• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Prognostic role of artificial intelligence among patients with hepatocellular cancer: A systematic review

    2020-12-11 07:09:22QuirinoLaiGabrieleSpoletiniGianlucaMenniniZoeLarghiLaureiroDiamantisTsilimigrasTimothyMichaelPawlikMassimoRossi
    World Journal of Gastroenterology 2020年42期

    Quirino Lai, Gabriele Spoletini, Gianluca Mennini, Zoe Larghi Laureiro, Diamantis I Tsilimigras, Timothy Michael Pawlik, Massimo Rossi

    Abstract

    Key Words: Deep learning; Artificial neuronal network; Recurrence; Liver transplantation; Resection; Hepatocellular cancer

    INTRODUCTION

    Hepatocellular carcinoma (HCC) is the most common primary liver malignancy and the third most common cause of cancer-related death worldwide. Surgery, in the form of liver transplantation and resection, is the mainstay of treatment as the only potentially curative treatment option. Ablation has emerged as an alternative treatment to resection for small tumors. In contrast, intra-arterial treatments and chemotherapy can offer disease control and be used as part of a multimodal therapeutic strategy[1].

    Many factors affect survival following the treatment of HCC. Among them, we can consider background liver condition, radiologic and histologic characteristics of the tumor, biologic markers, and comorbidities.

    Traditionally, conventional linear models, such as the survival analysis and the Cox proportional hazard models, have been used to evaluate the prognosis of HCC[2-4]. Nevertheless, linear systems can have considerable limitations and often fail to capture the complexity of the interactions among clinicopathological characteristics[5]. With the intent to overcome such constraints, artificial intelligence (AI) has been employed with growing interest in healthcare research during the last decade, in particular applying deep learning (DL) techniques in artificial neural networks (ANN)[6]. ANN is a mathematical model that resembles the structure and function of a biological neural system using computer technology. It consists of a highly interconnected set of units, beginning with an input layer (the data to be analyzed), one or more hidden layers that process the data, and an output layer that provides the outcomes. The peculiarity of ANN is that it can be trained by exposing the network to examples of input/output pairs, thus improving its reliability[7]. During DL, the model reassigns a different weight to the connections within each hidden layer. ANN can learn from errors by comparing any generated output with desired outputs. The error is backpropagated, and the existing weights between connections are modified accordingly. Once learning is complete, ANN can create connections and make predictions on datasets that have not been observed before.

    AI has been used to build models to predict a variety of outcomes related to HCC, such as tumor diagnosis, pathology characteristics, response to treatment, and survival[7,8]. With the growing availability of big data from fields such as genomics, AI can unravel otherwise hidden connections between tumor elements because of the increasing computational power of modern technology[9].

    The objective of the current study was to systematically review the application of AI and DL in the prediction of survival among patients who were treated for HCC, as well as compare the performance of AI methods relative to linear prediction models.

    MATERIALS AND METHODS

    Search sources and study design

    A systematic review of the published literature focused on the prognostic impact of AI in the management of HCC was undertaken. The search strategy was performed following the Preferred Reporting Items for Systemic Reviews and Meta-Analysis (PRISMA) guidelines[10].

    The specific research question formulated in the present study includes the following PICO components: (1) Patient: Patient with a confirmed HCC; (2) Intervention: Evaluation of HCC treatment using AI; (3) Comparison: Evaluation of HCC treatment without using AI; and (4) Outcome: Patient death and/or tumor recurrence. A search of the PubMed and Cochrane Central Register of Controlled Trials Databases was conducted using the following terms: (Artificial intelligence OR deep learning) AND (HCC OR hepatocellular carcinoma OR hepatocellular cancer). The search period was from "1985/01/01" to "2020/02/29".

    The systematic qualitative review included only English studies that included human patients. Published reports were excluded based on several criteria: (1) Data on animal models; (2) Lacked enough clinical details; and (3) Had non-primary source data (e.g., review articles, non-clinical studies, letters to the editor, expert opinions, and conference summaries). In the case of studies originating from the same center, possible overlapping of clinical cases was examined, and the most informative study was considered eligible.

    Data extraction and definitions

    Following a full-text review of the eligible studies, two independent authors (Lai Q and Larghi Laureiro Z) performed the data extraction and crosschecked all outcomes. During the selection of articles and extraction of the data, potential discrepancies were resolved following a consensus with a third reviewer (Mennini G). Collected data included the first author of the publication, year of publication, country, number of reported cases, research question/purpose, the method used, and key findings.

    Quality assessment

    Selected studies were systematically reviewed with the intent to identify potential sources of bias. The quality of the papers was assessed using the Risk of Bias In Nonrandomized Studies of Interventions tool[11].

    RESULTS

    Search results and study characteristics

    The PRISMA flow diagram schematically depicts the article selection process (Figure 1). Among the 598 articles screened, a total of 127 studies reported on the use of AI in HCC. Among these articles, only 9 (7.1%) studies referred to the use of AI in the prediction of survival among patients with HCC and were included in this review[12-20]. Other studies using AI in HCC were excluded; specifically, these studies reported on the use of AI for the diagnosis of the tumor (n= 76, 59.8%), identification of specific genes or pathways (n= 17, 13.4%), prediction of tumor response after therapy (n= 16, 12.6%), and the prediction of pathological aspects (n= 9, 7.1%) (Figure 2). All studies included in the analytic cohort were published in the last decade except for one that was published in 1995[12]. All articles were from Asia; five studies were based on a population from Taiwan[13-17], two from China[18,20], one from Japan[12], and one from India[19].

    Figure 1 Preferred Reporting Items for Systemic Reviews and Meta-Analysis flowchart of the literature search and study selection.

    Qualitative assessment of the included studies

    Results from the qualitative assessment of the included studies are depicted in Figure 3. Six studies had a low risk of bias, while two studies were at high risk for bias, mainly due to the presence of potential confounders. In one study, due to the absence of clear data explaining the characteristics of the comparison groups, the risk of bias was unclear.

    Review of the eligible studies

    Data extracted from the nine eligible articles are reported in detail in Table 1. The largest studies were based on the same population of patients coming from the Taiwan Bureau of National Health Insurance. All patients had a diagnosis of a malignant neoplasm of the liver and underwent a hepatectomy between 1998-2009 (n= 22926)[14,15]. In all other studies, the sample size was smaller than 1000 cases, and in two cases, the sample size was smaller than 100[12,17].

    The use of ANN in populations of patients who underwent surgery was reported in six articles[12-16,18]. The outcomes investigated included in-hospital postoperative mortality[14], long-term overall survival[12,15,16,18], and disease-free survival after hepatic resection[13]. Several other studies used different AI systems rather than ANN. Specifically, a support vector machine was used for the development of predictive models relative to the recurrence of HCC following radiofrequency ablation[17]. Besides, an Artificial Plant Optimization algorithm was used to assess the effectiveness and efficiency to predict HCC recurrence[19]. Peritumoral radiomics was used to predict early recurrence after HCC curative-intent resection or ablation[20].

    A cohort was used in the majority of studies to train the AI network[12-16,18,20]; in one study, a double five-fold cross-validation loop method was adopted[17]. In all studies, AI demonstrated superior predictive performance compared with other traditional models. In several studies, the ANN outperformed logistic regression or Cox regression models[13-16,18]. In all cases, the prediction accuracy of the AI models expressed as the areas under the curve was significantly improved compared with traditional statistical techniques[13-16,18].

    Table 1 Articles focused on the role of artificial intelligence in the prediction of survival

    DISCUSSION

    Figure 2 Different articles exploring the impact of artificial intelligence as diagnostic or prognostic tool in the setting of hepatocellular carcinoma management. AI: Artificial intelligence; HCC: Hepatocellular carcinoma; LRT: Locoregional therapy.

    Figure 3 Results of the Risk of Bias In Non-randomized Studies of Interventions tool for the extracted articles.

    The use of AI in healthcare began in the early 1970s and has gained increased acceptance over the last decades. In particular, the development of AI in medical research and its clinical applications have gained popularity, in part because of the widespread use of AI in almost all fields of human life[21]. The current literature search revealed that many AI studies focused on diagnosis, and the application of AI to distinguish the radiological features of HCC. The identification and diagnostic discrimination of benignvsmalignant liver masses has been the objective of a previous systematic review that noted AI could differentiate liver cancer and, in particular, HCC from other lesions better compared with other methods such as Bayesian models and expert radiologists image inspection[8]. The present systematic review is important because it is the first to summarize the ability of AI systems to predict patient survival following treatment of HCC. Our results revealed that different types of AI methods have been employed in the existing studies with heterogeneous patient sample sizes. The majority of the included studies (n= 6/9) utilized ANN for the analysis of predictors of post-treatment survival, which is in line with the results of other systematic reviews on the prediction of outcomes[22,23]. Considering the need for more accurate prediction, investigators have compared AI techniques with traditional linear models to optimize treatment decision-making. Although several prediction models have utilized both pre- and postoperative variables, these models have not proved useful in clinical decision-making since they require information that can only be available after resection or other treatment. In contrast, models with only preoperative variables can help guide treatment strategies in the preoperative setting[24,25].

    Importantly, our systematic review revealed that the prediction of survival using AI methodology was highly accurate and remained robust in studies with limited sample sizes, although current knowledge in prediction modeling using AI has noted that AI performs better when applied to larger sample sizes[26]. Although the reason for the consistent high predictive accuracy of AI models is multifactorial, the complexity of AI models (e.g., a higher number of events per variable) further reinforces the superiority of their performance, which might explain the outstanding results even when used in smaller size studies[27].

    Reproducibility and applicability of AI models in clinical practice and across different centers might be questioned due to the difficulties in acquiring and utilizing a dedicated software to process the data. In addition, as ANN learns from examples, one may argue that ANN needs to be trained before it can be applied to varying datasets that are different from the one it was initially built on. Nevertheless, what emerged from this systematic review was that AI could be an outstanding adjunct to conventional linear systems of analysis to predict post-treatment survival. Cucchettiet al[7]made their ANN available online so that other centers can test and possibly enrich their model aiming to predict HCC tumor grade and micro-vascular invasion preoperatively. Besides, when applied to other aspects of HCC, AI is particularly useful for exploring interconnections of big data such as in genomics. ANN combined with genotyping for microsatellite mutations/deletions was able to predict HCC recurrence after liver transplantation with an 85% accuracy in the center where the model was developed, and with 89.5% accuracy when examined in data from another center[28]. AI applied to radiomics is increasingly investigated: Machine learning has been used to provide a quantitative interpretation of computed tomography scans to reclassify indeterminate nodules and potentially avoid biopsy and improve patients safety[29]. Similarly, neural network algorithms have been built with the intent to objectively and reproducibly provide liver imaging reporting and data system categories concordant with the expert radiologists classifcation[30].

    One of the downsides associated with the application of ANN in clinical practice might be the disproportionate number of input factors per patient (too many,e.g., thousands of proteins for gene expression) relative to the number of patients (too little). The risk of overfitting the dataset can be mitigated by strictly filtering out potentially irrelevant variables[31]. In particular, selecting the variables to use as input factors in ANN using traditional statistics has been employed as a strategy to improve efficiency and reduce redundancy of the AI model, as confirmed by all of the studies using ANNs included in this systematic review. When analyzing cancer patient data (i.e., too many dimensions for a relatively small number of samples), combining DL with other techniques of machine learning have been used to identify prognostic gene signatures and differentiate between better and worse prognosis in patients with various types of tumors including HCC[32].

    CONCLUSION

    Artificial intelligence can provide an enhanced prediction of survival following treatment of HCC compared with conventional linear models. The use of AI can be particularly helpful to process large amounts of data, as well as help identify patterns and associations that are not evident with traditional techniques given the complexity of the biological systems. AI has a promising role in health-care research and its application to HCC. While an increasing amount of data becomes available per patient, it is important to identify to what extent AI can help guide clinical decisionmaking and optimize the prediction of long-term outcomes based on the unique characteristics of each patient.

    ARTICLE HIGHLIGHTS

    91午夜精品亚洲一区二区三区| 亚洲精品影视一区二区三区av| 国产精品99久久99久久久不卡 | 亚洲欧美日韩卡通动漫| 亚洲精品一二三| 又粗又硬又长又爽又黄的视频| 高清毛片免费看| 3wmmmm亚洲av在线观看| 少妇熟女欧美另类| 婷婷色麻豆天堂久久| 狂野欧美激情性bbbbbb| 成人毛片a级毛片在线播放| 精品久久久精品久久久| h日本视频在线播放| 在线观看免费高清a一片| 大香蕉久久网| av在线播放精品| 伊人久久精品亚洲午夜| 午夜亚洲福利在线播放| 国产伦在线观看视频一区| 一级二级三级毛片免费看| 欧美日本视频| 少妇裸体淫交视频免费看高清| 欧美日本视频| 日本av手机在线免费观看| 国产伦在线观看视频一区| 亚洲综合色惰| 国产美女午夜福利| 成人免费观看视频高清| 国产精品秋霞免费鲁丝片| 高清在线视频一区二区三区| 亚洲国产精品专区欧美| a级毛色黄片| 精品人妻视频免费看| 国产精品久久久久久久久免| 久久99蜜桃精品久久| 在线免费观看不下载黄p国产| 日韩人妻高清精品专区| 王馨瑶露胸无遮挡在线观看| 成年免费大片在线观看| 国产亚洲av片在线观看秒播厂| 国产成人午夜福利电影在线观看| 波野结衣二区三区在线| 亚洲激情五月婷婷啪啪| 日本与韩国留学比较| 国产一区亚洲一区在线观看| 国产综合精华液| 毛片女人毛片| 婷婷色av中文字幕| 午夜精品一区二区三区免费看| 欧美高清成人免费视频www| 亚洲av二区三区四区| 777米奇影视久久| 亚洲三级黄色毛片| 精品久久久精品久久久| 五月伊人婷婷丁香| 欧美日本视频| 亚洲欧美日韩另类电影网站 | 亚洲四区av| 亚洲在久久综合| 卡戴珊不雅视频在线播放| 一个人看的www免费观看视频| videossex国产| 国产午夜福利久久久久久| 久久久久精品性色| 国产精品成人在线| 91精品国产九色| 欧美高清性xxxxhd video| 高清在线视频一区二区三区| 大又大粗又爽又黄少妇毛片口| 国产精品麻豆人妻色哟哟久久| 人人妻人人澡人人爽人人夜夜| 亚洲av中文字字幕乱码综合| 最近最新中文字幕大全电影3| 老女人水多毛片| 成人美女网站在线观看视频| 国产成人午夜福利电影在线观看| 看免费成人av毛片| 久久精品人妻少妇| 亚洲怡红院男人天堂| 久久精品综合一区二区三区| 国产成人精品婷婷| 综合色av麻豆| 麻豆国产97在线/欧美| 国产成人福利小说| 欧美日韩国产mv在线观看视频 | 九色成人免费人妻av| 久久久久久久精品精品| 黄色视频在线播放观看不卡| 午夜激情福利司机影院| 国产欧美日韩一区二区三区在线 | 欧美 日韩 精品 国产| 午夜免费观看性视频| 色网站视频免费| 国产 一区精品| 九色成人免费人妻av| 91久久精品国产一区二区成人| 婷婷色综合www| 日韩 亚洲 欧美在线| 亚洲精品国产av蜜桃| 成人欧美大片| 插逼视频在线观看| 自拍偷自拍亚洲精品老妇| 亚洲伊人久久精品综合| a级毛片免费高清观看在线播放| 观看美女的网站| 国产精品99久久99久久久不卡 | 天美传媒精品一区二区| 毛片一级片免费看久久久久| 美女内射精品一级片tv| 在线观看免费高清a一片| 国产av国产精品国产| 18禁裸乳无遮挡免费网站照片| 亚洲高清免费不卡视频| 一级毛片我不卡| 国语对白做爰xxxⅹ性视频网站| 美女xxoo啪啪120秒动态图| 免费观看性生交大片5| 丰满少妇做爰视频| 一级毛片电影观看| 亚洲国产精品成人综合色| 大片免费播放器 马上看| 春色校园在线视频观看| 欧美成人一区二区免费高清观看| 美女内射精品一级片tv| 亚洲国产最新在线播放| 一区二区三区四区激情视频| 日韩成人av中文字幕在线观看| 我的女老师完整版在线观看| 一区二区av电影网| 男女下面进入的视频免费午夜| 26uuu在线亚洲综合色| 亚洲精品亚洲一区二区| 亚洲av日韩在线播放| 精品久久久久久久人妻蜜臀av| 成人亚洲精品一区在线观看 | 久久6这里有精品| 国产成年人精品一区二区| 亚洲色图综合在线观看| 午夜福利视频1000在线观看| 国产精品嫩草影院av在线观看| 一级av片app| 久久久精品免费免费高清| 欧美激情久久久久久爽电影| 老司机影院毛片| 久久99精品国语久久久| av播播在线观看一区| 国产精品99久久99久久久不卡 | 中文字幕久久专区| 天堂网av新在线| 一个人看视频在线观看www免费| 亚洲av中文字字幕乱码综合| 内射极品少妇av片p| 国产精品国产av在线观看| 最近中文字幕高清免费大全6| 一区二区av电影网| 青春草亚洲视频在线观看| 日韩 亚洲 欧美在线| 别揉我奶头 嗯啊视频| 亚洲av中文字字幕乱码综合| 人人妻人人看人人澡| 精品少妇黑人巨大在线播放| 中文字幕制服av| 成人毛片60女人毛片免费| 国产一级毛片在线| 国产亚洲av片在线观看秒播厂| 内地一区二区视频在线| 免费在线观看成人毛片| 亚洲国产色片| 下体分泌物呈黄色| 伦理电影大哥的女人| h日本视频在线播放| 人妻一区二区av| 黄色配什么色好看| 永久网站在线| 男人狂女人下面高潮的视频| 少妇的逼水好多| 国产高清三级在线| h日本视频在线播放| av国产免费在线观看| 在线观看一区二区三区| 草草在线视频免费看| 一级毛片久久久久久久久女| 精品一区二区三区视频在线| 狠狠精品人妻久久久久久综合| 亚洲精品一二三| 国产永久视频网站| 国产一区二区在线观看日韩| 亚洲最大成人av| 乱系列少妇在线播放| 国产乱人偷精品视频| 特级一级黄色大片| 天堂中文最新版在线下载 | 国产 一区精品| 久久精品综合一区二区三区| 欧美成人一区二区免费高清观看| 亚洲成人一二三区av| 久久精品国产a三级三级三级| 久热这里只有精品99| 亚洲经典国产精华液单| 哪个播放器可以免费观看大片| 久久精品综合一区二区三区| 性色avwww在线观看| 嘟嘟电影网在线观看| 亚洲欧美成人精品一区二区| 午夜福利网站1000一区二区三区| 精品人妻视频免费看| 爱豆传媒免费全集在线观看| 最近中文字幕高清免费大全6| 舔av片在线| 国产男人的电影天堂91| 亚洲av男天堂| 一区二区三区精品91| 国产免费一级a男人的天堂| 免费大片黄手机在线观看| 国产又色又爽无遮挡免| 免费少妇av软件| 国产在线一区二区三区精| 男人狂女人下面高潮的视频| 青春草国产在线视频| av女优亚洲男人天堂| 狂野欧美激情性xxxx在线观看| 黑人高潮一二区| 亚洲综合色惰| 久久99热这里只有精品18| eeuss影院久久| 日韩中字成人| 只有这里有精品99| 男人舔奶头视频| 亚洲国产高清在线一区二区三| 看免费成人av毛片| 国产av码专区亚洲av| 男女下面进入的视频免费午夜| 99九九线精品视频在线观看视频| 在现免费观看毛片| 亚洲人成网站在线播| 日日摸夜夜添夜夜添av毛片| 欧美日韩一区二区视频在线观看视频在线 | 国产一区有黄有色的免费视频| 女人久久www免费人成看片| 91午夜精品亚洲一区二区三区| 日日撸夜夜添| 婷婷色综合www| 欧美成人精品欧美一级黄| 国产爽快片一区二区三区| 小蜜桃在线观看免费完整版高清| av.在线天堂| 亚洲怡红院男人天堂| av在线播放精品| 91精品国产九色| 亚洲无线观看免费| 久久久亚洲精品成人影院| 久久久国产一区二区| 免费观看的影片在线观看| 亚洲精品一区蜜桃| 三级男女做爰猛烈吃奶摸视频| 国产真实伦视频高清在线观看| 国产亚洲午夜精品一区二区久久 | 免费大片黄手机在线观看| 2021天堂中文幕一二区在线观| 国产亚洲91精品色在线| 99久久精品国产国产毛片| videos熟女内射| 精品酒店卫生间| 在线观看一区二区三区| 亚洲精品久久午夜乱码| 在线免费观看不下载黄p国产| 亚洲精品日本国产第一区| 久久久久久久亚洲中文字幕| 国内精品美女久久久久久| 国内少妇人妻偷人精品xxx网站| 国产精品人妻久久久影院| 日本一二三区视频观看| 国产成人精品一,二区| 色网站视频免费| 成人国产av品久久久| 国内精品宾馆在线| 联通29元200g的流量卡| 交换朋友夫妻互换小说| 少妇的逼好多水| 日本一二三区视频观看| 国产日韩欧美亚洲二区| 99视频精品全部免费 在线| 一区二区av电影网| 亚洲,一卡二卡三卡| 久久久久久久国产电影| 欧美激情久久久久久爽电影| 一区二区三区精品91| 视频中文字幕在线观看| 亚洲精品456在线播放app| 国产精品不卡视频一区二区| 亚洲精品久久久久久婷婷小说| 亚洲国产欧美人成| 国产成人aa在线观看| 久久久久久久亚洲中文字幕| 制服丝袜香蕉在线| 国产一区亚洲一区在线观看| 国内精品宾馆在线| 国产免费又黄又爽又色| 交换朋友夫妻互换小说| 我的女老师完整版在线观看| 99久国产av精品国产电影| 久久久a久久爽久久v久久| 国产有黄有色有爽视频| 亚洲精品乱久久久久久| 亚洲欧美一区二区三区国产| 秋霞伦理黄片| 麻豆久久精品国产亚洲av| 九色成人免费人妻av| 99热6这里只有精品| 欧美日本视频| 少妇人妻一区二区三区视频| 免费观看性生交大片5| 欧美高清性xxxxhd video| 亚洲电影在线观看av| 大片电影免费在线观看免费| 狂野欧美白嫩少妇大欣赏| 免费av观看视频| 日本午夜av视频| 丝袜美腿在线中文| 老师上课跳d突然被开到最大视频| 制服丝袜香蕉在线| 91久久精品国产一区二区三区| 麻豆精品久久久久久蜜桃| 伦精品一区二区三区| 亚洲美女视频黄频| 午夜福利视频1000在线观看| 丝袜喷水一区| 亚洲av日韩在线播放| 国产精品精品国产色婷婷| 嘟嘟电影网在线观看| 一个人看的www免费观看视频| 美女国产视频在线观看| 下体分泌物呈黄色| 欧美老熟妇乱子伦牲交| 2022亚洲国产成人精品| av国产精品久久久久影院| 直男gayav资源| 你懂的网址亚洲精品在线观看| 国产精品久久久久久精品电影| 精品一区二区三区视频在线| 国产午夜精品一二区理论片| 国产精品无大码| 欧美日韩国产mv在线观看视频 | 乱码一卡2卡4卡精品| 91久久精品电影网| 国产精品精品国产色婷婷| 久久精品国产亚洲av天美| 国产精品一区二区性色av| 久久久精品欧美日韩精品| 女的被弄到高潮叫床怎么办| 欧美日韩综合久久久久久| 亚洲国产欧美在线一区| 国产成人aa在线观看| 欧美人与善性xxx| 久久久久精品久久久久真实原创| 久久久色成人| 亚洲人成网站在线观看播放| 免费看a级黄色片| 天天躁日日操中文字幕| 久久久a久久爽久久v久久| 亚洲精品亚洲一区二区| 国产精品爽爽va在线观看网站| 欧美日韩亚洲高清精品| 一级毛片黄色毛片免费观看视频| 激情五月婷婷亚洲| 蜜桃亚洲精品一区二区三区| 九草在线视频观看| 精品国产乱码久久久久久小说| 一个人观看的视频www高清免费观看| 免费少妇av软件| 亚洲精品久久久久久婷婷小说| av国产久精品久网站免费入址| 成人美女网站在线观看视频| 日本黄大片高清| 一级二级三级毛片免费看| 亚洲美女搞黄在线观看| av在线蜜桃| 中国三级夫妇交换| 久久人人爽人人片av| .国产精品久久| eeuss影院久久| 国产老妇伦熟女老妇高清| 特级一级黄色大片| 国产伦精品一区二区三区视频9| 亚洲av免费高清在线观看| 中国美白少妇内射xxxbb| 九九久久精品国产亚洲av麻豆| 国产淫片久久久久久久久| 成年版毛片免费区| 日本wwww免费看| 免费黄色在线免费观看| 黄色配什么色好看| 大码成人一级视频| 韩国av在线不卡| 久久女婷五月综合色啪小说 | 日韩欧美精品免费久久| 99久久精品一区二区三区| eeuss影院久久| 国产精品嫩草影院av在线观看| 国产黄片美女视频| 国产黄色视频一区二区在线观看| 日韩亚洲欧美综合| 久久精品国产a三级三级三级| 91精品一卡2卡3卡4卡| 大陆偷拍与自拍| 精品人妻视频免费看| 亚洲精品国产色婷婷电影| 国产精品久久久久久av不卡| 成人鲁丝片一二三区免费| 亚洲国产精品999| 哪个播放器可以免费观看大片| 又大又黄又爽视频免费| 欧美zozozo另类| 欧美日韩亚洲高清精品| 日韩国内少妇激情av| 久久99精品国语久久久| 国产av不卡久久| 午夜福利视频1000在线观看| 亚洲精品一区蜜桃| 免费看光身美女| 少妇丰满av| av国产久精品久网站免费入址| 国产精品久久久久久精品古装| 看黄色毛片网站| 亚洲精品久久久久久婷婷小说| 有码 亚洲区| 国产精品熟女久久久久浪| 新久久久久国产一级毛片| 国产老妇女一区| 国产成人91sexporn| 卡戴珊不雅视频在线播放| 亚洲成人一二三区av| 国产探花极品一区二区| 精华霜和精华液先用哪个| 69人妻影院| 亚洲精品国产av蜜桃| 伊人久久精品亚洲午夜| 国产真实伦视频高清在线观看| 舔av片在线| 99热6这里只有精品| 成年女人在线观看亚洲视频 | 亚洲aⅴ乱码一区二区在线播放| 成人二区视频| 天天一区二区日本电影三级| 免费高清在线观看视频在线观看| 亚洲精品国产色婷婷电影| 国产高清有码在线观看视频| 国产精品国产三级国产专区5o| 91精品一卡2卡3卡4卡| 80岁老熟妇乱子伦牲交| 91午夜精品亚洲一区二区三区| 国产精品爽爽va在线观看网站| 欧美极品一区二区三区四区| 亚洲欧美一区二区三区黑人 | 国产精品秋霞免费鲁丝片| 美女cb高潮喷水在线观看| 赤兔流量卡办理| 看非洲黑人一级黄片| 亚洲va在线va天堂va国产| 另类亚洲欧美激情| 成人国产麻豆网| 一本一本综合久久| 超碰av人人做人人爽久久| 中文字幕制服av| 人妻 亚洲 视频| 亚洲欧美精品专区久久| 美女内射精品一级片tv| 一级爰片在线观看| 国产精品福利在线免费观看| 亚洲aⅴ乱码一区二区在线播放| 国产日韩欧美在线精品| 亚洲精品亚洲一区二区| 色视频在线一区二区三区| av在线app专区| 边亲边吃奶的免费视频| 日本爱情动作片www.在线观看| 亚洲美女搞黄在线观看| 国产成人精品久久久久久| 国产综合精华液| 亚洲精品一区蜜桃| 国产免费一级a男人的天堂| 国产精品人妻久久久影院| 精品人妻熟女av久视频| 特级一级黄色大片| 大码成人一级视频| 王馨瑶露胸无遮挡在线观看| 又黄又爽又刺激的免费视频.| 男的添女的下面高潮视频| 亚洲,一卡二卡三卡| 国产 一区 欧美 日韩| 午夜福利网站1000一区二区三区| 青春草亚洲视频在线观看| 国产爽快片一区二区三区| 国产成人精品久久久久久| 少妇裸体淫交视频免费看高清| 观看免费一级毛片| 日本与韩国留学比较| 欧美成人a在线观看| 人妻 亚洲 视频| 九九久久精品国产亚洲av麻豆| 亚洲av免费高清在线观看| 国产色婷婷99| 国产精品无大码| 亚洲精品国产av成人精品| 国产精品人妻久久久久久| 亚洲精品,欧美精品| 日韩免费高清中文字幕av| 亚洲av中文字字幕乱码综合| 视频区图区小说| 国产美女午夜福利| 伦理电影大哥的女人| 一级片'在线观看视频| 亚洲精品国产av蜜桃| 大话2 男鬼变身卡| 亚洲色图综合在线观看| 成人欧美大片| 搡女人真爽免费视频火全软件| av女优亚洲男人天堂| 欧美激情久久久久久爽电影| 777米奇影视久久| 天堂俺去俺来也www色官网| 欧美三级亚洲精品| 日本爱情动作片www.在线观看| 黄色欧美视频在线观看| 亚洲精品,欧美精品| 亚洲精品国产av成人精品| 久久鲁丝午夜福利片| 亚洲国产欧美人成| 直男gayav资源| av在线观看视频网站免费| 丰满少妇做爰视频| 久久精品国产亚洲av涩爱| 国产成人免费观看mmmm| 免费看av在线观看网站| 精品熟女少妇av免费看| 嫩草影院新地址| 成人午夜精彩视频在线观看| 免费电影在线观看免费观看| 亚洲精品成人av观看孕妇| 天堂中文最新版在线下载 | 18禁在线播放成人免费| 如何舔出高潮| 国产乱人视频| 日韩免费高清中文字幕av| 亚洲色图av天堂| 亚洲最大成人av| 99热这里只有是精品50| www.色视频.com| 熟妇人妻不卡中文字幕| 国产 一区精品| 色视频www国产| 中文字幕av成人在线电影| 日韩欧美精品免费久久| 人妻制服诱惑在线中文字幕| 精品少妇久久久久久888优播| 亚洲精品一二三| 久久人人爽av亚洲精品天堂 | 尾随美女入室| 男女边吃奶边做爰视频| 可以在线观看毛片的网站| 一本色道久久久久久精品综合| 日本一本二区三区精品| 日韩大片免费观看网站| 高清在线视频一区二区三区| 精品一区二区免费观看| 国产日韩欧美亚洲二区| 各种免费的搞黄视频| 国产日韩欧美在线精品| 一本色道久久久久久精品综合| 免费黄网站久久成人精品| 欧美bdsm另类| 欧美 日韩 精品 国产| 男女下面进入的视频免费午夜| 中文字幕制服av| 久久精品国产自在天天线| 精品99又大又爽又粗少妇毛片| 又大又黄又爽视频免费| 欧美成人午夜免费资源| 成人黄色视频免费在线看| 免费看日本二区| 最新中文字幕久久久久| 亚洲不卡免费看| 99久久中文字幕三级久久日本| 丝瓜视频免费看黄片| 免费av毛片视频| 久久久久久久久久久丰满| 男女下面进入的视频免费午夜| 精品99又大又爽又粗少妇毛片| 亚洲精品成人久久久久久| 男人狂女人下面高潮的视频| 麻豆久久精品国产亚洲av| 插阴视频在线观看视频| 欧美xxⅹ黑人| 一级毛片我不卡| 欧美xxⅹ黑人| 男人爽女人下面视频在线观看| 男的添女的下面高潮视频| 人妻少妇偷人精品九色| 大话2 男鬼变身卡| 麻豆成人午夜福利视频| 永久免费av网站大全| 99久国产av精品国产电影| 1000部很黄的大片| 午夜爱爱视频在线播放| 国产有黄有色有爽视频| 91精品伊人久久大香线蕉| 99re6热这里在线精品视频| av国产精品久久久久影院| 人人妻人人爽人人添夜夜欢视频 | 国产亚洲av嫩草精品影院| 国产精品久久久久久久电影| 久久久色成人| 永久免费av网站大全| 免费黄色在线免费观看|