• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    空氣系統(tǒng)引氣對壓氣機(jī)性能影響的數(shù)值研究

    2011-04-19 10:38:14李紹斌李秋實(shí)
    關(guān)鍵詞:北京航空航天大學(xué)壓氣機(jī)熱力

    趙 斌 李紹斌 李秋實(shí) 周 盛

    (北京航空航天大學(xué)航空發(fā)動(dòng)機(jī)氣動(dòng)熱力科技重點(diǎn)實(shí)驗(yàn)室,北京,100191,中國)

    INTRODUCTION

    Air system is essential to the safe and reliable operation of aircraft engines.Air with proper pressure and temperature is used for cabin air conditioning,engine inlet anti-ice and cooling of high temperature components[1].Ref.[2]showed that the bleed air from the high pressure compressor took up 3%—5%of the main flow.Although the percentage is relatively small,the air coming from such an important part of the engine generates the great impact on the compressor performance[3-6].

    During recent years,the aspirated technology is widely applied to the turbo-machinery for flow control,and offers a new approach to study the impact of air system bleeding on compressor performance. Refs.[7-9]improved the blade loaded by controlling the blade surface and the end-wall separation through the boundary layer suction.Ref.[10]performed a numerical simulation on a transonic fan rotor ATS-2 and proved that the boundary layer bleeding could greatly enhance the pressure ratio and efficiency.Ref.[11] showed that boundary layer bleeding was an effective solution for separation and stall of the cascade with large turning angles.It can be concluded from the previous studies that it is very likely to improve compressor performance by studying air system bleeding.

    Current studies in this field mainly focus on how high temperature components make efficient use of mass flow in the air system for cooling, and analytical calculation on the loss along air system network.Very few of them touched on the influence of air bleeding on compressor performance.However,the air is bled from such an essential part of the engine and there must be continuous and enough air supply for the engine to run normally.Therefore,this paper tries to explore the impact of different bleeding rates and structures on the compressor totalpressure increase and stability margin.

    1 ANALYSIS OF BLEEDING MECHANISMS

    Air bleeding improves the compressor performance through removing the low-energy fluid from critical regions of blades and altering the incidence angle of blades.The former one has been widely used in the external and internal flow control since Prandtl′s boundary suction experiment in 1904.This section mainly analyzes how bleeding influences the blade incidence angle.

    Fabri′s experiment summarized the features of bleed flow,as shown in Fig.1.The main upstream flow in the bleeding slot flows faster under the suction of bleeding; The main downstream flow slows down after the main flow decreases in air bleeding.In Fig.2,the air flows into the rotor in the axial direction with a velocity of V0.In the case that bleeding slot is located upstream of blade leading edge,the inlet axial velocity of blade increases to V1,the rotation speed U remains the same after bleeding,and the inlet flow angle Uis smaller.There is a smaller blade incidence angle when the stagger angle is constant. On the other hand,if the blade leading edge is located downstream of the bleeding slot,the inlet axial velocity of blade decreases to V2after bleeding and the blade incidence angle increases.The case is also applies to stators.Therefore,the influence mechanism of bleeding on the main flow can be concluded as:the blade incidence angle can be changed by altering the relative position of bleeding slot to the blade leading edge.

    Fig.2 Influence on inlet air angle by axial velocity changes

    For the transonic and subsonic compressor rotors,most of the blade passage losses result from the blockage caused by the interaction of tip leakage flow and end-wall boundary layer,and stall usually starts from the blade tips.When air is extracted from the rotor casing,the main flow rate upstream increases,and the incidence angle and blockage from tip clearance leakage can be reduced[12-13].The stator performance is mainly restrained by the blockage on the end-wall near suction surface[14-15].Bleeding in the stator end-wall area can increase the stator inlet flow rate,decrease the incidence angle,and remove the lowenergy fluid from the end-wall area.Blockage can be reduced by end-wall bleeding for stators.The analysis above indicates that the compressor performance is very likely to be improved by bleeding.For stators with large separation in the corner,how do end-wall bleeding location and rate influence the compressor performance?Is there an optimum value for bleeding location and rate? This paper takes the low-speed single-stage compressor in Beijing University of Aeronautics and Astronautics(BUAA)as the research object,and builds a stator flow field with large separation in the corner.Six air bleeding structures are presented,one of which is numerically studied under five bleeding rates.

    2 NUMERICAL ANALYSIS PLAN

    2.1 Low-speed single-stage compressor

    The low-speed single-stage compressor in BUAAis used in this experiment.Its structure is shown in Fig.3.The design mass flow rate is 2.80 m3/s at a rotational speed of 3 000 r/min, thus providing a total pressure increase of 1 500 Pa.Details of the compressor geometry,the op-erating conditions,and the experimental data can be found in Ref.[16].Information on the compressor stage is listed in Table 1.

    Fig.3 Schematic layout of test rig

    Table 1 Design performance of low speed axial compressor

    2.2 Numerical model and reliability analysis

    The experimental measurement sections at the inlet and outlet of compressor are selected for the calculation field boundary. The space discretization of the compressor mesh is generated by the pre-processing module AutoGrid5.The calculation is performed on a single rotor and stator passage.The total mesh point number is about 600 000.Simulations of the steady 3-D viscous flow field are carried out on the compressor by using the 3-D CFD package Numeca Fine Turbo.A cell-centered second-order finite volume discretisation is employed.The turbulence model is Spallart-Almaras.Perfect air is selected as working substance.In order to ensure the simulation accuracy,the simulation is amended by low Mach number flow.The atmospheric pressure and the temperature ofexperimental environments are 102 510 Pa and 285.15 K,respectively,held as inlet boundary condition.Concerning the radial equilibrium equation,the static pressure at the mean radius is held as outlet boundary condition. During the simulation,the main operating point of the compressor characteristic curves is obtained by changing the static pressure at the outlet.

    The definition of numerical stall point in this paper is basically the same as that in Refs.[17-18].When the back pressure increases in the compressor outlet to obtain near stall characteristics,even by 0.01% of the inlet total pressure, the mass flow rate,the pressure ratio and the efficiency of compressor keep on decreasing with the number of iterations increasing,and numerical calculation cannot converge.Therefore,it can be concluded that the calculation is divergent.So the last convergence solution before divergence corresponds to the near-stall condition. The Surge Margin calculation formula is as follows

    where SMis short forSurge Margin,Msand ΔPs*are the flow rate and the total pressure increase at the near-stall point,MdandΔPd*the flow rate and the total pressure increase at design point.

    Fig.4 shows a comparison between the numerical simulation and the experimentally measured value over the 100% speedline of the lowspeed axial compressorcharacteristics without bleeding.In this paper,compressor characteristics of numerical calculations and experiment are conducted non-dimensionalized by a reference value:the abscissaOis the inlet flow coefficient Vx/ Um,and the ordinate jis the total pressure increase coefficient ΔP*/d Um2. On the design point,the simulation matches well with the experimental data of jwith a relativeerror of 1.2%. At the near-stall point,flow range in the simulation is smaller than the experimentally measured value because of the single passage steady simulation.Fig.5 shows the comparison of the radial distributions of total pressure increase at the outlet of the compressor between the simulation and the experimentally measured value on the design point(O=0.538).It is clear th at the simulation values agree well with the measured average values obtained from the four total pressure combs with circumferential averaged-distribution in the experiment.The above analysis shows that simulation calculation results are very close to the experimentlly measured results.In other words, the numerical calculation can approximatively reproduce the experimental results,and the numerical simulation is a reliable way to study the influence of bleeding on the compressor overall performance.

    Fig.5 Radial distributions of total pressure increase on design point at outlet of compressor

    2.3 Building and analysis of stators with large corner separation

    The stall is induced by the leakage of the rotor blade tip of the compressor above.In order to study the influence of bleeding structure,location and rate on the stator corner separation,another compressor is needed where there is large separation in the near-stall stator corner.Therefore, based on the reliability of the numerical method, a new compressor is built with large separation in the stator corner on the near-stall point.The ratio of rotors to stators is modified into 18∶ 12, and the stator inlet setting angle is cut by 2°.The new compressor is used as the baseline,upon which all numerical studies below are conducted.

    Fig.6 shows the skin friction line on the blade suction surface of the baseline at near-stall point. There are serious separations on stator corners.On stator suction surface,two obvious separating lines roll up from boundary layer of the suction surface and grow into the shedding vortex,thus taking along a large number of low-energy fluid to the downstream.It aggravates the stator losses.The separation on the upper half of the stator starts from 15% of the chord,and the outlet separation covers up 40% to 100% of the stator radial range.It is a typical closed form of separation.In the lower half of the stator,there is obvious separation and the radial flow.Fig.7 shows that there is the contours of the total pressure increase coefficient at stator outlet,where SS means the suction surface and PS the pressure surface.The location and the trend of corner separation at stator suction surface match well with those shown in Fig.6.The separation in the upper half of the stator outlet covers about 35% of the pitch range in circumferential.

    Fig.6 Skin friction line on stator suction surface of baseline approaching stall point

    Fig.7 Stator exit total pressure increase coefficient contours of baseline approaching stall point

    The complicated stator cornerseparations cause a huge increase in the loss.It is the most likely cause of the decrease in the compressor performance under the low flow rate condition.In this case,can these bleeding structures and rates effectively control the stator flow? And what influence does each plan have on the compressor performance?Answers are given in the comparative analysis on numerical calculation results of each bleeding plan below.

    3 INFLUENCES OF BLEEDING STRUCTURES

    3.1 Bleeding structure plans

    Six air bleeding structure plans are presented in this paper according to the bleeding mechanisms above.In each plan,bleeding slots are located downstream of the leading edge of stator blades.Information on the plans is given in Table 2,and Fig.8 shows the structure of bleeding slots.In plans a and b,the bleeding slot is about 5% chord of stator and located at 10% and 20% chord from leading edge in the casing.The bleeding location in plan c is at the trailing edge in the casing,about 5% chord of stator.In plan d,the bleeding slot is rectangle-shaped,and located near the suction surface in the casing.The length is about 59% of the stator chord,and the width is about 15% of the stator chord.The bleeding location of plan e is at the stator suction surface near the hub.The air is bled out from the casing through the internal cavity of the stator.The plan f is basically a combination of plans d and e. It controls the flow in both the casing corner and the hub corner at the same time.From plan a to plan e,2.5% of the main flow is bled out.In plan f,1% of the main flow is bled from the casing and the blade suction surface.

    Table 2 Bleeding location plans

    Fig.8 Structure of bleeding location plans

    3.2 Influence on total pressure increase and surge margin

    Figs.9,10 show the overall characteristics of total pressure increase in each bleeding plan.And Table 3 lists out different surge margins in each plan.The surge margin in the calculation of the baseline is 30.3%.It can be seen from Figs.9,10 and Table 3,only plan f manages to enhance both the total pressure increase and the surge margin, and improves the flow condition at the near-stall point.In this plan,the total pressure increase grows by 5.88% than the baseline,the mass flow range expands by 4.25%,and surge margin reaches 44.12%,which is a 45.47% increase on the baseline.In plans a and b,there is only the total pressure with a tiny increase.Two SMin both plans enhance very little,only by 2.52% and 4.06%,respectively.In plans c and d,the mass flow range is expanded at the cost of a reduction in the total pressure increase,but the surge margin decreases by 2.68% and 1.73% respectively.In plan e,the total pressure increase rises a little at near stall point,but the mass flow range decreases,so the relative surge margin reduces by 1.31%.

    Fig.9 Performance of total pressure increase in each bleeding location plan

    Fig.10 Performance of total pressure increase in plan f

    Table3 Relative increment of stability margin in each bleeding location plan %

    3.3 Influence on stator flow field

    Fig.11 shows the total pressure increase coefficient contours near stall(O=0.425)at stator outlet in each bleeding plan,where LE means the leading edge and TE the traling edge.In plan f, bleeding on the casing effectively removes a large number of low-energy fluid accumulation in the casing corner.Meanwhile,bleeding at the stator suction surface near hub eliminates the separation from the local small region,and effectively weakenes the radial flow caused by casing bleeding in the main flow.The stator flow obtains an overall improvement.The plans a and b both extract air at the entrance of stator leading edge.They reduce the incidence angle in the tip region,push back the starting location of the boundary layer separation near the casing,and reduce the large separation region on the stator casing in the radial and circumferential scale,but the large local separation of the casing still cannot be completely eliminated.In plans c and d,the large separation in the casing suction surface corner is completely removed,and the tip blockage is alleviated.However,the reduction of tip blockage and the suction effect cause the strong radial flow in the hub region.Under these influences,a large separation comes about in the suction surface corner near hub region.It indicates that there is an optimal value of bleeding rate to control the stator casing corner separation.The influence of bleeding rate on the main flow field is explored afterwards. The plan e only controls the flow in suction surface near hub region,and the large separation in the shroud corner still exists.

    Fig.11 Stator exit total pressure increase coefficient contours near stall in each bleeding location plan

    Fig.12 Radial distributions of stator total loss coefficient near stall in each bleeding location plan

    Fig.12 shows the radial distribution of the near-stall statortotal loss coefficient in each plan.In the equation of the total loss coefficients of the stators,P*inand Pinare the inlet total pressure and the static pressure of the stators,P*outis the outlet total pressure.In plan f,it is apparent that there is a great reduction in the flow loss in the areas above 40% of the blade span,and the losses in the area below 20%of the blade span are under better control.The removal of the separation and the decrease in the loss greatly improves the stator flow.

    It can be concluded that both flow mechanisms can effectively reduce the corner separation,and enhance the compressor performance. During the research,reducing the incidence angle alone cannot completely remove the large separation area near the casing.It only pushes back the starting location of the boundary layer separation on the tips near the casing and reduces the scale of separation. The compressorsurge margin hardly has any improvement. However,if the low-energy fluid in the critical area can be eliminated at the same time when the incidence angle is reduced,there is a better stator flow as the lowenergy fluid is removed and the separation is inhibited.The compressor has a comprehensive improvement in total pressure increase and surge margin.The research also indicates that too large bleeding rates bring about intensive radial flow, destruct the main flow,and increase the risk of large separation in hub region.In other words, there is an optimum value in the bleeding rate controlling the stator casing corner separation.

    4 INFLUENCES OF BLEEDING RATES

    There are different stator flow fields in plans d and f due to different bleeding rates in the analysis above.What are the similarities and dissimilarities in the stator flow field under different bleeding rates? What is the optimum bleeding rate?In order to explore the influence of different bleeding rates on the stator flow field and the performance,5 bleeding plans are presented with the same bleeding structure and location of plan d. These plans are referred to as d1—d5,and corresponding bleeding rates are 0.3%,0.6%,1%, 2% and 3%,respectively.

    4.1 Influence on total pressure increase

    Table 4 lists out the total pressure increase coefficient in each bleeding rate plan at the design point.In plan d1,the total pressure increase coefficient rises by 0.75% under a bleeding rate of 0.3%.The coefficient rises by 0.65% in plan d2 where the bleeding rate increases to 0.6%.In plan d3,the coefficient grows only by 0.15% while the bleeding rate reaches 1.0%.In plans d4 and d5,the coefficients decrease by 0.59% and 1.5% respectively when the bleeding rates keep increasing.In conclusion,there is increase in the coefficient when the bleeding rate is under 1.0%. The coefficient starts to decrease when the bleeding rate exceeds 1%.Therefore,there is an optimum value in the bleeding rates,and it is not the more the better.

    Table4 Relative value of total pressure increase coefficient in each bleeding rate plan at design point

    4.2 Influence on stator flow field

    Fig.13 presents the skin friction on the stator suction surface at the design point in each plan.Fig.14 shows the stator exit total pressure increase coefficient contours at the design point in each plan.With the bleeding rate increasing,the casing separation area starts to shrink along the radial and circumferential direction.The casing corner separation is under better control in plan d3.Its radial range is cut to 90% to 100% of the blade span,and the circumferential range also shrinks.However,the radial flow in the hub region starts to intensify and the separation area also expands when the bleeding rate grows.In plan d3,the radial range of the separation area increases to 60% of the blade span,compared to 20% of the blade span in the baseline.The circumferential influence covers up 20% of the pitch range.When the bleeding rates reach and exceed 1%,the casing corner separation gradually disappears,and the separation and the radial flow in the hub intensify.In plan d5,the casing separation completely disappears under the 3% of the bleeding rate,but larger hub separation appears and grows to 75% of the blade span.

    Fig.13 Skin friction on stator suction surface at design point in each plan

    Fig.14 Stator exit total pressure increase coefficient contours at design point in each bleeding rate plan

    Fig.15 shows the radial distributions of the stator total loss coefficient at the design point in each plan.The stator total loss coefficient in the upper half of the blade span apparently decreases with an increase in the casing bleeding rate.At the 90% of the blade span,the loss coefficient in plan d1 decreases to 0.1 from 0.3 in baseline. However,there is no significant decrease in the loss coefficient when the bleeding rate continues to grow.The loss coefficient in the lower half of the blade span increase together with the bleeding rates.The bleeding rate influences the stator total loss coefficient in the same way that stator flow field changes as shown in Figs.13,14.They both reflect how bleeding rate influences the stator flow field,and explain why the total pressure increase changes on the design points of each plan.

    Fig.15 Radial distributions of stator total loss coefficient at design point in each bleeding rate plan

    In conclusion, too much bleeding brings about intensive radial flow when removing the local separation.Furthermore,when there is large incidence angle in stators or separationin hub corner,large bleeding rates in the casing corner destroy the main flow and cause an even larger hub separation.Therefore,there is an optimum value in the bleeding rate controlling the stator casing corner separation.The value depends on the flow of the stator flow field.

    5 CONCLUSIONS

    (1)In both mechanisms about how bleeding improves the compressor performance,the elimination of low-energy fluid by bleeding plays a dominant role.The influence of bleeding on the blades incidence angle can determine the location of bleeding device.The compressor has a much better performance if both mechanisms are taken into consideration during design.

    (2)A joint bleeding structure plan bleeds 1% of the air from both the stator casing near suction side and the stator suction surface near the hub region.This plan succeeds in rising both the total pressure increase and the surge margin of compressor at the same time.Compared with the baseline condition,the total pressure increase rises by 5.88%, the flow range expands by 4.25% and the overall surge margin increases by 45.47%.

    (3)There is an optimum value in the bleeding rate controlling the stator casing corner separation.Too much bleeding brings about intensive radial flow when removing the local separation. Furthermore,when there is the large incidence angle in stators or the separation in hub corner, large bleeding rates in the casing corner destroy the main flow and cause an even larger hub separation.

    [1] Yang Yansheng,Wu Xiangyu,Lu Haiying,et al. Design manual of aircraft engine,16th volumes:Air systems and analysis of heat transfer[M].Beijing: Aviation Industry Press,2001:1-11.(in Chinese)

    [2] Zhao Bin,Li Shaobin,Hou Anpin,et al.The research on air bleed of air system in aero-engine[C]// Academic ExchangingMeeting of 15th Turbomachinery Committee of Aviation Institute.China: CSAA,2009:190-198.(in Chinese)

    [3] Andrew JY,Ronald J R.Effects of bleed air extraction on thrust level of the F404-GE-400 turbofan engine[R].NASA TM-104247,1992.

    [4] Alison B E.The effects of compressor seventh-stage bleed air extraction on performance of the F100-PW-220 afterburning turbofan engine[R].N ASA CR-179447,1991.

    [5] Wellborn S R,Michael L K.Bleed flow interactions with an axial-flow compressor powerstream[R]. AIAA Paper 2002-4057,2002.

    [6] Kerrcbroek J L,Reijnan D P,Ziminsky W S,et al. Aspirated compressors[R].ASM E Paper,GT-97-525,1997.

    [7] Merchant A A,Drela M,Kerrebrock J L,et al. Aerodynamic design and analysis of a high pressure ratio aspirated compressor stage[R].ASM E Paper, GT-2000-619,2000.

    [8] Zhou Hai,Li Qiushi,Lu Yajun.Prospects of numerical analysis of an aspirated transonic fan rotor [J].Journal of Aerospace Power,2004,19(3):408-412.(in Chinese)

    [9] Wang Songtao,Qian Jiru,Feng Guotai,et al.The research about loss reduction and separation suppress by wall suction[J].Journal of Engineering Thermophysics,2006,27(1):48-50.(in Chinese)

    [10]Conan F,Savarese S,Moteurs S.Bleed airflow CFD modeling in areodynamics simulations of jet engine compressors[R].ASM E Paper,GT-2001-0544, 2001.

    [11]Saathoff H,Stark U.Tip clearance flow in a low speed compressor and cascade[C]//Fourth European Conference on Turbomachinery.Firenze,Italy:[s. n.],2001:81-91.

    [12]Gummer V,Swoboda M,Goller M,et al.The impact of rotor tip sweep on the three-dimensional flow in a highly-loaded single stage low-speed axial compressor— Part1:design and numerical analysis[C]// Fifth European Conference on Turbomachinery. Prague,Czech Republic:[s.n.],2003.

    [13]Zhao Bin,Li Shaobin,Li Qiushi,et al.Unsteady numerical research into the impact of bleeding on axialcompressorperformance[C]//Proceeding of ASME2010 3rd Joint US-European Fluids Engineering Summer Meeting.Montreal,Canada: [s.n.], 2010:FEDSM-ICNMM2010-30228.

    [14]Joslyn H D,Dring R P. Axial compressor stator aerodynamics[J].ASM E Journal of Heat Transfer, 1985(107):485-493.

    [15]Kang S,Hirsch C.Three dimensional flow in a linear compressor cascade at design condition[R]. ASME Paper,GT91-114,1991.

    [16]Li Zhiping,Li Qiushi,Yuan Wei,et al.The experimental research on a new method for extending the axial-compressors stallmargin[J]. Journalof Aerospace Power, 2006,21(3): 485-491.(in Chinese)

    [17]Hall E J,Crook A J,Delancy R A.Aerodynamic analysis of compressor casing treatment with a3-D navier-stokes solver[R]. AIAA Paper 94-2796, 1994.

    [18]Yang H,Nuernberger D,Nicke E A.Numerical investigation of casing treatment mechanisms with a conservative mix-cell approach[R].ASM E Paper, GT-2003-28483,2003.

    猜你喜歡
    北京航空航天大學(xué)壓氣機(jī)熱力
    《北京航空航天大學(xué)學(xué)報(bào)》征稿簡則
    《北京航空航天大學(xué)學(xué)報(bào)》征稿簡則
    熱力工程造價(jià)控制的影響因素及解決
    軸流壓氣機(jī)效率評定方法
    熱力站設(shè)備評測分析
    《北京航空航天大學(xué)學(xué)報(bào)》征稿簡則
    《北京航空航天大學(xué)學(xué)報(bào)》征稿簡則
    重型燃?xì)廨啓C(jī)壓氣機(jī)第一級轉(zhuǎn)子葉片斷裂分析
    壓氣機(jī)緊湊S形過渡段內(nèi)周向彎靜子性能數(shù)值計(jì)算
    周六福520愛跑節(jié)1000人登陸西安城墻 熱力開跑
    中國寶玉石(2018年3期)2018-07-09 03:13:52
    亚洲在线自拍视频| 亚洲精品在线观看二区| 国产精品国产av在线观看| 亚洲性夜色夜夜综合| 男人的好看免费观看在线视频 | 欧美日韩黄片免| 少妇 在线观看| av片东京热男人的天堂| 国产高清videossex| 人人妻人人添人人爽欧美一区卜| 国产激情久久老熟女| 多毛熟女@视频| netflix在线观看网站| a级毛片黄视频| av免费在线观看网站| 亚洲专区中文字幕在线| 免费看a级黄色片| 婷婷六月久久综合丁香| 亚洲五月天丁香| 精品午夜福利视频在线观看一区| 老司机深夜福利视频在线观看| 韩国精品一区二区三区| 国产免费现黄频在线看| 国产国语露脸激情在线看| 精品久久久久久久久久免费视频 | 国产成年人精品一区二区 | 午夜精品国产一区二区电影| av有码第一页| 美女 人体艺术 gogo| 看免费av毛片| www.自偷自拍.com| 99精国产麻豆久久婷婷| 99久久精品国产亚洲精品| 一级毛片高清免费大全| 亚洲精品一区av在线观看| 久久久久久久午夜电影 | av中文乱码字幕在线| 国产免费现黄频在线看| 女人被狂操c到高潮| 精品久久久精品久久久| 精品国产一区二区三区四区第35| av超薄肉色丝袜交足视频| 成人亚洲精品av一区二区 | 两性夫妻黄色片| 欧美大码av| 变态另类成人亚洲欧美熟女 | 色精品久久人妻99蜜桃| 久久国产精品人妻蜜桃| 成人av一区二区三区在线看| 成人免费观看视频高清| 国产精品秋霞免费鲁丝片| 黄色毛片三级朝国网站| 精品人妻1区二区| 国产一区二区三区在线臀色熟女 | 亚洲精品久久成人aⅴ小说| 高清黄色对白视频在线免费看| 少妇的丰满在线观看| 中文字幕精品免费在线观看视频| av在线播放免费不卡| 国产成人精品无人区| 欧美成人免费av一区二区三区| 超碰成人久久| 婷婷六月久久综合丁香| 欧美乱妇无乱码| 国产成人av激情在线播放| 亚洲精品在线美女| 久久精品人人爽人人爽视色| 十分钟在线观看高清视频www| 国产熟女xx| 色在线成人网| 51午夜福利影视在线观看| 夜夜夜夜夜久久久久| 日韩免费高清中文字幕av| 最好的美女福利视频网| 免费在线观看完整版高清| 国产精品免费视频内射| 黑人操中国人逼视频| 亚洲va日本ⅴa欧美va伊人久久| 国产乱人伦免费视频| 少妇被粗大的猛进出69影院| 成人手机av| 我的亚洲天堂| 久久久久亚洲av毛片大全| 国产成人精品在线电影| 久久久国产一区二区| 曰老女人黄片| 欧美黄色片欧美黄色片| 无人区码免费观看不卡| 欧美 亚洲 国产 日韩一| 免费少妇av软件| 日韩av在线大香蕉| 宅男免费午夜| 欧美日韩中文字幕国产精品一区二区三区 | 麻豆av在线久日| 亚洲五月天丁香| 亚洲免费av在线视频| 91成人精品电影| 99精国产麻豆久久婷婷| 可以免费在线观看a视频的电影网站| 亚洲va日本ⅴa欧美va伊人久久| 国产精品香港三级国产av潘金莲| 一级,二级,三级黄色视频| 国产aⅴ精品一区二区三区波| 亚洲中文字幕日韩| 亚洲av日韩精品久久久久久密| 麻豆av在线久日| 欧美色视频一区免费| 久久久国产成人精品二区 | 久久精品aⅴ一区二区三区四区| 国产精品 国内视频| 美女扒开内裤让男人捅视频| 妹子高潮喷水视频| 精品国产乱码久久久久久男人| 可以免费在线观看a视频的电影网站| 美女国产高潮福利片在线看| 欧美黑人欧美精品刺激| 精品一区二区三区四区五区乱码| 欧美日韩av久久| 亚洲,欧美精品.| 久9热在线精品视频| 成人精品一区二区免费| avwww免费| 亚洲人成电影观看| 99久久99久久久精品蜜桃| 国产成人系列免费观看| 一个人观看的视频www高清免费观看 | 精品久久蜜臀av无| 一级a爱视频在线免费观看| 久久中文看片网| 在线观看日韩欧美| 亚洲专区字幕在线| 久久狼人影院| a在线观看视频网站| 一级毛片女人18水好多| 男女午夜视频在线观看| 在线观看午夜福利视频| 亚洲国产欧美网| 天天影视国产精品| 99在线视频只有这里精品首页| 看黄色毛片网站| 在线视频色国产色| 国产精品成人在线| 色综合婷婷激情| 涩涩av久久男人的天堂| 欧美黄色片欧美黄色片| 国产精品一区二区三区四区久久 | 好看av亚洲va欧美ⅴa在| 欧美在线黄色| 亚洲色图 男人天堂 中文字幕| 久久久国产一区二区| 在线国产一区二区在线| 色婷婷久久久亚洲欧美| 精品国产一区二区三区四区第35| 99精品久久久久人妻精品| 久久精品国产综合久久久| 日本欧美视频一区| 国产色视频综合| 久久精品国产综合久久久| 午夜a级毛片| 丝袜人妻中文字幕| 精品国产国语对白av| 国产一区在线观看成人免费| 中文字幕人妻熟女乱码| 亚洲色图av天堂| 亚洲男人天堂网一区| 亚洲人成77777在线视频| 淫秽高清视频在线观看| 这个男人来自地球电影免费观看| 日本vs欧美在线观看视频| 中文字幕精品免费在线观看视频| 国产欧美日韩一区二区三| 男人操女人黄网站| 岛国在线观看网站| 久久久水蜜桃国产精品网| 女人精品久久久久毛片| 妹子高潮喷水视频| 亚洲精品美女久久久久99蜜臀| а√天堂www在线а√下载| 91国产中文字幕| 黑人欧美特级aaaaaa片| 久久国产乱子伦精品免费另类| 中国美女看黄片| 91精品国产国语对白视频| 亚洲国产毛片av蜜桃av| 国产黄色免费在线视频| 无限看片的www在线观看| 国产免费av片在线观看野外av| 亚洲一卡2卡3卡4卡5卡精品中文| 水蜜桃什么品种好| 成在线人永久免费视频| 国产日韩一区二区三区精品不卡| 婷婷精品国产亚洲av在线| 一级片免费观看大全| 免费观看精品视频网站| 天天影视国产精品| 视频区图区小说| www日本在线高清视频| 久热这里只有精品99| 麻豆国产av国片精品| 高清欧美精品videossex| 精品国产美女av久久久久小说| 国产成人一区二区三区免费视频网站| 麻豆成人av在线观看| 成人免费观看视频高清| 久久人妻av系列| 亚洲成人免费av在线播放| 免费看十八禁软件| 搡老熟女国产l中国老女人| 他把我摸到了高潮在线观看| 首页视频小说图片口味搜索| 999精品在线视频| 国产亚洲精品久久久久5区| 丰满迷人的少妇在线观看| 村上凉子中文字幕在线| 在线观看日韩欧美| 日韩中文字幕欧美一区二区| av网站免费在线观看视频| 亚洲精品av麻豆狂野| 美女午夜性视频免费| 欧美色视频一区免费| 色老头精品视频在线观看| 亚洲精品粉嫩美女一区| 久久久久国产一级毛片高清牌| 亚洲一区二区三区不卡视频| 久久精品亚洲熟妇少妇任你| 国产真人三级小视频在线观看| 久热这里只有精品99| 亚洲aⅴ乱码一区二区在线播放 | 免费av中文字幕在线| 九色亚洲精品在线播放| 在线观看一区二区三区| 夜夜爽天天搞| 午夜成年电影在线免费观看| 亚洲人成网站在线播放欧美日韩| 免费在线观看完整版高清| 久久香蕉激情| 香蕉久久夜色| 国产精品香港三级国产av潘金莲| 在线观看午夜福利视频| 淫妇啪啪啪对白视频| 成人三级黄色视频| 精品国产一区二区久久| 一边摸一边做爽爽视频免费| 久久中文字幕人妻熟女| 麻豆一二三区av精品| 另类亚洲欧美激情| 99久久综合精品五月天人人| 999久久久国产精品视频| av网站免费在线观看视频| 午夜日韩欧美国产| 国产精品国产av在线观看| 99精品久久久久人妻精品| 国产精品1区2区在线观看.| 色综合站精品国产| 欧美大码av| 久久国产精品男人的天堂亚洲| 国产欧美日韩综合在线一区二区| 色哟哟哟哟哟哟| 日韩av在线大香蕉| 免费日韩欧美在线观看| 99精国产麻豆久久婷婷| 中文字幕高清在线视频| 久久国产精品男人的天堂亚洲| 国产欧美日韩综合在线一区二区| 老汉色∧v一级毛片| 电影成人av| 黑人操中国人逼视频| 国产精品一区二区三区四区久久 | 香蕉丝袜av| 免费在线观看日本一区| 午夜福利,免费看| 国产精品亚洲av一区麻豆| 一二三四在线观看免费中文在| 在线天堂中文资源库| 黄色片一级片一级黄色片| 日韩免费高清中文字幕av| 日韩欧美一区视频在线观看| 大码成人一级视频| 大型黄色视频在线免费观看| 波多野结衣一区麻豆| 精品福利观看| 69av精品久久久久久| 亚洲av片天天在线观看| 午夜影院日韩av| 视频在线观看一区二区三区| 一级毛片高清免费大全| 国产精品九九99| 久久影院123| 日本欧美视频一区| 精品国产一区二区久久| 亚洲全国av大片| 超色免费av| 老熟妇乱子伦视频在线观看| 久久精品国产亚洲av高清一级| 美女福利国产在线| 美女高潮到喷水免费观看| 国产在线精品亚洲第一网站| 亚洲av美国av| xxx96com| 深夜精品福利| 久久热在线av| 欧美激情 高清一区二区三区| www.精华液| 亚洲国产精品sss在线观看 | 日韩欧美国产一区二区入口| 国产极品粉嫩免费观看在线| 国产无遮挡羞羞视频在线观看| 久久精品成人免费网站| 国产精品98久久久久久宅男小说| 电影成人av| 亚洲国产精品合色在线| 欧美日韩亚洲综合一区二区三区_| 黄色毛片三级朝国网站| 99国产精品免费福利视频| 国产精品永久免费网站| 另类亚洲欧美激情| 亚洲欧洲精品一区二区精品久久久| 免费少妇av软件| 亚洲免费av在线视频| 欧美+亚洲+日韩+国产| 成人黄色视频免费在线看| 女同久久另类99精品国产91| 国产成人影院久久av| 水蜜桃什么品种好| 国产精品久久视频播放| 少妇 在线观看| 啪啪无遮挡十八禁网站| 水蜜桃什么品种好| 午夜福利在线观看吧| 激情在线观看视频在线高清| 男女下面插进去视频免费观看| 精品久久久精品久久久| 免费观看人在逋| 亚洲午夜理论影院| 99国产综合亚洲精品| 国产亚洲精品综合一区在线观看 | 亚洲午夜精品一区,二区,三区| 国产亚洲精品久久久久5区| 韩国av一区二区三区四区| 91成年电影在线观看| 一级毛片精品| 露出奶头的视频| 丁香六月欧美| 成人免费观看视频高清| 91在线观看av| 国产亚洲精品久久久久5区| 国产熟女xx| videosex国产| 久久国产亚洲av麻豆专区| 黄色视频不卡| 久久 成人 亚洲| 国产一区二区三区综合在线观看| 窝窝影院91人妻| 亚洲精品美女久久久久99蜜臀| 国产在线精品亚洲第一网站| 欧美黄色片欧美黄色片| 99久久综合精品五月天人人| 麻豆久久精品国产亚洲av | 看片在线看免费视频| 亚洲国产精品999在线| 在线观看免费日韩欧美大片| 免费一级毛片在线播放高清视频 | 国产有黄有色有爽视频| 超碰成人久久| av网站免费在线观看视频| 老熟妇乱子伦视频在线观看| 久久精品成人免费网站| 亚洲精品成人av观看孕妇| 国产精品久久视频播放| 黄网站色视频无遮挡免费观看| 视频在线观看一区二区三区| 精品国产亚洲在线| 波多野结衣一区麻豆| 欧美日韩黄片免| 成人黄色视频免费在线看| 麻豆久久精品国产亚洲av | 美女大奶头视频| 亚洲一区高清亚洲精品| 欧美日韩亚洲国产一区二区在线观看| 亚洲国产精品999在线| 成人国语在线视频| 国产精品香港三级国产av潘金莲| 久久伊人香网站| 欧美黑人精品巨大| 久久人妻av系列| 88av欧美| 亚洲精品av麻豆狂野| 国产亚洲欧美在线一区二区| 亚洲国产欧美网| 黄色视频,在线免费观看| 精品国产国语对白av| 叶爱在线成人免费视频播放| 欧美人与性动交α欧美软件| av网站免费在线观看视频| 国产精品一区二区精品视频观看| 久久久久九九精品影院| 老司机靠b影院| 99在线视频只有这里精品首页| 国产欧美日韩一区二区三区在线| 色婷婷av一区二区三区视频| 亚洲国产精品999在线| 成人亚洲精品av一区二区 | 可以在线观看毛片的网站| 久久久水蜜桃国产精品网| 久久国产亚洲av麻豆专区| 亚洲人成77777在线视频| 亚洲一区二区三区不卡视频| 免费人成视频x8x8入口观看| 黑人巨大精品欧美一区二区mp4| 国产精华一区二区三区| 999久久久国产精品视频| 久久这里只有精品19| 婷婷精品国产亚洲av在线| 欧美中文日本在线观看视频| 在线观看免费视频网站a站| 欧洲精品卡2卡3卡4卡5卡区| 亚洲成人国产一区在线观看| 可以在线观看毛片的网站| 90打野战视频偷拍视频| 免费日韩欧美在线观看| a级毛片在线看网站| 国产亚洲精品久久久久久毛片| 黄片大片在线免费观看| 99久久久亚洲精品蜜臀av| 免费在线观看黄色视频的| 国产精品影院久久| 成熟少妇高潮喷水视频| 久久精品国产清高在天天线| 欧美最黄视频在线播放免费 | 我的亚洲天堂| 一个人免费在线观看的高清视频| www日本在线高清视频| 最近最新免费中文字幕在线| 精品国产超薄肉色丝袜足j| 精品熟女少妇八av免费久了| 村上凉子中文字幕在线| 夫妻午夜视频| 久久精品影院6| 99久久99久久久精品蜜桃| 午夜亚洲福利在线播放| 国产精品99久久99久久久不卡| 亚洲五月婷婷丁香| 国产深夜福利视频在线观看| 久久精品国产99精品国产亚洲性色 | 国产欧美日韩一区二区三区在线| 女人被狂操c到高潮| 一区二区日韩欧美中文字幕| 黄色怎么调成土黄色| 午夜福利免费观看在线| 日韩精品中文字幕看吧| 超碰97精品在线观看| 丝袜人妻中文字幕| 91字幕亚洲| 精品熟女少妇八av免费久了| 亚洲国产精品sss在线观看 | 国产精品久久久av美女十八| 国产精品永久免费网站| 一二三四社区在线视频社区8| 99精品在免费线老司机午夜| 日韩欧美免费精品| 黄色成人免费大全| 麻豆国产av国片精品| 亚洲精品在线观看二区| 欧洲精品卡2卡3卡4卡5卡区| 欧美日本中文国产一区发布| 在线观看舔阴道视频| 久久久久久久精品吃奶| 亚洲精品中文字幕在线视频| 久久久久久亚洲精品国产蜜桃av| 日韩欧美一区视频在线观看| 国产精品电影一区二区三区| 91av网站免费观看| 亚洲欧美激情在线| x7x7x7水蜜桃| 男女做爰动态图高潮gif福利片 | 老司机亚洲免费影院| 麻豆av在线久日| 老熟妇仑乱视频hdxx| 国产单亲对白刺激| 日韩欧美三级三区| 韩国av一区二区三区四区| 夜夜爽天天搞| ponron亚洲| www国产在线视频色| 亚洲激情在线av| 国产1区2区3区精品| 日本免费a在线| 变态另类成人亚洲欧美熟女 | 男男h啪啪无遮挡| 性色av乱码一区二区三区2| 国产精品亚洲一级av第二区| 久久这里只有精品19| 亚洲片人在线观看| 一级毛片精品| 交换朋友夫妻互换小说| 亚洲成人久久性| 狂野欧美激情性xxxx| 国产91精品成人一区二区三区| 亚洲中文日韩欧美视频| 69av精品久久久久久| 欧美亚洲日本最大视频资源| 可以免费在线观看a视频的电影网站| 国产精品免费一区二区三区在线| 在线观看舔阴道视频| 麻豆av在线久日| 伊人久久大香线蕉亚洲五| 人妻久久中文字幕网| 亚洲成av片中文字幕在线观看| 搡老熟女国产l中国老女人| 午夜福利在线观看吧| 好男人电影高清在线观看| 欧美另类亚洲清纯唯美| 国产欧美日韩精品亚洲av| 中文字幕精品免费在线观看视频| 91国产中文字幕| 亚洲美女黄片视频| 国产在线精品亚洲第一网站| 中文字幕人妻丝袜制服| 激情视频va一区二区三区| 亚洲欧美激情综合另类| 91麻豆精品激情在线观看国产 | av超薄肉色丝袜交足视频| 纯流量卡能插随身wifi吗| 久久久国产一区二区| 99在线人妻在线中文字幕| 老司机深夜福利视频在线观看| 亚洲人成电影观看| 亚洲美女黄片视频| 久久人人爽av亚洲精品天堂| 午夜亚洲福利在线播放| 亚洲一区二区三区色噜噜 | 久久久久亚洲av毛片大全| 丰满人妻熟妇乱又伦精品不卡| 久久精品人人爽人人爽视色| 一级黄色大片毛片| av片东京热男人的天堂| 午夜福利,免费看| 欧美人与性动交α欧美软件| 亚洲色图 男人天堂 中文字幕| 美女大奶头视频| 怎么达到女性高潮| cao死你这个sao货| 91字幕亚洲| 国产av一区在线观看免费| 午夜福利在线免费观看网站| 在线观看66精品国产| 三级毛片av免费| 精品国产美女av久久久久小说| 在线观看舔阴道视频| 一区二区三区精品91| 精品久久久久久,| 人人妻人人添人人爽欧美一区卜| 最近最新中文字幕大全免费视频| 国产欧美日韩一区二区三区在线| 日本三级黄在线观看| 欧美日韩中文字幕国产精品一区二区三区 | 日日爽夜夜爽网站| 人成视频在线观看免费观看| www.自偷自拍.com| 中文字幕最新亚洲高清| 长腿黑丝高跟| 久久精品国产综合久久久| 日韩av在线大香蕉| 日韩精品青青久久久久久| 美女扒开内裤让男人捅视频| 欧美午夜高清在线| 可以在线观看毛片的网站| 日本a在线网址| 国产欧美日韩一区二区三区在线| 免费av中文字幕在线| 99精国产麻豆久久婷婷| 老司机在亚洲福利影院| 国产黄色免费在线视频| 亚洲精品在线美女| 中文欧美无线码| 12—13女人毛片做爰片一| 日本一区二区免费在线视频| 亚洲少妇的诱惑av| 国产97色在线日韩免费| 国产精品久久久av美女十八| 黄色丝袜av网址大全| 叶爱在线成人免费视频播放| 色哟哟哟哟哟哟| www.精华液| 极品教师在线免费播放| 999精品在线视频| 国产成人啪精品午夜网站| 国产免费现黄频在线看| 一区二区三区激情视频| 一级片'在线观看视频| 露出奶头的视频| 亚洲成人免费电影在线观看| 99久久综合精品五月天人人| 色综合站精品国产| 久久精品亚洲av国产电影网| 久久国产乱子伦精品免费另类| 99精品在免费线老司机午夜| 麻豆av在线久日| 亚洲国产精品sss在线观看 | 亚洲成人国产一区在线观看| 午夜91福利影院| 高清黄色对白视频在线免费看| 亚洲人成网站在线播放欧美日韩| 91国产中文字幕| 日韩欧美国产一区二区入口| 精品日产1卡2卡| 国产欧美日韩一区二区三| 50天的宝宝边吃奶边哭怎么回事| 视频区欧美日本亚洲| www日本在线高清视频| 黄片大片在线免费观看| 波多野结衣高清无吗| 成熟少妇高潮喷水视频| 亚洲av美国av| 韩国av一区二区三区四区|