• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Error-based observer control of an optic-electro tracking control system

    2020-12-11 00:46:00XuTianrongRuanYongZhaoZhiqiangWangZongyouTangTao
    光電工程 2020年11期
    關(guān)鍵詞:觀測(cè)器中國科學(xué)院濾波器

    Xu Tianrong, Ruan Yong, Zhao Zhiqiang,Wang Zongyou, Tang Tao*

    Error-based observer control of an optic-electro tracking control system

    Xu Tianrong1,2,3, Ruan Yong1,2, Zhao Zhiqiang1,2,Wang Zongyou1,2, Tang Tao1,2,3*

    1Key Laboratory of Beam Control, Chinese Academy of Sciences, Chengdu, Sichuan 610209, China;2Institute of Optics and Electronics, Chinese Academy of Sciences, Chengdu, Sichuan 610209, China;3University of Chinese Academy of Sciences, Beijing 100049, China

    For an optic-electro tracking system, an image sensor such as charge-coupled device (CCD) cannot provide target trajectories except for line-of-sight (LOS) error. Thus, it is difficult to achieve direct feedforward control for the tracking loop, which determines the closed-loop performance. An error-based observer (EBO) control of a CCD-based tracking loop is proposed to enhance the tracking performance for an optic-electro tracking system on moving platforms. The EBO control can be plugged into an existing feedback control loop. The closed-loop performance of the CCD-based control system can be improved by optimizing the feedforward filter(). Because this EBO method relies only on the final LOS error, it benefits the control system both in disturbance suppression and target tracking and it can be applied to an optic-electro tracking system in moving platforms as well as in ground platforms. An optimal31filter rather than a low-pass filter is improved for this EBO control. Simulations and experiments show that the tracking performance is effectively enhanced in low frequency compared to traditional control methods.

    line of sight error; moving platforms; feedforward control; optic-electro tracking systems

    1 Introduction

    Image sensors (such as charge-coupled device, CCD) are usually used to detect the line of sight (LOS) error in an optic-electro tracking control system, which is used for monitoring and positioning as well as tracking an interesting target. High control bandwidth facilitates good closed-loop performance. However, sampling frequency and time delay of CCD (mainly include exposure time, image process time and transmit time) are the main factors that restrict tracking bandwidth, resulting in reducing tracking accuracy. How to improve closed-loop performance and compensate time delay of CCD with a limited sampling frequency is important research. Using a high-gain feedback controller or improving the order of the control system is a common method, but it has an impact on the dynamic performance of the system, even lead to instability[1-4]. Experiments verified that feedforward control is an effective way to improve tracking performance. Theoretically, it has little influence on closed-loop stability due to its independence from the feedback loop. However, an image sensor such as CCD cannot provide target trajectories except LOS error, which leads to difficulty in achieving feedforward control for image tracking loop[5-6]. A direct feedback loop is still utilized to control LOS in many cases. In addition, motivated by application requirements, more and more optoelectronic tracking systems are equipped on moving vehicles such as ships, aircraft, and spacecraft for diverse missions which makes optical tracking devices more flexible. But this change also brings problems for control systems. The carrier motion at different frequencies such as the sway of the ship or vibration of the satellite will produce direct influence on the line of sight which may affect the tracking performance or even lead to instability. Many methods have been developed to isolate the line of sight from carrier motion[7-12]. In most cases, extra inertial sensors are needed to detect the carrier motion relative to inertial space. It brings difficulties to the implementation of some methods that can be utilized on ground tracking. For example, a method based on data fusion, which combines the line of sight error and angular position to generate feedforward control[13]. It cannot be directly applied to a moving platform, because the platform motion cannot be measured by the non-inertial encoder it used. Extra sensor is necessary. When an inertial measurement unit (IMU) is added, the effectiveness is affected by the attitude accuracy. Generally, the effectiveness of generating feedforward control through data fusion depends on the effectiveness of the synthesized feedforward signal which is determined by the precision of the sensors and the prediction accuracy[14-16]. Inaccurate feedforward signal willreduce the tracking accuracy and even lead to system instability. Based on this situation, an error-based observer (EBO) control of a CCD-based tracking loop is proposed to enhance the tracking performance on the moving platform. The EBO control method does not need extra sensors. It combines the LOS error and output of the position controller to achieve high gain, forwarding into the original closed-loop control system to achieve equivalent feed forward control. Simulations and experiments verified that the EBO control benefits the control system both in disturbance suppression and target tracking. It is based on Youla–Kuˇcera parameterization and its performance can be optimized by the feedforward filter Q. Section 2 gives a detailed analysis of a classical feedforward control and the error-based observer control (EBO) on the moving platform, and makes some remarks on the advantage of the EBO method as compared to the classical feedback control. Section 3 analyzes the system stability and focuses on the parameter design, mainly including the proportional-integral (PI) controller and the low-pass filter(). Section 4 presents the simulation results and the experiment results. Concluding remarks are presented in Section 5.

    2 Analysis of control methodologies

    2.1 Classical controller for the moving platform

    On the moving platform, pointing control is usually implemented via two servo loops, the outer tracking or pointing loop to control LOS error and an inner stabilization or rate loop to isolates the LOS from platform motion. The stabilization loop bandwidth must be high enough to reject the platform disturbance spectrum[17-18]. A classical feedback control structure of Fig. 1 is shown in Fig. 2 where inertial sensors such as gyros feedback the carrier motion to isolate the LOS from platform motion and an image sensor such as CCD detects the LOS error to achieve object tracking.0is the time-delay of CCD,p() is the position controller,v() is the velocity controller,v() is the control plant,() is the target trajectory, and() represents the outer disturbance. The characteristic of the controlled plant for the outer loop is

    Fig. 1 The basic structure of the control system based on CCD vision tracking

    Fig. 2 Con?guration of classical feedback control on the moving platform

    When the velocity closed loop has a much higher bandwidth than that of the position closed loop,v()v()/[1+v()v()]≈1 andp()≈1/are reasonable to some extent. In this case, the outer position loop plays a decisive part in tracking performance. The transform functionorgand sensitivity functionorgof the control scheme is given by Eqs. (2) and (3).

    It is not hard to find thatorg+org=1, which means that there is a conflict between tracking performance and disturbance rejection. Obviously, increasing the gain ofp() which means a higher bandwidth is an effective way to improve the tacking performance. But, the tracking bandwidth of the actual optical-electro devices cannot be increased unlimited due to the mechanical resonance and system noise. Besides, high gain may affect the robustness of the control system. From another point, it is meaningless to increasing the bandwidth without limit when the time delay of CCD cannot be cut to zero[19].

    A classical feedforward control scheme for object tracking and disturbance rejection is shown in Fig. 3 where0is the time delay of CCD,() is the position controller,() is the control plant,() is the target trajectory,() is the outer disturbance, and() andf() are the feedforward controllers for object tracking and disturbance suppression, respectively. The transfer function of the control scheme is given by:

    Obviously, whenf()=-1/(),() is independent of(), and when()=1/(),()=() which means perfect real-time tracking. However, it cannot be realized in most cases. First of all, trackers like CCD could not detect the trajectory() except for LOS error(). Second, the accurate detection of() is not easy to realize. Besides, inaccuracy detection of() especially in high frequency also having an influence. Recovering the trajectory() by data fusion and velocity prediction are effective ways to achieve equivalent feedforward control. But some methods cannot be applied to the moving platform directly due to carrier motion and characteristic of sensors and its effectiveness relies on the effectiveness of the synthesized feedforward signals which is determined by the precision of the sensors and the prediction accuracy. Inaccurate feedforward signal will reduce the tracking accuracy and even lead to system instability. So, there is a need of a new control method that can be applied to the moving platform and do not rely excessively on extra sensors.

    Fig. 3 A classical feedforward control scheme

    2.2 The error-based observer (EBO) control method

    An error-based observer (EBO) control method which is based on Youla–Kuˇcera parameterization is shown in Fig. 4. It feedforwards the combination of the LOS error from the CCD and the controller output into the originally closed-loop control system.0is the time-delay of CCD,() is the control plant,() is the position controller,-1() is the inverse of(),() is a low-pass filter,() represents the target trajectory,() is the LOS error from the CCD, and() is the outer disturbance which is small when the system in inertial stable status through stabilization control of the inner loop. The sensitive functions for trajectory() and disturbance() of Fig. 4 are given as follow:

    3 Optimal design of parameter

    where

    Fig. 4 The error-based observer (EBO) control scheme

    The sensitive function decides that() has to be a low-pass filter. A general form of low-pass filters is generally given by[3]:

    here,、are positive integer. It is easy to know excessive order and bandwidth of() can lead to destruction of the stability condition by plant uncertainty and phase loss in the high-frequency region. To meet the requirement of robustness condition which is affected by phase margin and magnitude margin of the open-loop transfer function, a Q31-filter with an appropriate parameteris a compromise solution. When=3,

    An equivalent controllereq() of Fig. 4 is

    After mathematical calculations of Eq. (7), we find it is not easy to satisfym>π/4 andm>6 dB strictly. Several groups of parameters that can satisfy the requirement of robustness condition is shown in Table 1. In order to get better performance,=0.05 is finally chosen.

    4 Simulations and experiments

    4.1 Simulation results

    According to the previous parameter design, the bode response of the transfer function and the sensitive function of classical feedback control and the EBO method is shown in Figs. 6(a) and 6(b) respectively. It is easy to find that although the tracking bandwidth is not improved with the EBO method, it enhances the tracking performance in the low frequency compared to the classical feedback control (CFC) mode. The EBO control mode with1()=1/(0.1+1) improves below 1 Hz compared to classical feedback control. The EBO control mode with an optimal31() with=0.05 is more efficient in frequencies lower than 1 Hz. The experimental verification is depicted in the next section.

    Fig. 5 Bode diagram of 1-Q(jω)e-0.03jω

    Table 1 Comparison of gain margin and phase margin among different methods

    Fig. 6 Bode response of the closed-loop transfer function (a) and sensitivity function (b) from simulations

    4.2 Experiment results

    The experimental system is shown in Fig. 7. A CCD is used to detect the LOS error with a sampling frequency of 100 Hz. Laser light and FSM2 simulate the target trajectory, FSM1 is the tracking controller and FSM3 is used to simulate the carrier motion. Here, we set the carrier motion=0, which means that FSM3 is fixed. It is reasonable, because FSM3 and FSM2 have the same effect on LOS and it does not matter whether FSM2 or FSM3 generate carrier motion.Besides, according to the control mode analysis in chapter 2, when the system is in the inertial stable status through stabilization control of the inner loop, the remaining disturbance can be neglected compared with the target moving. The target trajectory() is a sinusoidal signal with an amplitude of 0.5 V, which can be expressed as=sin(). The experiment only presents a single axis of the azimuth due to the similarity. We record the LOS error respectively using three different control strategies when=0.05 Hz, 0.1 Hz, 0.5 Hz, and 1 Hz which are depicted in Figs. 8(a)~8(d), respectively. It is obvious that the EBO method has obvious improvement in frequencies lower than 1 Hz compared to classical feedback control, showing an improvement of 8 dB at 1 Hz and 15 dB at 0.05 Hz. The optimal filter()=31() is more efficient than a first-order low-pass filter1() which is consistent with simulation results. But the result of the EBO method with1and31is hard to distinguish and the improvement is not as good as simulation results in frequencies lower than 0.1 Hz, which is a result of the mechanical resonance and system noise.

    Fig. 7 Con?guration of experimental platform

    5 Conclusions

    In this paper, an error-based observer (EBO) control method of a CCD-based tracking loop is proposed to enhance the closed-loop performance. This EBO method combines the line-of-sight error and control output to generate a high gain observer. It can be plugged into the existing feedback control loop and the closed-loop performance can be improved by optimizing the feedforward filter(). Simulations and experiments verify that this EBO control method can effectively enhance the closed-loop performance in the low frequency in comparison with the classical control mode and an optimal31filter is more effective than a first-order low pass filter in this EBO control mode. In fact, better performance in the low frequency is more important than a higher bandwidth in many cases especially when the target is far from the tracking device. It is valuable for engineering applications. It is meaningful to explore other Q filters that can be applied to different scenarios. A further experiment on other moving platforms such as gimbals is also needed to verify the method.

    [1] Beals G A, Crum R C, Dougherty H J,. Hubble space telescope precision pointing control system[J]., 1988, 11(2): 119–123.

    [2] Wang C C, Hu L F, Wang Y K,. Time delay compensation method for tip-tilt control in adaptive optics system[J]., 2015, 54(11): 3383–3388.

    [3] Esmaeili M, Shirvani M. Time delay compensation by A PID controller[C]//, Shah Alam, Malaysia, 2011.

    [4] Natori K, Tsuji T, Ohnishi K,. Time-delay compensation by communication disturbance observer for bilateral teleoperation under time-varying delay[J]., 2010, 57(3): 1050–1062.

    [5] Huang Y M, Ma J G, Fu C Y. Velocity-forecast filters of theodolite[J]., 2003, 5082: 87–93.

    [6] Wei Z H. Feedforward control strategies for tracking performance in machine axes[J]., 2005, 18(1): 5–9.

    [7] Hurák Z, ?ezá? M. Combined line-of-sight inertial stabilization and visual tracking: Application to an airborne camera platform[C]//, Shanghai, 2009.

    [8] Deng C, Tang T, Mao Y,. Enhanced disturbance observer based on acceleration measurement for fast steering mirror systems[J]., 2017, 9(3): 6802211.

    [9] Wu C, Lin Z. Disturbance observer based control system design for inertially stabilized platform[J]., 2012, 8542: 85420T.

    [10] Tian J, Yang W S, Peng Z M,. Inertial sensor-based multiloop control of fast steering mirror for line of sight stabilization[J]., 2016, 55(11): 111602.

    [11] Luo Y, Huang Y M, Deng C,. Combining a disturbance observer with triple-loop control based on MEMS accelerometers for line-of-sight stabilization[J]., 2017, 17(11): 2648.

    [12] Luo Y, Mao Y, Ren W,. Multiple fusion based on the CCD and MEMS accelerometer for the low-cost multi-loop optoelectronic system control[J]., 2018, 18(7): 2153.

    [13] Tang T, Cai H X, Huang Y M,. Combined line-of-sight error and angular position to generate feedforward control for a charge-coupled device–based tracking loop[J]., 2015, 54(10): 105107.

    [14] Tang T, Niu S X, Ma J G,. A review on control methodologies of disturbance rejections in optical telescope[J]., 2019, 2(10): 190011.

    [15] Yan L J, Huang Y M, Zhang Y H,. Research on the application of RANSAC algorithm in electro-optical tracking of space targets[J]., 2019, 46(11): 180540.

    嚴(yán)靈杰, 黃永梅, 張涯輝, 等. RANSAC算法在空間目標(biāo)光電跟蹤中的應(yīng)用研究[J]. 光電工程, 2019, 46(11): 180540.

    [16] Tang T, Tian J, Zhong D J,. Combining charge couple devices and rate sensors for the feedforward control system of a charge coupled device tracking loop[J]., 2016, 16(7): 968.

    [17] Kennedy P J, Kennedy R L. Direct versus indirect line of sight (LOS) stabilization[J]., 2003, 11(1): 3–15.

    [18] Masten M K. Inertially stabilized platforms for optical imaging systems[J]., 2008, 28(1): 47–64.

    [19] Zhang W L, Tomizuka M, Wei Y H,. Robust time delay compensation in a wireless motion control system with double disturbance observers[C]//, Chicago, 2015: 5294–5299.

    Error-based observer control of an optic-electro tracking control system

    Xu Tianrong1,2,3, Ruan Yong1,2, Zhao Zhiqiang1,2, Wang Zongyou1,2, Tang Tao1,2,3*

    1Key Laboratory of Beam Control, Chinese Academy of Sciences, Chengdu, Sichuan 610209, China;2Institute of Optics and Electronics, Chinese Academy of Sciences, Chengdu, Sichuan 610209, China;3University of Chinese Academy of Sciences, Beijing 100049, China

    The error-based observer control (EBO) structure

    Overview:For an optic-electro tracking system, image sensors (such as CCD) are usually used for monitoring and positioning as well as tracking a target, but they can only detect line-of-sight (LOS) error and cannot provide target trajectories. Therefore, it brings difficulties to the application of feedforward control which is an effective way to improve tracking performance. As a result, recovering the target trajectory through data fusion is an effective way. However, it needs extra sensors and the effectiveness of the equivalent feedforward control method is based on the accuracy of the synthesized feedforward signal which is affected by the measurement accuracy of the sensor and the prediction accuracy. Inaccurate feedforward signal has no improvement in tracking performance and even leads to instability of the control system. When it comes to tracking system on a moving platform, an inertial measurement unit (IMU) is necessary. The attitude accuracy determined by the IMU always plays an import part in tracking performance. Therefore, the equivalent feedforward control method based on data fusion is not applicable in many cases. For traditional feedback control, high control bandwidth facilitates good closed-loop performance. However, the sampling frequency and time delay of the image sensor are the main factors that restrict tracking bandwidth. Simply using a high-gain feedback controller or improving the order of the control system will decrease the dynamic performance of the system, leading to instability. The error-based observer (EBO) control of an image-based tracking loop is proposed to enhance tracking performance for an optic-electro tracking system on the moving platform. This EBO method combines the LOS error and control output to achieve high gain. The equivalent feedforward control can be plugged into the existing feedback control loop. The closed-loop performance of the image-based control system can be improved by optimizing the feedforward filter(). Since this EBO method does not need extra sensors and it benefits the control system in both disturbance suppression and target tracking, it can be applied to both moving platforms and ground platforms. The control structure decided that() has to be a low-pass filter. In this paper, an optimal three-order31filter rather than a low-pass filter is improved for this EBO control. Simulations and experiments show that the tracking performance of the EBO method is effectively enhanced in the low frequency compared to traditional control methods and an optimal31filter is more efficient than a simple first-order low-pass filter. This improvement is meaningful because better performance in the low frequency is more important than in the high frequency for many cases.

    Citation: Xu T R, Ruan Y, Zhao Z Q,. Error-based observer control of an optic-electro tracking control system[J]., 2020,47(11): 190713

    基于誤差的觀測(cè)器在光電跟蹤系統(tǒng)中的應(yīng)用

    徐田榮1,2,3,阮 勇1,2,趙志強(qiáng)1,2,王宗友1,2,唐 濤1,2,3*

    1中國科學(xué)院光束控制重點(diǎn)實(shí)驗(yàn)室,四川 成都 610209;2中國科學(xué)院光電技術(shù)研究所,四川 成都 610209;3中國科學(xué)院大學(xué),北京 100049

    對(duì)于光電跟蹤系統(tǒng)來說,圖像傳感器例如電荷耦合器件(CCD)只能夠探測(cè)脫靶量即偏差信息,而無法得到目標(biāo)運(yùn)動(dòng)軌跡,所以,大多數(shù)情況下在目標(biāo)跟蹤回路不能直接實(shí)現(xiàn)前饋控制,這限制了系統(tǒng)的閉環(huán)跟蹤性能。本文采用了一種基于誤差觀測(cè)器的等效前饋控制方法來提高運(yùn)動(dòng)平臺(tái)光電跟蹤系統(tǒng)的跟蹤性能。該方法是在原有的反饋控制回路的基礎(chǔ)上加入一個(gè)觀測(cè)前饋通路,通過優(yōu)化前饋濾波器提高閉環(huán)性能。由于是基于最終的視覺誤差的觀測(cè),該方法對(duì)目標(biāo)跟蹤和擾動(dòng)抑制同時(shí)起作用,既可以應(yīng)用到地基跟蹤也可以應(yīng)用于運(yùn)動(dòng)平臺(tái)上。前饋濾波器沒有采用簡單的一階低通濾波器而是選擇31濾波器。仿真和實(shí)驗(yàn)表明,與傳統(tǒng)控制方法相比,這種基于誤差觀測(cè)器的控制方法能夠有效提高系統(tǒng)的低頻跟蹤性能。

    視軸偏差;運(yùn)動(dòng)平臺(tái);前饋控制;光電跟蹤系統(tǒng)

    TP273

    A

    徐田榮,阮勇,趙志強(qiáng),等. 基于誤差的觀測(cè)器在光電跟蹤系統(tǒng)中的應(yīng)用[J]. 光電工程,2020,47(11): 190713

    2019-11-27;

    2020-01-14

    中國科學(xué)院青促會(huì)基金資助項(xiàng)目

    徐田榮(1994-),女,碩士研究生,主要從事運(yùn)動(dòng)平臺(tái)光電跟蹤系統(tǒng)前饋控制技術(shù)。E-mail:1160255376@qq.com

    唐濤(1980-),男,博士,研究員,主要從事光電工程領(lǐng)域中控制理論以及工程應(yīng)用的研究。E-mail:taotang@ioe.ac.cn

    : Xu T R, Ruan Y, Zhao Z Q,Error-based observer control of an optic-electro tracking control system[J]., 2020, 47(11): 190713

    10.12086/oee.2020.190713

    Supported by Youth Innovation Promotion Association of Chinese Academy of Sciences

    * E-mail: prettang@gmail.com

    猜你喜歡
    觀測(cè)器中國科學(xué)院濾波器
    基于無擾濾波器和AED-ADT的無擾切換控制
    《中國科學(xué)院院刊》新媒體
    中國科學(xué)院院士
    ——李振聲
    祝賀戴永久編委當(dāng)選中國科學(xué)院院
    從濾波器理解卷積
    電子制作(2019年11期)2019-07-04 00:34:38
    開關(guān)電源EMI濾波器的應(yīng)用方法探討
    電子制作(2018年16期)2018-09-26 03:26:50
    《中國科學(xué)院院刊》創(chuàng)刊30周年
    基于TMS320C6678的SAR方位向預(yù)濾波器的并行實(shí)現(xiàn)
    基于觀測(cè)器的列車網(wǎng)絡(luò)控制
    基于非線性未知輸入觀測(cè)器的航天器故障診斷
    色吧在线观看| 最新中文字幕久久久久| 一区二区三区国产精品乱码| 国产亚洲精品综合一区在线观看| 好男人电影高清在线观看| 亚洲欧美日韩无卡精品| 国产成年人精品一区二区| 国产亚洲欧美在线一区二区| 99国产精品一区二区蜜桃av| 毛片女人毛片| 真实男女啪啪啪动态图| 好看av亚洲va欧美ⅴa在| 国产精品国产高清国产av| 国产激情欧美一区二区| 天天一区二区日本电影三级| 老汉色∧v一级毛片| 国产免费一级a男人的天堂| 一进一出抽搐gif免费好疼| 成人三级黄色视频| 日韩欧美三级三区| 亚洲精品国产精品久久久不卡| 人人妻人人澡欧美一区二区| 欧美色视频一区免费| 亚洲成人久久性| 亚洲国产精品久久男人天堂| 深夜精品福利| 在线播放无遮挡| 亚洲av电影在线进入| 欧美+亚洲+日韩+国产| 国产激情欧美一区二区| 午夜精品久久久久久毛片777| 露出奶头的视频| 少妇丰满av| 搡老熟女国产l中国老女人| 欧美乱妇无乱码| 一个人看的www免费观看视频| 俺也久久电影网| 午夜影院日韩av| 在线国产一区二区在线| 国产单亲对白刺激| 免费大片18禁| avwww免费| 国产精品一区二区三区四区免费观看 | 91在线精品国自产拍蜜月 | 亚洲激情在线av| 亚洲色图av天堂| 白带黄色成豆腐渣| 两个人看的免费小视频| 久久久久久久午夜电影| 免费一级毛片在线播放高清视频| 国产精品 国内视频| 国产精品久久久久久精品电影| 国产毛片a区久久久久| 精品日产1卡2卡| 欧美成狂野欧美在线观看| 嫩草影院入口| av女优亚洲男人天堂| 亚洲一区高清亚洲精品| 在线观看日韩欧美| 亚洲专区中文字幕在线| 两人在一起打扑克的视频| 69人妻影院| 久久精品影院6| 女人高潮潮喷娇喘18禁视频| 一区福利在线观看| 在线观看美女被高潮喷水网站 | 亚洲18禁久久av| 美女高潮喷水抽搐中文字幕| 丝袜美腿在线中文| 国产单亲对白刺激| 在线观看舔阴道视频| 国产视频一区二区在线看| 女人高潮潮喷娇喘18禁视频| 舔av片在线| 国产亚洲av嫩草精品影院| 又爽又黄无遮挡网站| 欧美一级a爱片免费观看看| 99国产精品一区二区三区| 亚洲成人久久性| 国产精品av视频在线免费观看| 亚洲无线在线观看| 99精品久久久久人妻精品| 内地一区二区视频在线| 高潮久久久久久久久久久不卡| 中文字幕人妻熟人妻熟丝袜美 | 国产精品av视频在线免费观看| 一进一出好大好爽视频| 亚洲欧美日韩卡通动漫| 三级毛片av免费| 最近在线观看免费完整版| 别揉我奶头~嗯~啊~动态视频| 国产成年人精品一区二区| a级一级毛片免费在线观看| 狠狠狠狠99中文字幕| 有码 亚洲区| 久久久久久久久久黄片| 色综合亚洲欧美另类图片| 村上凉子中文字幕在线| 国产精品日韩av在线免费观看| 18禁黄网站禁片免费观看直播| 少妇的逼好多水| 日韩av在线大香蕉| 亚洲成人久久爱视频| av黄色大香蕉| 小说图片视频综合网站| 无遮挡黄片免费观看| 搡老岳熟女国产| 日韩av在线大香蕉| 91麻豆av在线| 亚洲色图av天堂| 无遮挡黄片免费观看| 免费高清视频大片| 欧美成狂野欧美在线观看| 美女被艹到高潮喷水动态| 亚洲成人免费电影在线观看| 此物有八面人人有两片| 丰满的人妻完整版| 国产亚洲精品一区二区www| 成人性生交大片免费视频hd| 免费人成视频x8x8入口观看| 亚洲五月天丁香| 国产一区二区亚洲精品在线观看| 精华霜和精华液先用哪个| 在线观看av片永久免费下载| 又黄又粗又硬又大视频| 在线播放无遮挡| 级片在线观看| 麻豆一二三区av精品| 午夜两性在线视频| 色噜噜av男人的天堂激情| 亚洲性夜色夜夜综合| 狂野欧美白嫩少妇大欣赏| 午夜精品一区二区三区免费看| 精品福利观看| 亚洲精品国产精品久久久不卡| 青草久久国产| 香蕉久久夜色| 美女免费视频网站| 色播亚洲综合网| 亚洲最大成人手机在线| 国产午夜精品论理片| 午夜福利高清视频| 国产欧美日韩精品亚洲av| 十八禁人妻一区二区| 国内精品久久久久久久电影| 国产精品久久电影中文字幕| 一区二区三区激情视频| 精品国产三级普通话版| 久久久久国内视频| 国产 一区 欧美 日韩| 白带黄色成豆腐渣| 黄片小视频在线播放| 观看美女的网站| 国产中年淑女户外野战色| 一级毛片女人18水好多| 全区人妻精品视频| 日本精品一区二区三区蜜桃| 欧美色视频一区免费| 国产精品一区二区免费欧美| 国产高清视频在线播放一区| 综合色av麻豆| 精品一区二区三区视频在线 | 成人av在线播放网站| www.熟女人妻精品国产| 午夜激情欧美在线| 欧美bdsm另类| 久久香蕉国产精品| 午夜精品久久久久久毛片777| av黄色大香蕉| 国产精品国产高清国产av| 精品人妻1区二区| 中文字幕人妻丝袜一区二区| 国产精华一区二区三区| 亚洲在线自拍视频| 一区二区三区激情视频| 床上黄色一级片| 嫁个100分男人电影在线观看| 国产精品久久电影中文字幕| 一区二区三区激情视频| 99精品欧美一区二区三区四区| 一夜夜www| 国产高清三级在线| 动漫黄色视频在线观看| 91久久精品国产一区二区成人 | 亚洲国产日韩欧美精品在线观看 | 亚洲精品影视一区二区三区av| x7x7x7水蜜桃| 中文亚洲av片在线观看爽| 99久久精品热视频| 午夜福利视频1000在线观看| 午夜日韩欧美国产| 一a级毛片在线观看| 亚洲aⅴ乱码一区二区在线播放| 免费看日本二区| 日本熟妇午夜| 亚洲内射少妇av| 黄色片一级片一级黄色片| 看黄色毛片网站| 好男人电影高清在线观看| 久久久久久大精品| 国产成人av教育| 看片在线看免费视频| av天堂在线播放| 亚洲狠狠婷婷综合久久图片| 蜜桃亚洲精品一区二区三区| h日本视频在线播放| 久久这里只有精品中国| 美女cb高潮喷水在线观看| 亚洲人成网站高清观看| 身体一侧抽搐| 亚洲18禁久久av| 亚洲av免费高清在线观看| 国产成人a区在线观看| 熟女电影av网| 九九热线精品视视频播放| 国产麻豆成人av免费视频| 一级毛片女人18水好多| 成人av一区二区三区在线看| 久久久久久久午夜电影| 麻豆成人午夜福利视频| 欧美精品啪啪一区二区三区| 免费av毛片视频| 桃色一区二区三区在线观看| 少妇熟女aⅴ在线视频| 一级a爱片免费观看的视频| 欧美日韩乱码在线| 欧美黄色淫秽网站| 国产高清videossex| a级毛片a级免费在线| 床上黄色一级片| 亚洲性夜色夜夜综合| 少妇裸体淫交视频免费看高清| 欧美成人一区二区免费高清观看| 日韩有码中文字幕| 黄色丝袜av网址大全| 国产高清三级在线| 午夜精品一区二区三区免费看| 亚洲成av人片在线播放无| 欧美大码av| 欧美+日韩+精品| 久久国产精品影院| 亚洲精品一区av在线观看| 男女下面进入的视频免费午夜| 亚洲国产欧美人成| 精品欧美国产一区二区三| 欧美国产日韩亚洲一区| 国产精品乱码一区二三区的特点| 老熟妇仑乱视频hdxx| 日韩欧美国产一区二区入口| 三级国产精品欧美在线观看| 日韩 欧美 亚洲 中文字幕| 丰满乱子伦码专区| 十八禁人妻一区二区| 99久久无色码亚洲精品果冻| 十八禁人妻一区二区| 免费一级毛片在线播放高清视频| 亚洲电影在线观看av| 免费看a级黄色片| 美女黄网站色视频| 老鸭窝网址在线观看| 久久久久国内视频| 两人在一起打扑克的视频| 欧美大码av| 小蜜桃在线观看免费完整版高清| 国产精品亚洲美女久久久| 国产精品久久久久久久电影 | 免费看美女性在线毛片视频| 成熟少妇高潮喷水视频| 一区二区三区激情视频| 精品国产美女av久久久久小说| 午夜福利在线观看吧| xxx96com| 午夜福利18| 国产国拍精品亚洲av在线观看 | 免费一级毛片在线播放高清视频| 女人高潮潮喷娇喘18禁视频| 老鸭窝网址在线观看| 久久久久精品国产欧美久久久| 国产精品一区二区三区四区免费观看 | 国产精品电影一区二区三区| eeuss影院久久| 色精品久久人妻99蜜桃| 精品国内亚洲2022精品成人| 欧美+日韩+精品| 亚洲欧美精品综合久久99| 国产成人av教育| 精品一区二区三区av网在线观看| av中文乱码字幕在线| av视频在线观看入口| 中文字幕人妻熟人妻熟丝袜美 | 高清日韩中文字幕在线| 午夜激情福利司机影院| 精品福利观看| 亚洲欧美日韩无卡精品| 国产精品嫩草影院av在线观看 | 99久久精品国产亚洲精品| 熟妇人妻久久中文字幕3abv| 久久亚洲精品不卡| tocl精华| 欧美日韩国产亚洲二区| www.色视频.com| 99在线视频只有这里精品首页| 欧美高清成人免费视频www| 中文字幕人成人乱码亚洲影| 男人的好看免费观看在线视频| 少妇的丰满在线观看| 午夜两性在线视频| 俄罗斯特黄特色一大片| 国产av一区在线观看免费| 免费在线观看影片大全网站| 少妇裸体淫交视频免费看高清| 久久伊人香网站| 变态另类成人亚洲欧美熟女| 国产精品精品国产色婷婷| 又爽又黄无遮挡网站| 亚洲专区国产一区二区| 亚洲熟妇熟女久久| 首页视频小说图片口味搜索| 国产黄片美女视频| 九色成人免费人妻av| 欧美色欧美亚洲另类二区| 99久久九九国产精品国产免费| 久久久久久久久大av| 久久九九热精品免费| 成熟少妇高潮喷水视频| 99国产精品一区二区三区| 婷婷六月久久综合丁香| 一级黄片播放器| 一本综合久久免费| 88av欧美| 91麻豆av在线| 欧美一区二区精品小视频在线| 制服丝袜大香蕉在线| 日本在线视频免费播放| 亚洲 国产 在线| 久久久久久久精品吃奶| 高潮久久久久久久久久久不卡| av中文乱码字幕在线| 日本 欧美在线| 免费看日本二区| 精品日产1卡2卡| 观看免费一级毛片| 精品人妻1区二区| 成人无遮挡网站| 99精品在免费线老司机午夜| 无遮挡黄片免费观看| 99riav亚洲国产免费| 99热精品在线国产| 精品久久久久久,| 男女视频在线观看网站免费| 国产精品一区二区免费欧美| eeuss影院久久| 给我免费播放毛片高清在线观看| 99精品在免费线老司机午夜| av在线蜜桃| 啦啦啦免费观看视频1| 久久午夜亚洲精品久久| 老司机在亚洲福利影院| 国产亚洲欧美在线一区二区| 欧美黄色淫秽网站| 老熟妇仑乱视频hdxx| 亚洲黑人精品在线| 精品久久久久久久人妻蜜臀av| 国产伦精品一区二区三区视频9 | 亚洲精品色激情综合| 午夜福利成人在线免费观看| 一a级毛片在线观看| 在线免费观看不下载黄p国产 | 亚洲av电影不卡..在线观看| 亚洲一区二区三区色噜噜| 午夜亚洲福利在线播放| 99热精品在线国产| 精品国产美女av久久久久小说| 国产中年淑女户外野战色| h日本视频在线播放| 亚洲国产欧美人成| 法律面前人人平等表现在哪些方面| 精品不卡国产一区二区三区| 制服丝袜大香蕉在线| 怎么达到女性高潮| 色在线成人网| 一进一出抽搐动态| 九九在线视频观看精品| 十八禁人妻一区二区| 亚洲国产日韩欧美精品在线观看 | 成人欧美大片| 久久精品夜夜夜夜夜久久蜜豆| 三级毛片av免费| 黄色成人免费大全| 高清毛片免费观看视频网站| 欧美激情久久久久久爽电影| 国产精品爽爽va在线观看网站| 午夜福利成人在线免费观看| 亚洲精品在线观看二区| 久99久视频精品免费| 欧美精品啪啪一区二区三区| 嫩草影院精品99| 亚洲人成网站高清观看| 久久国产乱子伦精品免费另类| 丝袜美腿在线中文| 国产亚洲精品综合一区在线观看| 天堂√8在线中文| 日韩欧美在线二视频| 1000部很黄的大片| 午夜精品久久久久久毛片777| 波野结衣二区三区在线 | 免费人成视频x8x8入口观看| 国产伦在线观看视频一区| 免费电影在线观看免费观看| 午夜福利成人在线免费观看| 午夜影院日韩av| 99精品久久久久人妻精品| 日本成人三级电影网站| 免费人成视频x8x8入口观看| 中文在线观看免费www的网站| av天堂在线播放| 18美女黄网站色大片免费观看| 18+在线观看网站| 免费电影在线观看免费观看| 色综合欧美亚洲国产小说| 中文字幕av成人在线电影| 午夜老司机福利剧场| 国产午夜精品论理片| 国产精品久久久久久精品电影| 俺也久久电影网| 亚洲人成网站在线播| 欧美一级a爱片免费观看看| 人妻夜夜爽99麻豆av| 免费看美女性在线毛片视频| 美女被艹到高潮喷水动态| 99精品欧美一区二区三区四区| 亚洲国产中文字幕在线视频| 国产午夜精品久久久久久一区二区三区 | 亚洲欧美激情综合另类| 亚洲国产精品999在线| 色av中文字幕| 色综合亚洲欧美另类图片| 国产精品久久电影中文字幕| 免费电影在线观看免费观看| 亚洲在线自拍视频| 天天添夜夜摸| 色老头精品视频在线观看| 嫩草影院入口| 99久久久亚洲精品蜜臀av| 国内精品久久久久久久电影| 少妇丰满av| 最近最新中文字幕大全电影3| 亚洲熟妇中文字幕五十中出| 亚洲午夜理论影院| 一个人观看的视频www高清免费观看| 老司机在亚洲福利影院| 真人一进一出gif抽搐免费| 欧美+亚洲+日韩+国产| 国产欧美日韩一区二区精品| 亚洲专区国产一区二区| 成人午夜高清在线视频| 精品久久久久久久久久久久久| 波多野结衣高清无吗| 国模一区二区三区四区视频| 在线国产一区二区在线| 九色成人免费人妻av| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 麻豆成人午夜福利视频| 两个人的视频大全免费| 免费高清视频大片| svipshipincom国产片| 久久人人精品亚洲av| 国产淫片久久久久久久久 | 99久国产av精品| 日韩欧美国产一区二区入口| 天美传媒精品一区二区| 亚洲av电影不卡..在线观看| 国产一区二区三区在线臀色熟女| aaaaa片日本免费| 好看av亚洲va欧美ⅴa在| avwww免费| 久久香蕉国产精品| 色av中文字幕| 老汉色∧v一级毛片| 天天添夜夜摸| 亚洲国产精品久久男人天堂| 亚洲av五月六月丁香网| 男女床上黄色一级片免费看| 最近在线观看免费完整版| 99久久99久久久精品蜜桃| 一区福利在线观看| 亚洲五月婷婷丁香| 99热精品在线国产| 3wmmmm亚洲av在线观看| 禁无遮挡网站| 中文字幕人妻熟人妻熟丝袜美 | 国产 一区 欧美 日韩| 香蕉久久夜色| 美女大奶头视频| 丝袜美腿在线中文| 看免费av毛片| 免费看a级黄色片| 最后的刺客免费高清国语| 窝窝影院91人妻| 欧美绝顶高潮抽搐喷水| 成人特级黄色片久久久久久久| www.色视频.com| 19禁男女啪啪无遮挡网站| 母亲3免费完整高清在线观看| 别揉我奶头~嗯~啊~动态视频| 看免费av毛片| 神马国产精品三级电影在线观看| 久久精品影院6| 欧美日韩福利视频一区二区| 99热这里只有是精品50| 国产一级毛片七仙女欲春2| or卡值多少钱| 久久久国产成人免费| 午夜久久久久精精品| 动漫黄色视频在线观看| 国产成人系列免费观看| 国内毛片毛片毛片毛片毛片| 可以在线观看毛片的网站| 亚洲av免费在线观看| 欧美中文日本在线观看视频| 精品一区二区三区人妻视频| 亚洲精品久久国产高清桃花| 变态另类成人亚洲欧美熟女| 观看美女的网站| 日韩欧美在线二视频| 久久精品国产自在天天线| 国产v大片淫在线免费观看| 在线视频色国产色| 国产97色在线日韩免费| 精品久久久久久久人妻蜜臀av| 国产成人福利小说| 99久久精品国产亚洲精品| 99国产极品粉嫩在线观看| 亚洲人与动物交配视频| 成人国产一区最新在线观看| 丝袜美腿在线中文| 又黄又粗又硬又大视频| 亚洲精品色激情综合| 99热这里只有是精品50| 高清日韩中文字幕在线| xxx96com| 男女床上黄色一级片免费看| 欧美丝袜亚洲另类 | 国产欧美日韩精品一区二区| 丰满乱子伦码专区| 亚洲国产欧美网| 19禁男女啪啪无遮挡网站| 国产欧美日韩精品一区二区| 国产av不卡久久| 欧洲精品卡2卡3卡4卡5卡区| 九九久久精品国产亚洲av麻豆| 午夜福利成人在线免费观看| www日本黄色视频网| 色综合欧美亚洲国产小说| 午夜福利高清视频| 久久久久国内视频| 老熟妇乱子伦视频在线观看| 男女视频在线观看网站免费| 亚洲精品一卡2卡三卡4卡5卡| 中亚洲国语对白在线视频| 免费无遮挡裸体视频| 69av精品久久久久久| 午夜日韩欧美国产| 精品久久久久久久毛片微露脸| 国产又黄又爽又无遮挡在线| 日日夜夜操网爽| 特级一级黄色大片| 国产免费av片在线观看野外av| 午夜精品久久久久久毛片777| 老司机深夜福利视频在线观看| 国产精品久久久久久精品电影| 亚洲男人的天堂狠狠| av欧美777| 成人18禁在线播放| 国产精品久久久人人做人人爽| 国产精品永久免费网站| 宅男免费午夜| 中文字幕久久专区| 亚洲av日韩精品久久久久久密| 中文资源天堂在线| 性色av乱码一区二区三区2| 免费看光身美女| 一夜夜www| 色老头精品视频在线观看| 久久精品91无色码中文字幕| 成人特级黄色片久久久久久久| 久久久国产成人免费| 欧美又色又爽又黄视频| 成人鲁丝片一二三区免费| 日本 av在线| 两个人看的免费小视频| 亚洲av熟女| 午夜福利在线在线| 真实男女啪啪啪动态图| 久久久久久久精品吃奶| 婷婷精品国产亚洲av在线| 真实男女啪啪啪动态图| 欧美zozozo另类| 婷婷精品国产亚洲av在线| 国内精品久久久久精免费| 免费人成视频x8x8入口观看| 女人高潮潮喷娇喘18禁视频| 一级毛片女人18水好多| 18美女黄网站色大片免费观看| 亚洲欧美日韩无卡精品| 国产激情偷乱视频一区二区| 一本久久中文字幕| 少妇丰满av| 欧美乱码精品一区二区三区| 亚洲国产色片| 草草在线视频免费看| 国产精品99久久久久久久久| 18禁黄网站禁片午夜丰满| 久久久久久久久久黄片| 网址你懂的国产日韩在线|