王兆耀,劉紅軍,2,胡瑞庚
(1.中國海洋大學(xué) 環(huán)境科學(xué)與工程學(xué)院,山東 青島 266100;2.山東省海洋環(huán)境地質(zhì)工程重點(diǎn)實(shí)驗(yàn)室,山東 青島 266100)
在分析水平受荷樁的響應(yīng)時(shí),常用到p-y 曲線法(McClelland et al,1958),其中p 代表土反力,y 代表位移。這種模型將樁側(cè)土體離散為沿深度分布的一系列非線性彈簧,假定各個(gè)彈簧之間相互獨(dú)立,其性質(zhì)可以用土反力-樁的位移曲線來描述,因此不同深度處的彈簧就可以用不同的p-y曲線描述。p-y 曲線法作為一種非線性分析方法,在幾十年的發(fā)展中不斷完善。國外學(xué)者M(jìn)atlock(1970)與Reese 等(1975)分別給出了軟黏土和硬黏土中的p-y 曲線構(gòu)造方法,Reese 等(1974)給出了砂土中p-y 曲線的表達(dá)式,美國石油協(xié)會(huì)API(1993)給出的p-y 曲線構(gòu)造方法在世界范圍內(nèi)都得到了廣泛的應(yīng)用。國內(nèi)的研究起步相對(duì)較晚,代表性工作有王惠初等(1991) 與章連洋等(1992)提出的p-y 曲線計(jì)算方法。表1 簡(jiǎn)要列舉了幾個(gè)經(jīng)典p-y 曲線模型,王成華等(2005)對(duì)靜力p-y 曲線的研究現(xiàn)狀做了詳細(xì)總結(jié),本文不再贅述。
與靜力荷載不同,跨海大橋、海上風(fēng)電、鉆井平臺(tái)等海洋工程中的樁基礎(chǔ)還承受波流等引起的循環(huán)荷載作用,對(duì)樁基設(shè)計(jì)研究時(shí)不考慮荷載的循環(huán)效應(yīng),往往會(huì)產(chǎn)生誤差(李濤,2015;Long et al,1994)。
表1 經(jīng)典靜力p-y 曲線
本文將獲得循環(huán)荷載作用下p-y 曲線的方法分為兩類(圖1):(1)總體調(diào)整法。即根據(jù)循環(huán)荷載作用下的試驗(yàn)或數(shù)值模擬等結(jié)果,對(duì)靜力p-y曲線做整體的經(jīng)驗(yàn)調(diào)整以反映循環(huán)效應(yīng)。(2)參數(shù)修正法。將循環(huán)效應(yīng)與荷載特性建立聯(lián)系,根據(jù)循環(huán)次數(shù)、幅值等對(duì)靜力p-y 曲線中的具體參數(shù)做量化修正;或?qū)⒀h(huán)效應(yīng)直接與樁土相互作用的力學(xué)行為建立聯(lián)系,根據(jù)循環(huán)荷載作用下的土體累積塑性應(yīng)變、樁土界面特性等對(duì)靜力p-y曲線進(jìn)行修正,得到考慮循環(huán)效應(yīng)的p-y 曲線。根據(jù)對(duì)循環(huán)p-y 曲線研究現(xiàn)狀的總結(jié)對(duì)比,本文提出了當(dāng)前研究存在的問題和建議,為研究人員理清思路。
圖1 循環(huán)p-y 曲線模型構(gòu)建方法分類
早期的p-y 曲線在考慮循環(huán)荷載效應(yīng)時(shí),一般是對(duì)靜力p-y 曲線做總體的經(jīng)驗(yàn)調(diào)整,直接給出循環(huán)荷載作用下的p-y 曲線表達(dá)式。如API(1993)是將靜力p-y 曲線中的經(jīng)驗(yàn)系數(shù)A 取值為0.9,構(gòu)建循環(huán)荷載作用下的p-y 曲線,張方等(2017) 建議將表征循環(huán)效應(yīng)的系數(shù)A 取值為0.52。Matlock 等(1970)、Reese 等(1974,1975)、Murchison 等(1984)、章連洋等(1992)在構(gòu)建循環(huán)p-y 曲線時(shí),都是將荷載簡(jiǎn)單區(qū)分為靜力和循環(huán)兩種情況,給出不同的極限土反力計(jì)算公式,田平等(1993)和蔡亮(2003) 也是直接給出循環(huán)荷載作用下的經(jīng)驗(yàn)p-y 曲線。
總體調(diào)整法不能根據(jù)循環(huán)荷載幅值、循環(huán)次數(shù)等對(duì)靜力p-y 曲線具體參數(shù)做相應(yīng)的量化調(diào)整,也不能考慮循環(huán)荷載下樁土相互作用等因素影響,其純經(jīng)驗(yàn)調(diào)整所得結(jié)果往往與實(shí)測(cè)值存在差別(Yan et al,1992;Tak et al,2004;Ashour et al,2000;Fan et al,2005;龔維明 等,2015)。
循環(huán)荷載的特性可以由4 個(gè)參數(shù)確定:幅值、變化幅度、循環(huán)次數(shù)和頻率。頻率是動(dòng)力響應(yīng)的關(guān)鍵因素,但鑒于海洋工程中所涉及循環(huán)荷載頻率較低,本文所討論的循環(huán)荷載皆未考慮頻率的影響和動(dòng)力效應(yīng)。
2.1.1 荷載幅值與變化幅度
Rosquoet 等(2007)通過砂土離心機(jī)試驗(yàn),根據(jù)荷載幅值和變化幅度折減土反力,并認(rèn)為循環(huán)效應(yīng)主要表現(xiàn)在前15 次,武亞軍等(2018)在此基礎(chǔ)上進(jìn)一步考慮了多級(jí)循環(huán)荷載的影響。Liao 等(2018)通過柔性樁模型試驗(yàn),觀察到循環(huán)荷載變化幅度越大,p-y 曲線的割線剛度衰減越明顯。Li等(2010)和吳金標(biāo)(2017) 分別研究了循環(huán)荷載幅值對(duì)樁側(cè)向累積變形與樁身剛度的影響。
2.1.2 荷載方向
單向和雙向循環(huán)荷載作用下的p-y 曲線也不同。Brown 等(1988)在研究砂土中水平受荷群樁的響應(yīng)時(shí),認(rèn)為雙向循環(huán)荷載作用下砂土發(fā)生了明顯的局部密實(shí),土反力降低相對(duì)較少。單向荷載作用下這種密實(shí)化程度較弱,因而土反力降低相對(duì)較多。Jeong 等(2017)進(jìn)一步給出了單向和雙向循環(huán)加載時(shí)各自的折減系數(shù),還考慮了不同內(nèi)摩擦角情況對(duì)極限土反力的折減。祝周杰(2015)關(guān)注了這一效應(yīng)在砂土與黏土地基之間的差異,發(fā)現(xiàn)單向循環(huán)荷載作用下軟黏土地基的循環(huán)弱化特性較砂土地基更為顯著。需要指出的是,Brown等(1988)和Jeong 等(2017)并未考慮相對(duì)密實(shí)度的影響,而相對(duì)密實(shí)度的影響不可忽視。例如,Baek 等(2015)通過飽和砂土中的模型試驗(yàn),得出循環(huán)荷載下p-y 曲線的初始地基反力模量在不同相對(duì)密實(shí)度下變化不同:在飽和松砂中,循環(huán)荷載使得相鄰?fù)馏w密實(shí),初始地基反力模量增大;在飽和中密砂中,循環(huán)荷載使得相鄰?fù)馏w擾動(dòng),初始地基反力模量減小。因此,Brown 等(1988)和Jeong 等(2017)的結(jié)論能否外推還不能確定,應(yīng)用時(shí)需謹(jǐn)慎。
2.1.3 循環(huán)次數(shù)
考慮循環(huán)次數(shù)對(duì)p-y 曲線的影響主要有以下幾種思路。第一種是對(duì)剛度的折減,如Jeanjean(2009)通過離心機(jī)試驗(yàn)研究了黏土中循環(huán)荷載次數(shù)對(duì)p-y 曲線割線剛度的折減,認(rèn)為200 次以后的循環(huán)對(duì)割線剛度幾乎沒有影響,與Dunnavant 等(1989)的研究結(jié)果一致。Niemann 等(2018) 關(guān)注循環(huán)次數(shù)對(duì)初始剛度的改變,發(fā)現(xiàn)隨著循環(huán)次數(shù)增加初始剛度逐漸減小。陳仁朋等(2012) 同樣強(qiáng)調(diào)先期循環(huán)加載對(duì)樁身剛度有明顯影響。朱斌等(2013)通過離心機(jī)試驗(yàn)得出了循環(huán)次數(shù)與樁身變形的近似對(duì)數(shù)線性相關(guān)關(guān)系。另一種思路是對(duì)強(qiáng)度折減,即根據(jù)循環(huán)次數(shù)折減土反力,如Rajashree 等(1996)、Basack 等(2007)通過模型試驗(yàn),給出了土反力隨循環(huán)次數(shù)的對(duì)數(shù)退化模型。馬明泊(2015)則給出了土反力隨循環(huán)次數(shù)的半對(duì)數(shù)退化模型。Kim 等(2015,2016)研究的獨(dú)特之處在于,通過原位CPT 數(shù)據(jù)構(gòu)造黏土和砂土的p-y 曲線,運(yùn)用Bienen 等(2011) 的修正方法,根據(jù)循環(huán)次數(shù)折減土反力。Little 等(1988)也是建議在樁身位移y 不變的前提下折減土反力。Long等(1994) 通過對(duì)前人實(shí)驗(yàn)數(shù)據(jù)的總結(jié)和分析,綜合上述兩種思路,同時(shí)折減土反力p 和樁身變形y,根據(jù)循環(huán)次數(shù)、應(yīng)力比、成樁方式和土體密度等,構(gòu)建循環(huán)荷載下的p-y 曲線(表2)。
表2 Long 等(1994)的修正方式
根據(jù)循環(huán)荷載下的樁土相互作用,如考慮土體的循環(huán)弱化,樁周間隙的發(fā)展等構(gòu)建p-y 曲線,也可以反映循環(huán)效應(yīng)的影響。
2.2.1 土體累計(jì)塑性應(yīng)變
俞劍等(2016) 和黃茂松等(2017) 借助Masing 準(zhǔn)則,建立循環(huán)荷載下土體累積塑性應(yīng)變與p-y 曲線的聯(lián)系。朱斌等(2012) 通過現(xiàn)場(chǎng)試驗(yàn),引入Poulos 的土體循環(huán)弱化模型(1982)來建立水平循環(huán)荷載作用下的雙曲線型p-y 曲線模型。Zhang 等(2016)采用Andersen 等(2015)建議的方法通過循環(huán)直接單剪試驗(yàn)的參數(shù)建立循環(huán)p-y 曲線,同時(shí)可以考慮樁土界面特性的影響。
2.2.2 樁周間隙
Dunnavant 等(1989)強(qiáng)調(diào)循環(huán)荷載作用下樁周間隙的重要性,并提出了樁頂位移閾值0.01D 的概念:位移低于該閾值時(shí),循環(huán)荷載的影響可以忽略,位移超過閾值時(shí),循環(huán)效應(yīng)才會(huì)顯現(xiàn)。Gerber 等(2008)認(rèn)為樁周間隙可以反映在p-y 曲線中斜率接近0 的部分,Pender 等(1996) 認(rèn)為樁周間隙的發(fā)展與樁頂約束情況密切相關(guān),Carswell 等(2016)通過折減埋深(圖2)的概念描述樁周間隙效應(yīng),即假定泥面下某一深度內(nèi)的土體由于受到擾動(dòng),對(duì)p-y 彈簧的剛度沒有貢獻(xiàn),以反映短期循環(huán)荷載作用下土體剛度退化的影響。但是,現(xiàn)有研究對(duì)這種間隙的形成與發(fā)展還缺乏定量的描述方法。
圖2 折減埋深示意
(1)在總體調(diào)整法中,p-y 曲線對(duì)循環(huán)效應(yīng)的考慮多是基于有限的場(chǎng)地條件而做的純經(jīng)驗(yàn)調(diào)整,不能根據(jù)循環(huán)荷載的特性和循環(huán)荷載導(dǎo)致的樁土相互作用等進(jìn)行相應(yīng)的調(diào)整,在應(yīng)用到其他場(chǎng)地時(shí)結(jié)果往往不太理想,其結(jié)論難以外推。因此,通過這種方式考慮循環(huán)效應(yīng)時(shí),需格外謹(jǐn)慎。
(2)在參數(shù)修正法中,不同研究關(guān)注的重點(diǎn)不同,其所選擇的靜力p-y 曲線與修正的參數(shù)(如土反力、樁身位移、地基反力模量、初始剛度、割線剛度等) 也不同,在工程中很難對(duì)各種修正方法進(jìn)行對(duì)比和評(píng)價(jià)。因此,分析的精確程度不僅取決于修正方法,還取決于選擇的靜力p-y曲線。選取與實(shí)際情況吻合的靜力p-y 曲線,綜合考慮荷載特性與樁土相互作用的影響,并提出更為統(tǒng)一的修正方式,將有利于循環(huán)p-y 曲線在實(shí)際工程中的推廣使用。
將荷載特性與p-y 曲線中的具體參數(shù)建立聯(lián)系,根據(jù)循環(huán)次數(shù)與幅值等進(jìn)行相應(yīng)折減來考慮循環(huán)效應(yīng),較總體調(diào)整法精度得到了提高,但應(yīng)注意到其本質(zhì)仍然是一種經(jīng)驗(yàn)調(diào)整法。在實(shí)際海洋工程中,波流循環(huán)荷載往往具有隨機(jī)性,其荷載特性很難用確定的荷載幅值和循環(huán)次數(shù)表達(dá),因而導(dǎo)致根據(jù)荷載特性進(jìn)行修正也存在難度并會(huì)產(chǎn)生誤差。Zhang 等(2016)介紹的等效概念是值得借鑒的,即通過統(tǒng)計(jì)原理,將無規(guī)律的循環(huán)荷載先轉(zhuǎn)換為按不同幅值和循環(huán)次數(shù)分類的多組荷載,再通過等效原則,一般以累積孔壓(砂土)或循環(huán)剪應(yīng)變(黏土) 作為等效標(biāo)準(zhǔn),將幅值不同、出現(xiàn)次數(shù)不同的多組循環(huán)荷載等效為幅值最大的循環(huán)荷載作用一定的次數(shù)。這種方法雖然會(huì)高估循環(huán)效應(yīng),但從地基承載力角度來說相對(duì)保守。在對(duì)循環(huán)效應(yīng)缺乏有效評(píng)價(jià)手段的當(dāng)下,這種等效方法可以綜合考慮循環(huán)荷載特性與樁土相互作用,具有一定的工程意義。
根據(jù)循環(huán)荷載下的樁土相互作用進(jìn)行修正,其優(yōu)點(diǎn)在于將循環(huán)弱化效應(yīng)直接與土體強(qiáng)度和剛度的衰減等建立定量關(guān)系(俞劍 等,2016;黃茂松 等,2017;Andersen et al,2015),而不必將循環(huán)效應(yīng)與荷載特性建立經(jīng)驗(yàn)關(guān)系,再根據(jù)荷載特性對(duì)p-y 曲線中的參數(shù)修正。這種方法不再是對(duì)試驗(yàn)結(jié)果的經(jīng)驗(yàn)總結(jié),而是對(duì)樁土作用規(guī)律和本質(zhì)的歸納描述。因此,其力學(xué)概念更加清晰,理論依據(jù)更加充分。
(3)靜力荷載和循環(huán)荷載作用下的p-y 曲線研究大多是基于小直徑柔性樁的實(shí)驗(yàn)結(jié)果,對(duì)于海上風(fēng)電等大直徑單樁的適用性還不能確定。章劉洋(2018)通過模型試驗(yàn)發(fā)現(xiàn),折減土反力來考慮循環(huán)效應(yīng)的方法對(duì)于大直徑單樁并不適用。由于高昂的成本限制,大直徑單樁的現(xiàn)場(chǎng)測(cè)試難以開展,借助數(shù)值模擬或模型試驗(yàn),不斷提高計(jì)算的精度,可能是未來一段時(shí)間內(nèi)最現(xiàn)實(shí)的手段。
(4)基于單一土質(zhì)得出的循環(huán)p-y 曲線,在成層土中其經(jīng)驗(yàn)公式是否適用尚不能確定。在實(shí)際海洋工程經(jīng)常會(huì)遇到“上軟下硬”“上硬下軟”等土層條件,由于變形與破壞模式不同,運(yùn)用模型試驗(yàn)中單一土質(zhì)所得的p-y 曲線公式不夠準(zhǔn)確(李芬花 等,2017)。Jin 等(1993)根據(jù)摩爾庫倫準(zhǔn)則和朗肯土壓力理論,考慮上覆土壓力的影響,推導(dǎo)了成層土中極限土反力計(jì)算公式,可以在此基礎(chǔ)上分析循環(huán)荷載作用下成層土中p-y 曲線的特點(diǎn)。
(5)已有修正方法對(duì)于粉土的適用性評(píng)價(jià)尚不明確。王騰等(2009)提出了適用于粉土的p-y曲線,圖3 為按照不同修正方式所得循環(huán)p-y 曲線,可以看到不同修正方法所得結(jié)果差距較大。因此,有必要研究粉土在循環(huán)荷載作用下p-y 曲線的規(guī)律。
圖3 不同修正方法下粉土循環(huán)p-y 曲線
(6)循環(huán)荷載的影響范圍問題還需要深入研究。一方面,循環(huán)效應(yīng)在空間上存在臨界值,即影響主要集中在一定深度范圍內(nèi)。如Rosquoet 等(2007)認(rèn)為循環(huán)荷載的影響深度主要集中在5B(B 為樁徑)深度以內(nèi)。另一方面,在循環(huán)荷載所能影響的范圍內(nèi)變化趨勢(shì)也不同,如Verdure 等(2003)通過密砂中的單向循環(huán)荷載實(shí)驗(yàn),給定了臨界深度2.4 m 或3.3D(D 為樁徑):臨界深度以內(nèi)的土反力隨著循環(huán)次數(shù)的增加而降低,臨界深度以下的土反力隨著循環(huán)次數(shù)的增加而增大。Liao等(2018)和Kim 等(2015,2016) 也都考慮了不同深度處的修正方法。
循環(huán)效應(yīng)在時(shí)間上存在臨界值,即影響主要集中在一定循環(huán)次數(shù)以內(nèi)(Rosquoet et al,2007;Dunnavant et al,1989;Jeanjean,2009)。而且對(duì)于砂土和黏土,循環(huán)荷載次數(shù)影響的臨界值差異很大,而硬黏土與軟黏土之間的差異很小,這種差異與聯(lián)系值得進(jìn)一步研究。 此外,在大周數(shù)循環(huán)(超過1 000 次)下的研究由于存在諸多限制而開展相對(duì)較少:對(duì)于模型試驗(yàn),這種限制主要來源于加載裝置的工作性能,施加長期穩(wěn)定的循環(huán)荷載存在困難;而對(duì)于數(shù)值模擬,大周數(shù)循環(huán)導(dǎo)致的誤差積累會(huì)造成計(jì)算不易收斂和結(jié)果失真。海洋工程中樁基礎(chǔ)承受長期的循環(huán)荷載,研究長期循環(huán)荷載作用下樁土系統(tǒng)的響應(yīng)具有現(xiàn)實(shí)意義,這需要提高加載裝置和數(shù)值模擬軟件的工作性能和效率。
(7) 沖刷是海洋工程中必須要考慮的問題,現(xiàn)有研究更多關(guān)注沖刷對(duì)承載力的影響(胡丹等,2015;戴國亮 等,2018;劉紅軍 等,2018),而很少考慮其對(duì)p-y 曲線產(chǎn)生的影響??梢钥紤]運(yùn)用Carswell 等(2016)折減埋深的概念,來構(gòu)建考慮沖刷作用影響的循環(huán)p-y 曲線。沖刷作用會(huì)導(dǎo)致樁土界面的力學(xué)行為更加復(fù)雜,如Dunnavant 等(1989)觀察到水力沖刷會(huì)加劇樁周間隙的影響,循環(huán)荷載作用下樁土界面的弱化過程和機(jī)制研究可以作為未來研究的一個(gè)方向。
(8)港口工程和海洋工程中的樁基還會(huì)承受豎向荷載、撞擊荷載、地震作用等多荷載作用?,F(xiàn)有循環(huán)p-y 曲線模型僅僅考慮了單一荷載的作用,即只考慮水平循環(huán)荷載的單獨(dú)作用。已有學(xué)者開展了靜力p-y 曲線在復(fù)合荷載作用下的適用性研究(Abdel-Rahman et al,2006;余世章 等,2018),復(fù)合荷載作用下的循環(huán)p-y 曲線研究相對(duì)較少,海洋工程樁基礎(chǔ)在多荷載耦合作用下的循環(huán)p-y 曲線還需進(jìn)一步研究。