• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    一鍋法制備S型異質(zhì)結(jié)光催化劑Fe2O3/Fe2TiO5及其高效降解有機污染物性能

    2022-09-16 09:29:18趙英杰壽幼平王江南石婷婷
    無機化學(xué)學(xué)報 2022年9期
    關(guān)鍵詞:英杰水運光催化劑

    常 方 趙英杰 壽幼平 張 騄 王江南 石婷婷

    (交通運輸部天津水運工程科學(xué)研究院,天津 300000)

    0 Introduction

    Water is one of the important resources that human beings depend on for survival and development.However,nearly a third of the population worldwide is estimated to lack access to safely managed drinking water services[1-2].In the last years,water pollution is becoming a major concern due to novel and dangerous anthropogenic pollutants.Reducing the release of wastewater into the environment and degrading the contaminants from wastewater are important strategies for water environment purification[3-5].

    Many water treatment ways have been employed to degrade organic pollutants,such as physical absorption,biological purification,advanced oxidation processes(AOPs),electrochemical processes,and photocatalytic degradation.Among them,photocatalytic degradation is a kind of AOPs.Compared to traditional AOPs,the active-oxidizing species HO· or·O2-isin-situproduced by semiconductor photocatalysis[6-14].Semiconductor photocatalysts can be excited by light with energy higher than their band gap values,and then generate electron-hole pairs.Hole-electron pairs separate and transfer to the photocatalyst surface,produce HO· or·O2-,and then lead to the oxidation of organic pollutions.To obtain high photocatalytic efficiency,a semiconductor should have a small band gap enabling the utilization of a wide range of solar light[15-20].Fe2O3with a narrow band gap ofca.2.0 eV,can absorb a large amount of visible sunlight.Besides,Fe2O3has many other advantages,such as being lowcost,and non-toxic,making it a promising photocatalyst material.However,Fe2O3exhibits low conductivity and over-positive conduction band position,which are adverse to its photocatalytic efficiency.

    Many strategies were employed to overcome these problems and improve photocatalytic efficiency on Fe2O3.Nano-engineering,intentional n-type doping,and electrocatalyst loading have been often used to improve charge separation efficiency or the surface oxidation rate[21-24].Besides,constructing heterojunction with another semiconductor material is an effective way to improve the separation of electron-hole pairs by the built-in electric field.This strategy has been successfully applied to many semiconductors[21-26],including BiVO4,WO3,TiO2,and so on.

    Constructing heterojunction between Fe2O3particles and another semiconductor with a suitable band position benefits the separation of photo-generated carriers.Fe2TiO5is such a semiconductor with a band gap ofca.2.0 eV and similar to Fe2O3while showing higher conduction and valence band levels,which can form staggered band positions with Fe2O3,therefore,effective step-scheme(S-scheme)heterojunction can be developed between Fe2O3and Fe2TiO5[27-29].Moreover,Fe2TiO5exhibits a high conduction band level located atca.-0.2 eV vs reversible hydrogen electrode,making the composite materials propose the capacity to reduce O2to·O2-and further improve the photocatalytic properties.In previous reports,Fe2O3/Fe2TiO5composites were commonly applied in oxygen evolution[30-32],and rarely seen in pollution degradation[33].The preparing Fe2O3/Fe2TiO5composite was mainly by an ion-exchange method,i.e.employing Fe2O3or TiO2as the substrate to inter-react with Ti or Fe precursors at high temperature[30,32-33].Yu and Waqas fabricated Fe2O3/Fe2TiO5composite utilizing sol-gel and calcination method[31,34].

    In this work,for the first time,Fe2O3/Fe2TiO5composite materials were prepared by a one-pot solvothermal method.Compared to the pure Fe2O3and pure Fe2TiO5,the photocatalytic properties toward removing methylene blue(MB)were significantly improved,which is mainly due to the promoted charge separation efficiency and the preserved higher-energy electrons from Fe2TiO5caused by the S-scheme heterojunction.

    1 Experimental

    1.1 Preparation of Fe2O3/Fe2TiO5 heterojunction particles

    Fe2O3/Fe2TiO5heterojunction particles were fabricated by a solvothermal method.Firstly,2.51 mmol Fe(NO3)3·9H2O was added to 50 mL isopropanol.Under stirring,0.625 mmol of titanium isopropoxide was immediately added to the above solution.The precursor solution,after further being stirred for another 1 h,was transferred into a 100 mL Teflon-line stainless steel autoclave.Then the autoclave was sealed and heated in an oven at 150℃for 12 h.After cooling down naturally,the prepared precipitates were washed with deionized water four times.As-prepared precipitates were dried at 80℃overnight,then dried precipitates were annealed in air at 550℃for 2 h and then 700℃for 10 min.Then the Fe2O3/Fe2TiO5heterojunc-tion particles were obtained.

    Fe2O3was prepared by the same steps employed for Fe2O3/Fe2TiO5fabrication, except that only Fe(NO3)3·9H2O was added to the precursor solution without titanium isopropoxide.Fe2TiO5was also prepared by this solvothermal method[31].In the precursor solution,2.51 mmol Fe(NO3)3·9H2O and 1.25 mmol of titanium isopropoxide were added in sequence.Other steps were the same as that of Fe2O3/Fe2TiO5fabrication.The photoelectrodes based on the prepared Fe2O3,Fe2TiO5,and Fe2O3/Fe2TiO5were also fabricated with the same process.Firstly,10 mg of each sample was dispersed in 1 mL glycol.20 μL solution was spincoating on F-doped SnO2coated glass(FTO),then another 20 μL solution was immediately dropped on the above FTO.After drying at 150℃for 30 min,the film was calcined at 600℃for 1 h.

    1.2 Characterization

    The crystal structures of the prepared samples were probed by a powder X-ray diffraction(XRD)on a Bruker diffractometer system,using CuKαradiation(λ=0.154 18 nm)with a working voltage and current of 40 kV and 40 mA,respectively.The scan rate was 0.04(°)·s-1in a 2θrange of 5°-70°.The morphology test of the samples was carried out on a field emission scanning electron microscope(SEM;JEOL,JSM-6700F with an accelerating voltage of 5 kV).The working voltage for SEM-EDS(EDS=energy dispersive X-ray spectroscopy)mapping was 20 kV.Transmission electron microscope(TEM)images were recorded on a transmission electron microscope(HT7700).Highresolution TEM(HRTEM)was conducted at 200 kV.The optical absorption spectra of the samples were performed on a UV-visible(UV-Vis)spectrophotometer(Shimadzu,UV-Vis 2550).Electrochemical impedance spectra(EIS)of the three photoelectrodes were measured at 0.9 V(vs RHE)using an electrochemical workstation(Shanghai Chenhua,660E)with a 10 mV amplitude perturbation and frequencies between 0.1 Hz and 1 MHz.

    1.3 Photocatalytic property measurements

    20 mg Fe2O3/Fe2TiO5was added into a 100 mL water solution with an MB concentration of 10 mg·L-1.After 40 min absorption,3 mL solution was filtrated and taken for the test.Then the remained solution was stirred and irradiated under light with a power of 100 mW·cm-2.TThe area of the beaker exposed to the light wasca.20 cm2.The light source used in this work was a 100 W LED lamp.The reaction solution was cooled by running water during the whole irradiating process to exclude the thermal effect.3 mL solution was taken every 30 min.Current-potential curves were tested on an electrochemical workstation using a three-electrode system.

    2 Results and discussion

    2.1 Characterization of Fe2O3,Fe2TiO5,and Fe2O3/Fe2TiO5

    To investigate the crystallinity and phase of asprepared samples,XRD was carried out(Fig.1).All the peaks of the black curve at 24.2°,33.3°,35.7°,40.9°,49.5°,54.1°,57.6°,62.4°,and 64.1°can be assigned to Fe2O3(hematite,PDF No.33-0664),while all peaks of the red curve belong to the pseudobrookite Fe2TiO5(PDF No.41-1432).The results indicate that Fe2O3and Fe2TiO5have been successfully prepared.Both XRD peaks of Fe2O3and Fe2TiO5were observed in Fe2O3/Fe2TiO5,demonstrating that Fe2O3/Fe2TiO5was obtained by the one-pot solvothermal method.Moreover,the high peak intensity of the three samples indicates their well crystalline nature.Note that the prepared Fe2O3/Fe2TiO5composite showed only two relatively low peaks at 18.1°and 25.6°.To evaluate the contents of Fe2O3and Fe2TiO5in the composite,EDS has been per-formed.Elemental Ti was not observed in the pure Fe2O3,while in Fe2TiO5,both Fe and Ti were detected with an atomic ratio of 1.93 which is close to the Fe/Ti stoichiometric proportion in Fe2TiO5.In terms of Fe2O3/Fe2TiO5composite,the atomic ratio of Fe/Ti was 3.99,which is the same as the feed proportion,indicating the content of Fe2O3and Fe2TiO5was equal in molar quantity.EDS mapping on the three samples has also been tested and the results are shown in Fig.2.For Fe2O3/Fe2TiO5,Fe,O,and Ti were uniformly distributed in the sample,demonstrating that Fe2O3or Fe2TiO5can contact each other well.

    Fig.1 XRD patterns of Fe2O3,Fe2TiO5,and Fe2O3/Fe2TiO5

    Fig.2 SEM-EDS element mapping images of(a)Fe2O3,

    TEM was performed to further investigate the crystallinity and phase of the Fe2O3/Fe2TiO5composite.As shown in Fig.3b-3d,elemental Fe was evenly distributed in the particles,while elemental Ti is mainly distributed on the particle surface and interface.HRTEM has also been measured and the results are shown in Fig.3e and 3f.Fringe spacing of 0.251 and 0.247 nm can be indexed to the(110)plane of Fe2O3and(301)plane of Fe2TiO5,especially,demonstrating the formation of heterojunction between Fe2O3and Fe2TiO5.In addition,Fe2O3is well crystalline in the whole Fe2O3sample,while the crystalline region in Fe2TiO5is relatively small and enshrouded with an amorphous phase.This result indicates that Fe2TiO5spreads over the surface of Fe2O3,and the crystallinity of Fe2TiO5is restricted to some extent.Moreover,the TEM-EDS results suggest that the atomic ratio of Fe and Ti wasca.5.6,which is larger than the feed proportion and SEM-EDS values.It is understandable considering that part of small Fe2TiO5particles falls away from Fe2O3during the ultrasonic process.Overall,the results of XRD,SEM-EDS,and TEM demonstrate that Fe2O3/Fe2TiO5heterojunction composites have been successfully prepared.

    Fig.3 TEM-EDS element mapping images(a-d),and HRTEM images(e,f)for Fe2O3/Fe2TiO5

    Light absorption properties show a great effect on the final photocatalytic degradation performance.Therefore,UV-Vis diffuse reflectance spectra(DRS)of the prepared samples were measured to evaluate their absorption properties.The UV-Vis DRS results have been converted to absorption form using the Kubelka-Munk function as shown in Fig.4a.Besides,the curves have been normalized.As shown in Fig.4a,all samples exhibited absorption regions from UV to visible wavelengths.Fe2O3exhibited the widest light absorption,while the absorption edge of Fe2TiO5blue shift compared to Fe2O3and proposed the narrowest light absorption region.While,from 500 to 600 nm,the absorption of Fe2O3/Fe2TiO5was higher than that of Fe2TiO5and smaller than the absorption of Fe2O3.The band gaps of Fe2O3,Fe2TiO5,and Fe2O3/Fe2TiO5were estimated by drawing Tauc plots,which are shown in Fig.4b.In the ordinate of the curves,n=2 represents the direct band gap,whilen=1/2 represents the indirect band gap[13,35].As Fe2O3and Fe2TiO5are indirect band gap semiconductors,n=1/2 was employed here to calculate their band gaps.The band gaps of the three samples were similar with the values of 2.05-2.08 eV,which match the previously reported values[31].

    Fig.4 (a)Absorption spectra and(b)Tauc plots of Fe2O3,Fe2TiO5,and Fe2O3/Fe2TiO5

    Morphologies of the prepared samples were analyzed by SEM.As shown in Fig.5,all the samples show an ellipsoidal shape with uniform distribution.The particle size of the nanoparticles was less than 50 nm.The small particle size enables a large semiconductor/solution interface,facilitating the injecting of photoexcited charges into the solution.In consideration of the similar shape and size of Fe2O3,Fe2TiO5,and Fe2O3/Fe2TiO5,their MB absorption amount should be a little different,which is following the MB absorption experiment.

    Fig.5 SEM images of(a)Fe2O3,(b)Fe2TiO5,and(c)Fe2O3/Fe2TiO5

    2.2 Photocatalytic performance

    To evaluate the performance of Fe2O3,Fe2TiO5,and Fe2O3/Fe2TiO5,the photocatalytic degradation of MB organic pollutants experiments was performed.10 mg·L-1MB aqueous solution was employed in this experiment,the concentration of the three samples was 20 mg per 100 mL MB aqueous solution.The filter for filtering Fe2O3,Fe2TiO5,and Fe2O3/Fe2TiO5was saturated by MB first.After 40 min of adsorption-desorption equilibrium,the photocatalytic degradation experiment was carried out by exposing the illumination solution.2 mL solution was taken out from the MB solution every 30 min using a disposable syringe with the filter.The MB degradation rates on Fe2O3,Fe2TiO5,and Fe2O3/Fe2TiO5are shown in Fig.6a.Fe2O3/Fe2TiO5exhibited the highest degradation rate.The degradation efficiencies of the three samples were also calculated according to the formula of(c0-ct)/c0,wherec0is the initial concentration after adsorption-desorption equilibrium,ctis the concentration atttime.After 150 min irradiation,MB degradation efficiency of Fe2O3/Fe2TiO5reached 98.4%,while the efficiencies of Fe2O3and Fe2TiO5were just 50.9% and 62.9%,respectively.As discussed above,though the light absorption property of Fe2O3was better than that of Fe2TiO5,their photocatalytic activity was similar.This is because the conduction band minimum(CBM)of Fe2TiO5was higher and can reduce O2to·O2-,which provides another pathway for degradation,except for oxidizing MB by the hole in valence band maximum(VBM).Among the three samples,Fe2O3/Fe2TiO5presented the highest degradation rate and highest degradation efficiency.To further understand the photocatalytic degradation process,the data were fitted by a first-order kinetic equation,ln(c0/ct)=kt,which is commonly used as a mode to analyze organic pollutant degradation[35].The results are shown in Fig.6b,and the degradation rate constantkwas fitted from the slope of the line.Thekvalue of Fe2O3/Fe2TiO5was 2.787×10-2min-1,which is significantly higher than that of Fe2O3(5.06×10-3min-1)and Fe2TiO5(7.47×10-3min-1).

    Fig.6 (a)Degradation performance of MB over the different samples;(b)Plots of ln(c0/ct)vs illuminated time;(c)Stability of Fe2O3/Fe2TiO5on MB degradation

    To evaluate the stability of Fe2O3/Fe2TiO5,cycle tests for the photocatalytic degradation of MB were tested.The solid particles should be relatively evenly dispersed in the solution after ultrasonic dispersion before the reaction and agitation during the reaction.Moreover,the intermediate solution was taken each time.Therefore,after the first cycle,since the 10 mL solution has been taken out,ca.1/10 of Fe2O3/Fe2TiO5has also been taken out along with the solution.Therefore,we just added MB into the remained 90 mL solution to keep MB and the catalyst concentrations still at 10 and 0.2 mg·mL-1,respectively.As shown in Fig.6c,compared with the 1st cycle,although the degradation rates of the 2nd and 3rd cycles slightly decreased,degradation rates were still high.This result indicates the high stability of as-synthesized Fe2O3/Fe2TiO5composite material.

    2.3 Mechanism for the improvement

    Photocatalytic performance highly depends on light absorption of the semiconductor and charge separation in the bulk semiconductor.As discussed above,the light absorption property of Fe2O3/Fe2TiO5was not the best,the highest photocatalytic property of Fe2O3/Fe2TiO5must result from the significantly improved charge separation efficiency.Moreover,in Fe2O3/Fe2TiO5,besides the preserved higher-energy holes from Fe2O3which oxidize MB,the preserved higherenergy electrons from Fe2TiO5which provide another pathway for MB degradation.

    To verify the mechanism proposed above,photoelectrodes based on Fe2O3,Fe2TiO5,and Fe2O3/Fe2TiO5were prepared to evaluate their separation efficiency of the photogenerated charge carriers.The photoelectrodes were tested in a three-electrode system,where photoelectrode was used as a working electrode,Ag/AgCl was used as a reference electrode,and Pt was used as the counter electrode.The scan rate was 30 mV·s-1.The electrolyte was 1 mol·L-1NaOH.As shown in Fig.7,the Fe2O3/Fe2TiO5photoelectrode presented significantly higher photocurrents than that of Fe2O3and Fe2TiO5.The significantly increased photocurrent density of Fe2O3/Fe2TiO5can be attributed to the higher charge separation efficiency due to the formed heterojunction between Fe2O3and Fe2TiO5[27].

    Fig.7 Chopped current vs potential curves on Fe2O3,Fe2TiO5,and Fe2O3/Fe2TiO5photoelectrodes

    EIS was also conducted to confirm the charge transport properties of the three samples.As shown in Fig.8,the Fe2O3/Fe2TiO5photoelectrode exhibited the smallest diameter,indicating the faster charge transfer kinetics in the film.This phenomenon can be attributed to the build-in field induced by the heterojunction between Fe2O3and Fe2TiO5since the built-in field can facilitate the separation of electron-hole pairs.It should be pointed out that the charge transfer resistance of Fe2O3is smaller than that of Fe2TiO5,which is consistent with the reported result[36].

    Fig.8 Nyquist plots of the Fe2O3,Fe2TiO5,and Fe2O3/Fe2TiO5photoelectrodes

    A possible mechanism for photocatalytic degradation of MB by Fe2O3/Fe2TiO5is illuminated in Fig.9.Fe2TiO5has higher CBM and VBM levels than that Fe2O3.Under irradiation,Fe2O3and Fe2TiO5absorb light and generate electron-hole pairs,respectively.An S-scheme heterojunction[37]is formed between Fe2O3and Fe2TiO5.In this S-scheme heterojunction,electrons in CBM of Fe2O3and holes in VBM of Fe2TiO5can recombination with each other,while holes in VB of Fe2O3and electrons in CBM of Fe2TiO5separate and transfer to Fe2O3/solution and Fe2TiO5/solution surface,respectively.Due to the recombination electrons presenting relatively lower energy,the preserved electrons with higher energy in FeTiOcan reduce Oto·O-,2522and then produce·OH,which can degrade MB effectively.While the reserved holes in Fe2O3can degrade MB directly.Therefore,the Fe2O3/Fe2TiO5heterojunction can remove MB more effectively.

    Fig.9 Schematic diagram of charge carrier transfer process and possible photocatalytic mechanism of Fe2O3/Fe2TiO5

    3 Conclusions

    In summary,Fe2O3,Fe2TiO5,and Fe2O3/Fe2TiO5have been prepared by a facile one-pot solvothermal method.In Fe2O3/Fe2TiO5,Fe2O3and Fe2TiO5can form S-scheme heterojunction,and thus promotes the electrons in CB of Fe2TiO5and holes in VB of Fe2O3transfer to the surface.In this way,carriers with higher energy were preserved.Compared to Fe2O3and Fe2TiO5,the photocatalytic degradation rate and efficiency of Fe2O3/Fe2TiO5were significantly improved.This approach provides a facile way to achieve Fe2O3/Fe2TiO5S-scheme heterojunction materials and can offer a reference to construct heterojunction on other materials.

    Acknowledgments:The National Nonprofit Institute Research Grants of TIWTE(Grant No.TKS190408),Science and Technology Development Fund of Tianjin Waterway Engineering Research Institute,Ministry of Transport(Grant No.KJFZJJ190201),and Scientific Research Program of Shanghai Science and Technology Commission(Grant No.19DZ1204303).

    猜你喜歡
    英杰水運光催化劑
    Probability density and oscillating period of magnetopolaron in parabolic quantum dot in the presence of Rashba effect and temperature*
    Observe modern design works and taste traditional Chinese culture
    可見光響應(yīng)的ZnO/ZnFe2O4復(fù)合光催化劑的合成及磁性研究
    Special Property of Group Velocity for Temporal Dark Soliton?
    燕趙英杰
    軍工文化(2017年12期)2017-07-17 06:07:56
    圖說水運
    中國水運(2016年6期)2016-05-14 22:14:45
    圖說水運
    中國水運(2016年7期)2016-05-14 01:38:00
    圖說水運
    中國水運(2016年4期)2016-05-14 01:04:28
    Pr3+/TiO2光催化劑的制備及性能研究
    圖說水運
    中國水運(2015年4期)2015-05-11 15:59:45
    久久 成人 亚洲| 国产成人精品福利久久| 这个男人来自地球电影免费观看 | 久久久久久久久久久丰满| 国产又色又爽无遮挡免| 男的添女的下面高潮视频| av免费在线看不卡| 国产免费一区二区三区四区乱码| 黑人巨大精品欧美一区二区蜜桃 | 亚洲精品日韩av片在线观看| 久久精品久久精品一区二区三区| 亚洲国产欧美日韩在线播放| 岛国毛片在线播放| 久久久久精品久久久久真实原创| 黄片播放在线免费| 建设人人有责人人尽责人人享有的| 日韩电影二区| 久久免费观看电影| 国产日韩一区二区三区精品不卡 | 亚洲经典国产精华液单| www.色视频.com| 欧美性感艳星| 亚洲五月色婷婷综合| 在线观看人妻少妇| 亚洲欧美一区二区三区黑人 | 69精品国产乱码久久久| 亚洲欧美日韩卡通动漫| 熟妇人妻不卡中文字幕| 成人亚洲欧美一区二区av| 少妇丰满av| 久久99热这里只频精品6学生| 国产精品国产三级国产专区5o| 99久久精品一区二区三区| 亚洲av日韩在线播放| 成人国语在线视频| 在线观看美女被高潮喷水网站| 欧美日韩国产mv在线观看视频| 简卡轻食公司| 免费黄频网站在线观看国产| 老司机影院毛片| 26uuu在线亚洲综合色| 一区二区三区四区激情视频| 亚洲精品一区蜜桃| 免费高清在线观看日韩| 日韩中文字幕视频在线看片| 午夜激情av网站| 老女人水多毛片| 久久亚洲国产成人精品v| 美女脱内裤让男人舔精品视频| 久久久久精品久久久久真实原创| 多毛熟女@视频| 久久国内精品自在自线图片| 啦啦啦啦在线视频资源| 午夜影院在线不卡| 国产精品.久久久| 亚洲av中文av极速乱| 观看av在线不卡| 一边亲一边摸免费视频| 人人妻人人添人人爽欧美一区卜| 成人无遮挡网站| 99热6这里只有精品| 午夜免费观看性视频| 边亲边吃奶的免费视频| 国产精品一区二区在线不卡| 国产精品久久久久久久久免| 老女人水多毛片| 久久精品熟女亚洲av麻豆精品| 午夜影院在线不卡| 一区二区日韩欧美中文字幕 | 成人二区视频| 精品人妻一区二区三区麻豆| 永久网站在线| 91久久精品国产一区二区三区| 国产精品99久久99久久久不卡 | 久久青草综合色| 国产精品久久久久久久久免| 高清午夜精品一区二区三区| 国产精品三级大全| 亚洲成人一二三区av| 国产精品99久久久久久久久| 中文欧美无线码| 高清av免费在线| 欧美性感艳星| 精品卡一卡二卡四卡免费| 国产片特级美女逼逼视频| 亚洲精品乱码久久久v下载方式| 欧美日本中文国产一区发布| 国产成人91sexporn| 亚洲综合精品二区| 99久久精品一区二区三区| 这个男人来自地球电影免费观看 | 最近中文字幕2019免费版| 少妇人妻久久综合中文| 色婷婷久久久亚洲欧美| 欧美国产精品一级二级三级| 狂野欧美激情性bbbbbb| 久久av网站| 免费人妻精品一区二区三区视频| 美女福利国产在线| 亚洲av在线观看美女高潮| videosex国产| 九色成人免费人妻av| 最近的中文字幕免费完整| 亚洲欧美成人精品一区二区| 亚洲欧美成人综合另类久久久| 亚洲色图综合在线观看| 久久精品国产鲁丝片午夜精品| av.在线天堂| 自拍欧美九色日韩亚洲蝌蚪91| 男人爽女人下面视频在线观看| 久久久精品免费免费高清| a级毛片在线看网站| 国产日韩一区二区三区精品不卡 | 美女大奶头黄色视频| 国产精品三级大全| 国产日韩欧美视频二区| 99国产精品免费福利视频| 26uuu在线亚洲综合色| 好男人视频免费观看在线| 97在线人人人人妻| 久久99一区二区三区| 男女国产视频网站| 18禁观看日本| 老司机影院毛片| 国产男人的电影天堂91| 亚洲人与动物交配视频| kizo精华| 日韩伦理黄色片| 久久国产亚洲av麻豆专区| 亚洲国产精品国产精品| 美女大奶头黄色视频| 99九九线精品视频在线观看视频| 亚洲图色成人| 男的添女的下面高潮视频| 亚洲精品国产色婷婷电影| 蜜桃国产av成人99| 日本-黄色视频高清免费观看| 精品午夜福利在线看| 欧美xxxx性猛交bbbb| 亚洲性久久影院| 国产欧美日韩综合在线一区二区| 男人爽女人下面视频在线观看| 久久久欧美国产精品| 国产 一区精品| 日日摸夜夜添夜夜爱| 伊人久久国产一区二区| 亚洲精品久久久久久婷婷小说| 亚洲色图综合在线观看| 日本欧美视频一区| 亚洲熟女精品中文字幕| 中文字幕精品免费在线观看视频 | 国产成人精品久久久久久| 精品一区在线观看国产| 日日啪夜夜爽| 久久99蜜桃精品久久| 啦啦啦视频在线资源免费观看| 精品亚洲成a人片在线观看| 亚洲精品aⅴ在线观看| 美女xxoo啪啪120秒动态图| 国产精品久久久久久久久免| 伊人亚洲综合成人网| 亚洲国产精品一区三区| 乱码一卡2卡4卡精品| 中文天堂在线官网| 9色porny在线观看| 精品亚洲成a人片在线观看| 日韩人妻高清精品专区| 18禁在线无遮挡免费观看视频| 日本91视频免费播放| 永久免费av网站大全| 久久久久人妻精品一区果冻| 国产亚洲精品第一综合不卡 | 国产亚洲最大av| 91精品国产九色| 熟女电影av网| 18禁在线播放成人免费| 久久久久久久国产电影| 中文天堂在线官网| av卡一久久| 精品久久久噜噜| 18在线观看网站| av在线播放精品| 十八禁高潮呻吟视频| 边亲边吃奶的免费视频| 亚洲婷婷狠狠爱综合网| 97超碰精品成人国产| 少妇丰满av| 中文字幕精品免费在线观看视频 | 国产精品偷伦视频观看了| 18禁在线无遮挡免费观看视频| 青春草视频在线免费观看| 国产精品一国产av| 免费日韩欧美在线观看| 久久鲁丝午夜福利片| 久久久久久伊人网av| a 毛片基地| 国产探花极品一区二区| 国产欧美另类精品又又久久亚洲欧美| 纯流量卡能插随身wifi吗| av有码第一页| 18在线观看网站| 久久久久视频综合| 亚洲婷婷狠狠爱综合网| 国产日韩欧美视频二区| 午夜免费观看性视频| 永久免费av网站大全| 国产成人精品婷婷| 亚洲人成网站在线播| 久久99一区二区三区| 成人漫画全彩无遮挡| 亚洲av在线观看美女高潮| 满18在线观看网站| 91精品伊人久久大香线蕉| 欧美精品高潮呻吟av久久| 欧美亚洲 丝袜 人妻 在线| 99九九在线精品视频| 一区二区日韩欧美中文字幕 | 18禁裸乳无遮挡动漫免费视频| 免费黄色在线免费观看| 夜夜看夜夜爽夜夜摸| 亚洲情色 制服丝袜| av在线app专区| av在线观看视频网站免费| 男男h啪啪无遮挡| 日本欧美视频一区| av免费观看日本| 国产精品嫩草影院av在线观看| 伊人久久精品亚洲午夜| 色吧在线观看| 妹子高潮喷水视频| 三级国产精品欧美在线观看| 99久久综合免费| 80岁老熟妇乱子伦牲交| 99久久中文字幕三级久久日本| 一级黄片播放器| 久久久久久久久久久免费av| 亚洲欧洲日产国产| 亚洲少妇的诱惑av| 亚洲人成77777在线视频| 亚洲av福利一区| 国产精品久久久久久精品古装| 99精国产麻豆久久婷婷| 国产综合精华液| 少妇精品久久久久久久| 最黄视频免费看| 亚洲欧美中文字幕日韩二区| 国产高清不卡午夜福利| 国产精品一区二区在线不卡| 男人添女人高潮全过程视频| 如日韩欧美国产精品一区二区三区 | 亚洲精品第二区| 久久女婷五月综合色啪小说| 最近中文字幕高清免费大全6| 国产色婷婷99| 女人精品久久久久毛片| 欧美日韩亚洲高清精品| 国产极品天堂在线| 精品一区二区三区视频在线| 色94色欧美一区二区| 成人影院久久| 亚洲丝袜综合中文字幕| 亚洲av.av天堂| 丰满饥渴人妻一区二区三| 肉色欧美久久久久久久蜜桃| 少妇猛男粗大的猛烈进出视频| 人妻 亚洲 视频| 搡女人真爽免费视频火全软件| 秋霞在线观看毛片| 精品熟女少妇av免费看| 91久久精品国产一区二区成人| 成人午夜精彩视频在线观看| av免费在线看不卡| 欧美成人午夜免费资源| 欧美人与性动交α欧美精品济南到 | 中文字幕人妻丝袜制服| 毛片一级片免费看久久久久| 色5月婷婷丁香| 亚洲综合色网址| 免费黄网站久久成人精品| av在线观看视频网站免费| 日韩亚洲欧美综合| 精品熟女少妇av免费看| 一本久久精品| 精品国产露脸久久av麻豆| 免费观看性生交大片5| av专区在线播放| 桃花免费在线播放| 亚洲国产精品国产精品| 一区二区av电影网| 99热这里只有精品一区| 欧美日韩精品成人综合77777| 狂野欧美激情性bbbbbb| 三级国产精品欧美在线观看| 精品国产国语对白av| 91精品三级在线观看| 亚洲欧洲日产国产| 在线观看人妻少妇| 国产一区二区在线观看日韩| 亚洲国产欧美日韩在线播放| 国产极品天堂在线| 最近2019中文字幕mv第一页| 亚洲人成77777在线视频| 我的女老师完整版在线观看| 简卡轻食公司| .国产精品久久| 国产一区亚洲一区在线观看| 免费看av在线观看网站| 欧美日韩成人在线一区二区| a级毛色黄片| 91久久精品电影网| 在现免费观看毛片| 日本-黄色视频高清免费观看| 好男人视频免费观看在线| 色5月婷婷丁香| 欧美另类一区| 欧美变态另类bdsm刘玥| 夫妻午夜视频| av专区在线播放| 日韩中文字幕视频在线看片| 欧美精品高潮呻吟av久久| 少妇丰满av| 国产老妇伦熟女老妇高清| 日韩成人伦理影院| 成人黄色视频免费在线看| 国语对白做爰xxxⅹ性视频网站| 精品一区二区三卡| 日产精品乱码卡一卡2卡三| 久久人人爽av亚洲精品天堂| av专区在线播放| 桃花免费在线播放| 中文字幕人妻熟人妻熟丝袜美| 91国产中文字幕| 97精品久久久久久久久久精品| 国产女主播在线喷水免费视频网站| 婷婷色综合www| 波野结衣二区三区在线| videossex国产| 人妻制服诱惑在线中文字幕| 日韩成人av中文字幕在线观看| 午夜视频国产福利| 九色成人免费人妻av| 丁香六月天网| 十分钟在线观看高清视频www| 国产精品蜜桃在线观看| 久久免费观看电影| 欧美xxxx性猛交bbbb| 欧美精品人与动牲交sv欧美| 亚洲国产精品成人久久小说| 天天操日日干夜夜撸| 一级毛片我不卡| 大陆偷拍与自拍| 18禁在线无遮挡免费观看视频| 国产成人精品福利久久| 美女内射精品一级片tv| 久久国产精品大桥未久av| 亚洲成人手机| 国产精品一区二区在线观看99| 中文字幕av电影在线播放| 国产一区二区三区综合在线观看 | 久久久精品区二区三区| 超色免费av| 一边摸一边做爽爽视频免费| 汤姆久久久久久久影院中文字幕| 久久精品夜色国产| 大话2 男鬼变身卡| 在线观看美女被高潮喷水网站| 午夜福利视频在线观看免费| av网站免费在线观看视频| 啦啦啦中文免费视频观看日本| av黄色大香蕉| 久久免费观看电影| 欧美xxxx性猛交bbbb| 男的添女的下面高潮视频| 在现免费观看毛片| 美女大奶头黄色视频| 色婷婷久久久亚洲欧美| 22中文网久久字幕| 国产 精品1| 男的添女的下面高潮视频| 久久久久精品性色| 人妻夜夜爽99麻豆av| 欧美 亚洲 国产 日韩一| 最近中文字幕2019免费版| 国产免费一区二区三区四区乱码| 九九在线视频观看精品| 插阴视频在线观看视频| 久久人妻熟女aⅴ| 成人无遮挡网站| 成人亚洲欧美一区二区av| 丰满少妇做爰视频| 亚洲国产精品一区二区三区在线| 亚洲欧美中文字幕日韩二区| 婷婷色麻豆天堂久久| 一级黄片播放器| 久久久午夜欧美精品| 久久久久国产精品人妻一区二区| 免费人妻精品一区二区三区视频| 91精品国产九色| 69精品国产乱码久久久| 亚洲美女搞黄在线观看| 一级毛片 在线播放| 欧美精品高潮呻吟av久久| av又黄又爽大尺度在线免费看| 亚洲欧美色中文字幕在线| 欧美精品国产亚洲| 一区二区日韩欧美中文字幕 | 免费观看无遮挡的男女| 美女脱内裤让男人舔精品视频| 一本久久精品| 制服丝袜香蕉在线| 精品一区二区三区视频在线| 精品人妻偷拍中文字幕| 人妻系列 视频| 午夜av观看不卡| 啦啦啦啦在线视频资源| 美女主播在线视频| 麻豆乱淫一区二区| 国产精品无大码| 久热久热在线精品观看| 亚洲欧洲国产日韩| 内地一区二区视频在线| 少妇被粗大猛烈的视频| 纯流量卡能插随身wifi吗| 亚洲怡红院男人天堂| 十八禁高潮呻吟视频| 97超视频在线观看视频| 黄色欧美视频在线观看| 一级毛片电影观看| 不卡视频在线观看欧美| av卡一久久| 欧美最新免费一区二区三区| 国产在视频线精品| 天天躁夜夜躁狠狠久久av| 日韩一区二区三区影片| 制服诱惑二区| 亚洲美女搞黄在线观看| 成人国产麻豆网| 国产亚洲精品第一综合不卡 | 丝袜脚勾引网站| 久久久亚洲精品成人影院| 三级国产精品片| 久久99蜜桃精品久久| 亚洲精品456在线播放app| 亚洲欧洲国产日韩| 国产一区有黄有色的免费视频| 中文精品一卡2卡3卡4更新| 在线观看免费视频网站a站| 成人影院久久| 国产精品.久久久| 插阴视频在线观看视频| 亚洲av欧美aⅴ国产| 国产日韩欧美视频二区| 3wmmmm亚洲av在线观看| 乱码一卡2卡4卡精品| 国产国拍精品亚洲av在线观看| 少妇被粗大的猛进出69影院 | 成人无遮挡网站| 在线看a的网站| 在线免费观看不下载黄p国产| 亚洲熟女精品中文字幕| 精品亚洲成a人片在线观看| 大片电影免费在线观看免费| 欧美激情 高清一区二区三区| 久久97久久精品| 插逼视频在线观看| 丝袜脚勾引网站| 久久99蜜桃精品久久| 内地一区二区视频在线| 又粗又硬又长又爽又黄的视频| 亚洲人成网站在线观看播放| 国产av国产精品国产| 99精国产麻豆久久婷婷| 日韩 亚洲 欧美在线| 欧美激情国产日韩精品一区| 卡戴珊不雅视频在线播放| 狠狠婷婷综合久久久久久88av| 欧美xxxx性猛交bbbb| 哪个播放器可以免费观看大片| 十八禁高潮呻吟视频| 国产精品免费大片| 精品人妻熟女毛片av久久网站| 18禁在线无遮挡免费观看视频| 我的老师免费观看完整版| 日韩一区二区三区影片| 九九久久精品国产亚洲av麻豆| 成人综合一区亚洲| 99九九线精品视频在线观看视频| 国产精品一区二区在线观看99| 国产片特级美女逼逼视频| 国产精品偷伦视频观看了| 乱人伦中国视频| 亚洲精品色激情综合| 日韩成人伦理影院| 一级毛片我不卡| 日韩一本色道免费dvd| 女的被弄到高潮叫床怎么办| 国产成人免费观看mmmm| 两个人免费观看高清视频| 天美传媒精品一区二区| 中文字幕人妻丝袜制服| 青春草国产在线视频| 亚洲av成人精品一二三区| 精品亚洲成国产av| 精品久久久久久电影网| 国产乱人偷精品视频| 亚洲综合色惰| 高清在线视频一区二区三区| 97超视频在线观看视频| 熟女av电影| 毛片一级片免费看久久久久| 男的添女的下面高潮视频| 999精品在线视频| 亚洲国产av影院在线观看| 精品一品国产午夜福利视频| 国产高清有码在线观看视频| 午夜福利在线观看免费完整高清在| 免费黄色在线免费观看| 国产一区二区在线观看av| 大又大粗又爽又黄少妇毛片口| 9色porny在线观看| 国产精品久久久久久久电影| 在线观看www视频免费| 亚洲av.av天堂| 蜜桃在线观看..| 王馨瑶露胸无遮挡在线观看| 亚洲精品日韩在线中文字幕| 亚洲精品乱码久久久v下载方式| 国产男女内射视频| 大香蕉久久网| 国产精品99久久99久久久不卡 | 在线观看一区二区三区激情| 中文字幕最新亚洲高清| 黑丝袜美女国产一区| 亚洲五月色婷婷综合| 国产成人91sexporn| 国产又色又爽无遮挡免| videossex国产| 亚洲精品日韩在线中文字幕| 免费黄网站久久成人精品| 久久人人爽人人爽人人片va| 久久鲁丝午夜福利片| 99久久精品国产国产毛片| 日产精品乱码卡一卡2卡三| 亚洲少妇的诱惑av| 狂野欧美激情性xxxx在线观看| 欧美日韩综合久久久久久| 亚洲国产色片| 欧美人与性动交α欧美精品济南到 | 777米奇影视久久| 麻豆成人av视频| 国产在视频线精品| 日本与韩国留学比较| 久久久国产欧美日韩av| 中文字幕最新亚洲高清| 亚洲人成77777在线视频| 亚洲五月色婷婷综合| 七月丁香在线播放| 国产精品国产av在线观看| 91久久精品国产一区二区成人| 国产永久视频网站| 丝瓜视频免费看黄片| 国国产精品蜜臀av免费| 久久久国产精品麻豆| 99热6这里只有精品| 国产成人免费观看mmmm| 欧美老熟妇乱子伦牲交| 我要看黄色一级片免费的| 制服诱惑二区| 亚洲美女搞黄在线观看| 成人国产av品久久久| kizo精华| 一本大道久久a久久精品| 亚洲美女黄色视频免费看| 日韩视频在线欧美| av国产精品久久久久影院| 美女大奶头黄色视频| 老熟女久久久| 日韩强制内射视频| 熟女电影av网| 美女视频免费永久观看网站| 爱豆传媒免费全集在线观看| 精品视频人人做人人爽| 国产精品一区二区在线不卡| 免费大片黄手机在线观看| 亚洲欧美清纯卡通| 日韩一本色道免费dvd| 久久久久久久大尺度免费视频| 国产熟女午夜一区二区三区 | 搡女人真爽免费视频火全软件| tube8黄色片| 亚洲av电影在线观看一区二区三区| 国产男女超爽视频在线观看| 国产黄色视频一区二区在线观看| 人人妻人人澡人人看| kizo精华| 91精品伊人久久大香线蕉| 亚洲精品aⅴ在线观看| 国产深夜福利视频在线观看| 国产精品一区二区在线不卡| 欧美xxⅹ黑人| 中文字幕亚洲精品专区| 日韩强制内射视频| 欧美xxⅹ黑人| 中文字幕制服av| 纯流量卡能插随身wifi吗| 日韩大片免费观看网站| 九草在线视频观看| 欧美xxxx性猛交bbbb| 亚洲av男天堂| 国产在线视频一区二区| 97精品久久久久久久久久精品| 成人国语在线视频| 欧美激情 高清一区二区三区| 亚洲婷婷狠狠爱综合网| 亚洲av国产av综合av卡|