我奶头~嗯~啊~动态视频 | 亚洲精品乱久久久久久| av又黄又爽大尺度在线免费看| 亚洲国产欧美网| 亚洲专区中文字幕在线 | 色播在线永久视频| www.自偷自拍.com| 不卡视频在线观看欧美| 国产精品av久久久久免费| 亚洲一级一片aⅴ在线观看| netflix在线观看网站| 国产亚洲精品第一综合不卡| 夫妻性生交免费视频一级片| 国产97色在线日韩免费| 一本久久精品| 男人舔女人的私密视频| 国产一区二区三区综合在线观看| 成人手机av| 亚洲,一卡二卡三卡| 在线亚洲精品国产二区图片欧美| 午夜福利免费观看在线| 日本色播在线视频| 黄片播放在线免费| 婷婷色av中文字幕| 亚洲第一av免费看| 大陆偷拍与自拍| 日韩一卡2卡3卡4卡2021年| 五月天丁香电影| 欧美变态另类bdsm刘玥| 国产黄色免费在线视频| 久久久久精品国产欧美久久久 | 久久精品人人爽人人爽视色| 国产极品粉嫩免费观看在线| 国产片内射在线| 97人妻天天添夜夜摸| avwww免费| 纵有疾风起免费观看全集完整版| 日韩中文字幕视频在线看片| a级毛片黄视频| 高清在线视频一区二区三区| 国产男女超爽视频在线观看| 国产欧美日韩综合在线一区二区| 国产成人免费无遮挡视频| 如何舔出高潮| 欧美国产精品va在线观看不卡| 国产在线一区二区三区精| 久久国产精品大桥未久av| 久久这里只有精品19| 国产1区2区3区精品| 日韩一区二区三区影片| 97在线人人人人妻| 日韩 欧美 亚洲 中文字幕| 国产欧美亚洲国产| 母亲3免费完整高清在线观看| 欧美日韩视频精品一区| 观看美女的网站| 麻豆精品久久久久久蜜桃| 亚洲,欧美精品.| 亚洲精品,欧美精品| 黑人欧美特级aaaaaa片| 国产精品国产三级国产专区5o| 久久毛片免费看一区二区三区| 一级片免费观看大全| 国产激情久久老熟女| 一级a爱视频在线免费观看| 秋霞伦理黄片| 伊人亚洲综合成人网| xxx大片免费视频| 一级毛片我不卡| 丝袜喷水一区| 日韩av在线免费看完整版不卡| 精品卡一卡二卡四卡免费| 国产成人午夜福利电影在线观看| 色综合欧美亚洲国产小说| 18禁动态无遮挡网站| 国产福利在线免费观看视频| 亚洲欧美一区二区三区久久| 捣出白浆h1v1| 两个人看的免费小视频| 国产av一区二区精品久久| 亚洲av男天堂| 热re99久久精品国产66热6| 在线看a的网站| 黄色毛片三级朝国网站| 99国产精品免费福利视频| 亚洲国产欧美在线一区| 国产乱人偷精品视频| 大香蕉久久成人网| 少妇 在线观看| 香蕉丝袜av| 日本爱情动作片www.在线观看| 欧美av亚洲av综合av国产av | 晚上一个人看的免费电影| 欧美精品一区二区大全| 中文字幕精品免费在线观看视频| 国产精品一区二区在线观看99| 成人18禁高潮啪啪吃奶动态图| 午夜影院在线不卡| 十分钟在线观看高清视频www| 欧美亚洲日本最大视频资源| 一区二区三区精品91| av不卡在线播放| 在线天堂中文资源库| 亚洲av福利一区| 99久久人妻综合| av在线观看视频网站免费| 午夜91福利影院| 美女午夜性视频免费| 纵有疾风起免费观看全集完整版| 色综合欧美亚洲国产小说| www日本在线高清视频| 美女午夜性视频免费| 久久精品国产亚洲av高清一级| 大片电影免费在线观看免费| 中文乱码字字幕精品一区二区三区| 国产淫语在线视频| 亚洲精品久久久久久婷婷小说| 天美传媒精品一区二区| 18禁动态无遮挡网站| 99精国产麻豆久久婷婷| 又粗又硬又长又爽又黄的视频| 久久人人爽人人片av| 精品酒店卫生间| 亚洲av男天堂| 黄色视频在线播放观看不卡| 亚洲男人天堂网一区| 成人国产麻豆网| 超碰成人久久| 国产伦理片在线播放av一区| 国产国语露脸激情在线看| 日本欧美国产在线视频| 伦理电影大哥的女人| 欧美久久黑人一区二区| 国产成人午夜福利电影在线观看| svipshipincom国产片| 国产成人系列免费观看| 99久久精品国产亚洲精品| 亚洲国产成人一精品久久久| 一区二区三区精品91| 97人妻天天添夜夜摸| 国产免费福利视频在线观看| 丰满少妇做爰视频| 大陆偷拍与自拍| 国产99久久九九免费精品| 熟女av电影| 国产精品三级大全| 成人午夜精彩视频在线观看| 午夜激情久久久久久久| 精品一区二区三卡| 中文精品一卡2卡3卡4更新| 亚洲少妇的诱惑av| 日韩制服骚丝袜av| 人人妻,人人澡人人爽秒播 | 18禁裸乳无遮挡动漫免费视频| 久久人人97超碰香蕉20202| 91aial.com中文字幕在线观看| 精品少妇一区二区三区视频日本电影 | 人人妻人人澡人人看| 婷婷成人精品国产| 国产熟女午夜一区二区三区| 老汉色∧v一级毛片| 免费高清在线观看视频在线观看| 国产乱来视频区| 亚洲一区二区三区欧美精品| 韩国av在线不卡| 伊人亚洲综合成人网| 女性被躁到高潮视频| 欧美xxⅹ黑人| 久久精品亚洲熟妇少妇任你| 大话2 男鬼变身卡| a级毛片黄视频| 高清黄色对白视频在线免费看| 夜夜骑夜夜射夜夜干| 99精国产麻豆久久婷婷| 中文字幕高清在线视频| 99精国产麻豆久久婷婷| 亚洲欧美清纯卡通| 一级毛片黄色毛片免费观看视频| av不卡在线播放| 在线天堂最新版资源| netflix在线观看网站| 看十八女毛片水多多多| 色播在线永久视频| 你懂的网址亚洲精品在线观看| 亚洲欧美一区二区三区久久| 欧美日韩一区二区视频在线观看视频在线| 婷婷色综合www| 国产精品av久久久久免费| 亚洲情色 制服丝袜| 精品亚洲成a人片在线观看| 中文字幕人妻丝袜制服| 国产人伦9x9x在线观看| 国产成人欧美| 亚洲第一区二区三区不卡| 亚洲情色 制服丝袜| 人人妻,人人澡人人爽秒播 | 一区二区日韩欧美中文字幕| 国产 一区精品| 免费在线观看视频国产中文字幕亚洲 | 18禁动态无遮挡网站| 男女下面插进去视频免费观看| 日本av手机在线免费观看| 免费少妇av软件| 亚洲精品久久久久久婷婷小说| 丝袜美足系列| 午夜福利,免费看| 日本vs欧美在线观看视频| 亚洲欧美精品综合一区二区三区| 亚洲在久久综合| 国产亚洲欧美精品永久| 纯流量卡能插随身wifi吗| 久久久国产精品麻豆| 黄片小视频在线播放| 成人午夜精彩视频在线观看| 国产一区二区三区av在线| 在线观看国产h片| 18禁观看日本| 亚洲精品久久久久久婷婷小说| 亚洲综合精品二区| 久久天堂一区二区三区四区| 又大又黄又爽视频免费| 水蜜桃什么品种好| 黑丝袜美女国产一区| 久久人人爽av亚洲精品天堂| 国产亚洲av片在线观看秒播厂| 成人手机av| 在现免费观看毛片| 欧美日本中文国产一区发布| 男女高潮啪啪啪动态图| 涩涩av久久男人的天堂| 成人黄色视频免费在线看| 老司机在亚洲福利影院| 美女高潮到喷水免费观看| 男女边吃奶边做爰视频| 亚洲少妇的诱惑av| 男人操女人黄网站| 国产黄色视频一区二区在线观看| 国产成人精品在线电影| 久久综合国产亚洲精品| 欧美在线黄色| 亚洲伊人久久精品综合| 国产无遮挡羞羞视频在线观看| 国产精品久久久久久人妻精品电影 | tube8黄色片| 中文字幕色久视频| 人妻 亚洲 视频| 久久久久人妻精品一区果冻| 在线精品无人区一区二区三| 美女福利国产在线| 国产免费福利视频在线观看| 少妇人妻精品综合一区二区| 欧美亚洲 丝袜 人妻 在线| 亚洲精品中文字幕在线视频| 在线观看免费午夜福利视频| 国产在线一区二区三区精| 一本—道久久a久久精品蜜桃钙片| 青春草视频在线免费观看| 一级毛片电影观看| 捣出白浆h1v1| 亚洲国产最新在线播放| 天天操日日干夜夜撸| 亚洲欧美一区二区三区国产| 大香蕉久久成人网| 成年av动漫网址| av片东京热男人的天堂| avwww免费| 制服人妻中文乱码| www.av在线官网国产| av国产久精品久网站免费入址| 久久女婷五月综合色啪小说| 老司机影院成人| 国产黄色免费在线视频| 麻豆乱淫一区二区| bbb黄色大片| 精品亚洲成国产av| 免费av中文字幕在线| 免费在线观看完整版高清| 啦啦啦在线免费观看视频4| videosex国产| 在线 av 中文字幕| 视频在线观看一区二区三区| 晚上一个人看的免费电影| 精品久久久久久电影网| 国产淫语在线视频| 黄色怎么调成土黄色| 欧美最新免费一区二区三区| 在线 av 中文字幕| 国产一区二区三区av在线| 国产深夜福利视频在线观看| 大片电影免费在线观看免费| 深夜精品福利| 国产免费一区二区三区四区乱码| 天天操日日干夜夜撸| 建设人人有责人人尽责人人享有的| 99精品久久久久人妻精品| 国产亚洲av片在线观看秒播厂| 欧美中文综合在线视频| 男女床上黄色一级片免费看| 亚洲国产最新在线播放| 亚洲精品自拍成人| 蜜桃国产av成人99| 中国三级夫妇交换| 亚洲精品一二三| 亚洲色图综合在线观看| av.在线天堂| 久热爱精品视频在线9| 欧美日韩视频精品一区| 亚洲成人免费av在线播放| 久久久国产一区二区| 亚洲欧美成人精品一区二区| 99久久99久久久精品蜜桃| 国产有黄有色有爽视频| 国产亚洲av高清不卡| 99热国产这里只有精品6| 天天影视国产精品| 中国国产av一级| 国产精品.久久久| 亚洲四区av| 大香蕉久久成人网| 精品人妻一区二区三区麻豆| 男女国产视频网站| 90打野战视频偷拍视频| 欧美精品亚洲一区二区| 欧美日韩福利视频一区二区| 精品国产一区二区三区四区第35| 人人澡人人妻人| 99精国产麻豆久久婷婷| 麻豆乱淫一区二区| 日韩一卡2卡3卡4卡2021年| 亚洲精品久久成人aⅴ小说| 精品少妇久久久久久888优播| 丝袜美腿诱惑在线| 韩国av在线不卡| 亚洲美女视频黄频| av视频免费观看在线观看| 日日摸夜夜添夜夜爱| 国产精品av久久久久免费| 久热爱精品视频在线9| 又大又黄又爽视频免费| 精品一品国产午夜福利视频| 亚洲色图综合在线观看| 亚洲一码二码三码区别大吗| 蜜桃国产av成人99| 爱豆传媒免费全集在线观看| 深夜精品福利| 亚洲四区av| 美女大奶头黄色视频| 亚洲精品第二区| 亚洲激情五月婷婷啪啪| 精品久久久精品久久久| 美女视频免费永久观看网站| 精品国产乱码久久久久久男人| 又黄又粗又硬又大视频| 高清黄色对白视频在线免费看| 成人影院久久| 赤兔流量卡办理| 久久久久人妻精品一区果冻| 亚洲成av片中文字幕在线观看| 成人影院久久| 国产精品二区激情视频| 久久人人爽av亚洲精品天堂| 国产精品国产av在线观看| 男女国产视频网站| 尾随美女入室| 2018国产大陆天天弄谢| 国产精品久久久人人做人人爽| 国产一区二区 视频在线| 国产欧美亚洲国产| 啦啦啦在线免费观看视频4| 女性生殖器流出的白浆| 王馨瑶露胸无遮挡在线观看| 久久国产精品大桥未久av| 国语对白做爰xxxⅹ性视频网站| 天天添夜夜摸| 91精品国产国语对白视频| 久久鲁丝午夜福利片| 精品第一国产精品| 亚洲,欧美,日韩| 人人澡人人妻人| 欧美日本中文国产一区发布| 啦啦啦中文免费视频观看日本| 黄色一级大片看看| 精品少妇内射三级| 考比视频在线观看| 久久久久人妻精品一区果冻| 欧美激情 高清一区二区三区| 9色porny在线观看| 老汉色av国产亚洲站长工具| 自拍欧美九色日韩亚洲蝌蚪91| 欧美97在线视频| 欧美精品av麻豆av| 欧美激情 高清一区二区三区| 精品一区二区三区av网在线观看 | 国产淫语在线视频| 9色porny在线观看| 岛国毛片在线播放| 国产免费视频播放在线视频| 成人亚洲精品一区在线观看| 精品久久久精品久久久| 欧美精品一区二区大全| 日韩精品有码人妻一区| 晚上一个人看的免费电影| 免费在线观看黄色视频的| 新久久久久国产一级毛片| 中文精品一卡2卡3卡4更新| 999精品在线视频| 免费女性裸体啪啪无遮挡网站| 久久久久精品性色| 黄片无遮挡物在线观看| 国产精品久久久久久久久免| 女人精品久久久久毛片| 精品一区二区三卡| 丰满乱子伦码专区| 亚洲国产精品999| xxxhd国产人妻xxx| 一本一本久久a久久精品综合妖精| 成人18禁高潮啪啪吃奶动态图| 国产成人一区二区在线| 啦啦啦视频在线资源免费观看| 丝袜美腿诱惑在线| 一级a爱视频在线免费观看| av在线观看视频网站免费| 亚洲国产成人一精品久久久| 亚洲美女视频黄频| 欧美精品高潮呻吟av久久| 女人精品久久久久毛片| 亚洲精品久久成人aⅴ小说| 国产亚洲午夜精品一区二区久久| 亚洲精华国产精华液的使用体验| 中文字幕最新亚洲高清| 大香蕉久久网| 卡戴珊不雅视频在线播放| 天天添夜夜摸| 国产精品久久久久久精品电影小说| 18在线观看网站| 女人被躁到高潮嗷嗷叫费观| 亚洲色图 男人天堂 中文字幕| 亚洲成人一二三区av|