• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Parameter estimation of continuous variable quantum key distribution system via artificial neural networks

    2022-02-24 09:38:50HaoLuo羅浩YiJunWang王一軍WeiYe葉煒HaiZhong鐘海YiYuMao毛宜鈺andYingGuo郭迎
    Chinese Physics B 2022年2期

    Hao Luo(羅浩), Yi-Jun Wang(王一軍), Wei Ye(葉煒), Hai Zhong(鐘海),?,Yi-Yu Mao(毛宜鈺), and Ying Guo(郭迎),?

    1School of Automation,Central South University,Changsha 410083,China

    2School of Computer Science and Engineering,Central South University,Changsha 410083,China

    3College of Applied Science,Jiangxi University of Science and Technology,Ganzhou 341000,China

    Continuous-variable quantum key distribution(CVQKD)allows legitimate parties to extract and exchange secret keys.However,the tradeoff between the secret key rate and the accuracy of parameter estimation still around the present CVQKD system.In this paper,we suggest an approach for parameter estimation of the CVQKD system via artificial neural networks(ANN), which can be merged in post-processing with less additional devices.The ANN-based training scheme, enables key prediction without exposing any raw key.Experimental results show that the error between the predicted values and the true ones is in a reasonable range.The CVQKD system can be improved in terms of the secret key rate and the parameter estimation,which involves less additional devices than the traditional CVQKD system.

    Keywords: quantum key distribution,artificial neural networks,secret key rate,parameter estimation

    1.Introduction

    Quantum key distribution (QKD)[1]enables two legitimate parts, Alice and Bob, to exchange secret keys through an insecure channel controlled by a potential eavesdropper,Eve.This technology can be combined with the classical onetime-pad cryptographic system, thereby providing information transmission with unconditional security.[2]There are two branches for QKD,i.e., continuous-variable (CV) QKD and discrete-variable(DV)QKD.Unlike the latter using the singlephoton resources(or detectors),[1]the former has the potential of high-key rate and low-cost implementations as it can be compatible with current standard telecom components such as homodyne and heterodyne detectors.[3]Over the past few years,achievements have been made for CVQKD in both theories and experiments.[4–13]The most mature CVQKD protocol is the prestigious Gaussian-modulated coherent state(GMCS)protocol,[4]which has been proved secure against collective attacks and coherent attacks.[14–17]In the GMCS protocol,Alice first encodes the secret key information by modulating the quadraturesxandpof coherent states with independent Gaussian distributions[18]and then sends them to Bob through an insecure quantum channel.After that, Bob proceeds homodyne detection (measures one of the two quadratures randomly) or heterodyne detection (measures both the two quadratures).[6,19–21]After the post-processing process that involves sifting, parameter estimation, reconciliation and privacy amplification,Alice and Bob share the correlated raw keys.

    In order to estimate a bound on the maximum information that may have been eavesdropped by Eve, the channel transmittanceTand excess noise ξ need to be estimated.Traditional channel parameter estimation needs disclose parts of the raw keys.The more raw keys disclosed,the more accuracy the channel estimation would be.However, more disclosed raw keys leads to less capacity for carrying information,resulting in a lower secret key rate.Recent years, several works have been done on channel parameter estimation.For example, a parameter estimation was suggested for performance improvement of the CVQKD system,[22]which can be applied to low-Earth orbits and underwater communication scenarios by using the Monte Carlo approach.Chaiet al.proposed a parameter estimation method for implementation of the atmospheric GMCS CVQKD.[23]Guo[24]suggested a method for phase estimation and compensation of the CVQKD system,which can reconstruct the phase drifts even at low signal-to-noise ratio conditions.Wanget al.improved the accuracy of parameter estimation, realized by exchanging the order of parameter estimation and information reconciliation.[25]Yang suggested an improved four-state protocol in which the covariance matrix can be estimated from experimental data without using the linear channel assumption,guaranteeing its unconditional security in the asymptotical limits.[26]Liet al.considered an impact of denial-of-service attack on channel parameter estimation and suggested a method to prevent this attack.[27]However,the tradeoff between the secret key rate and the accuracy of parameter estimation is still unsolved.

    In this paper, we propose an ANN-based parameter estimation scheme for performance improvement of the CVQKD system.In post-processing, Alice and Bob have to do some pretreatment to the raw keys(data dividing and normalizing),which are sequentially sent to the ANN for the training,aiming to learn the relationship between the initially prepared and received data.The ANN has the capacity of predicting all the data that Alice holds with few errors.Using this method,Alice and Bob can proceed estimation without disclosing any raw key to Eve.It can be used for the parameter estimation and attack prediction without heavily loading any additional devices,which is feasible to implement for the traditional CVQKD system.

    This paper is organized as follows.In Section 2, we illustrate the framework of ANN-based parameter estimation scheme, and establish the ANN model for the CVQKD system.In Section 3, we show the performance of the ANNinvolved CVQKD system in terms of the secret key rate.In Section 4, the experimental results demonstrate the effect of the ANN-based parameter estimation scheme on the CVQKD system,including the secret key rate,the error range between the predicted values and the true values, as well as the relationship between the prediction accuracy and the block length.Finally,we make conclusions in Section 5.

    2.ANN-based parameter estimation of CVQKD

    For a traditional GMCS CVQKD protocol, it can be described as follows.Alice prepares the signal carriers with Gaussian modulation, which are sent to Bob through an unreliable quantum channel monitored by Eve.For the received signals, Bob proceeds the measurements by using homodyne or heterodyne detectors.Subsequently, Alice and Bob perform the data post-processing through an authenticated classical channel.As for the post-processing, Alice and Bob compare their encoding and measurement quadratures with each other and keep the data that they have performed with the same quadratures.By disclosing a subset of the raw keys, the parameter estimation is then proceeded to obtain an upper bound of the information that Eve can steal from.In the end, Alice and Bob could decorrelate their joint data from Eve via reconciliation and privacy amplification, while their data remain correlated.[28]The secret key rateKcan be given by

    whereICis the mutual information between Alice and Bob,IEthe upper bound of information that Eve can obtain, andMthe amount of the information revealed during the postprocessing.

    It is known that the post-processing has became a main restraint on the performance of CVQKD systems.Recently, the hardest issues have been devoted to parameter estimation,[23,25,29]reconciliation,[30–32]and privacy amplification,[33,34]but the tradeoff between the secret key rate and the accuracy of parameter estimation is still faced with challenges.

    Fortunately, the ANN, known as the MP model,[35]is now a popular machine learning technique[36,37]based on the principle of neural networks in biology and network topology,aiming to process complex information by simulating nervous system of human brain.[38]It is an operational model composing a large number of nodes(neurons).In Fig.1(a), it shows the structure of a multiple-input neuron.Thej-th outputojreads

    wherexiis thei-th input,wijis the weight ofxion thej-th path,bis bias that measures the difficulty of activation, and φ(·)represents the activation function.Figure 1(b)shows the structure of back propagation(BP)neural networks, which is employed in this paper.BP neural network is a multi-layer feed-forward neural networks, composed of input layer, hidden layer and output layer,the amount of the hidden layer can be one or more.

    Fig.1.(a)Structure of a multiple-input neuron.(b)Structure of the BP neural networks.

    The ANN-based CVQKD is shown in Fig.2.A set of coherent states,with desired modulation varianceVA,are prepared and multiplexed with the strong local oscillator(LO)by a polarization beam splitter.In the LO path, the delay line is employed to separate the LO from the signal in the time domain so that the time multiplexing can be realized.At the receiver,demultiplexing is executed by using polarization controller and polarization beam splitter.Through another delay line placed in the signal path, the delay of the LO due to the time multiplexing design is compensated so that both the signal and the LO can be precisely aligned.After Bob’s homodyne detection,Alice and Bob have two correlated sequencesxiandyi,respectively.Taking into account the additive white Gaussian noise(AWGN)channel,[39]xiandyican be related by

    whereNis the total number of the raw keys,zirepresents Gaussian noise,xi~N(0,VA),t=√is the quantum channel loss with transmittanceT∈[0,1],zi~N(0,σ2), andyi~N(0,t2VA+σ2).Here η represents the efficiency of the detector,σ2=N0+ηTξ+Vel,N0is the variance of the shot noise,andVeldenotes the detector’s electronic noise.

    Fig.2.Schematic diagram of the ANN-based CVQKD system.LD: Laser diode.BS: Beam splitter; LO: Local oscillator; AM: Amplitude modulator; PM: Phase modulator; VA: Variable attenuator; PBS: Polarization beam splitter; PC: Polarization controller; PIN: PIN photodiode;DPPC:Data pre-processing center;Alice and Bob do pretreatment(including data dividing and data normalizing)to their own original data through their respective DPPC,then the data are transmitted through an authenticated channel.ANN:Artificial neural networks;DTC:Data terminal center,including reconciliation and privacy amplification.

    For the parameter estimations, we take into account the transmittanceT, the excess noise ξ, and the maximum informationIE.Traditionally,we needs to disclose part of the raw keys,typically 50%,whereas in the proposed method none of the raw keys will be wasted.The ANN-based post-processing can be described as follows, it is worth noting that the data exchanged between Alice and Bob is achieved through the authentication channel, that is, the data may be eavesdropped,but cannot be tampered with.

    Theoretically, through the above-mentioned steps, Bob could have exactly all the sameXas Alice has.Then, along with his own raw keysY, he can proceed the parameter estimation without sacrificing any raw keys to the potential adversary, Eve.Consequently, Alice and Bob can achieve not only the high accuracy of parameter estimation but also the high secret key rate.But note that since the ANN algorithm is nothing more than an approximation of arbitrary function by learning the observed data and making prediction,it is impossible to obtain the completely correct results.Simply put,there are errors in the predicted data, which will lead to the deviation of parameter estimation, and eventually lead to the lower key rate than the ideal case.However, it is possible to achieve as high accuracy as possible by optimizing the structure of the ANN-involved CVQKD system and adjusting the suitable parameters.

    3.Security analysis

    After elaborating the schematic diagram of the ANNbased CVQKD system,we shall pay attention to the derivation of secret key rate.In the asymptotical case,[8]the key rate can be given by

    whereVξrepresents the variance of excess noise, β ∈[0,1]refers to the efficiency of the reconciliation,I(x:y)is the mutual information of Alice and Bob,(y:E) is the upper bound of information that Eve can obtain from Bob’s information, εPEis the probability that the true values of the parameters are not inside the confidence region.In order to ensure the security of the CVQKD system as much as possible without underestimating the eavesdropping,the worst case,that is,the case with the minimum key rate, needs to be considered.For this case,the minimum valueTminforTand the maximum valueshould be used.Then we can get the key rate in the finite-size case[39]

    wherenis the amount of the raw keys used for key extraction,whilem=N?nraw keys can be used for estimation,and Δ(n)is related to the security of the privacy amplification(PA).The parameter Δ(n)has the form

    where Hxis the Hilbert space of variablex,, and εPAare components of the failure probability of the whole CVQKD protocol.We assume dimHx=2, and a conservative value 10?10for.Thus,Δ(n)can be approximated as

    Note although theoretically there is no raw key disclosed for parameter estimation in this scheme, it does not mean thatn=N(details will be shown in Section 4).In homodyne detection,I(x:y)can be derived from[40]

    whereVBis Bob’s measured variance,VB|Ais the conditional variance, χtot= χline+χhom/Tminis the total noise,χline=1/Tmin?1+ξ is the channel-added noise,and χhom=[(1 ?η)+Vel]/η is detection-added noise.We note thatTmin=.

    To acquiretminand, the maximum-likelihood estimatorsandcan be used for the transmission model of Eq.(3)

    For the Holevo bound,[8]it can be simplified as

    whereG(x)=(x+1)log2(x+1)?xlog2x, λiis symplectic eigenvalue of the corresponding covariance matrix given by(in homodyne detection case)

    where we have

    Using Eq.(9),the estimatorsandcan be derived.After substituting them into Eq.(11), we obtaintminand.Combining Eq.(8) with Eq.(13), we getIhom(x:y) and,and hence derive the secret key rateKfrom Eq.(5).

    4.Numerical simulation

    In the ANN-based scenario, the value ofn/Nshould be one in theory as no raw key is sacrificed.But it is impossible for the actual neural networks to make the predicted value exactly the same as the real one, meaning thatnis always less thanN.Therefore, it is still valid in Eq.(4) for this scheme except thatnrepresents the amount of Alice’s raw keys that predicted correctly by Bob.We take into account

    which is the prediction accuracy.Then we have

    The value ofn/Nis usually assumed to be 0.5 in our experiment, as in the traditional scheme.However, the value ofSdepends on the performance of the ANN.

    We set the parameters of the ANN in Table 1,that is a BP neural networks which has a hidden layer with 12 neurons.In hidden layer,we take the activation function

    Table 1.Parameter settings.

    and the output layer activation function

    As for the training function,we take the Levenberg–Marquardt algorithm, which is used for solving the non-linear least squares problems.These can minimize the problems arise in training process of the ANN.

    At the beginning,all the variables and vectors are calculated and fed into the ANN,which randomly divides the data into three parts,i.e., training data, verification data, and test data, accounting for 70%, 15%,and 15%,respectively.After that, the networks begins to learn.The learning process will be repeated until the lowest level of error is achieved.(L=20 km,d=80,N=1.2×106).

    Fig.3.Regression diagram of the first learning for

    Figure 3 shows the regression graph of the first learning(for the relationship, while figure 4 represents the second learning(for the relationshipQ(‖yj‖)=‖xj‖).In these two graphs,the horizontal axis and the vertical axis represent the target value and the output value,respectively.Ideally,the output value should be equal to the target value,which is represented by a dotted line in the diagram.The black circles represent the data points,and the solid lines represent the fitting curves based on them.Theoretically,the closer the fitting curve is to the dotted line,the better the training effect of the ANN will be.After adequate training,the fitting curve of a perfect ANN should coincide with the “Y=T” curve, reflecting the most accurate description of the data relationship.But in reality,on the one hand,under the existing technology,such ideal ANN can not be constructed.On the other hand,if the fitting degree is too high(R=1),the overfitting occurs,that is, the training effect is perfect but the prediction effect is greatly deviated.During the two stages of training in our experiment, the fitting curve is close to the dotted line.The value ofRis greater than 0.8,meaning that the output and the target fit well.Besides,the values of minimum mean squared error(MSE)in two sequential training processes are relatively small,0.026163 and 0.023441,respectively.Both the regression diagram and the MSE reveal that the ANN is well trained.

    Fig.4.Regression diagram of the second learning for Q(‖yj‖)=‖xj‖(L=20 km,d=80,N=1.2×106).

    After sufficient training, we began with the prediction process.To demonstrate the effect of the prediction, we randomly select some of Alice’s raw keys,and compare them with the predicted values.As shown in Fig.5,it shows that the two values are relatively close.In fact, the final mean relative error (MRE) we obtain from the experiment is 0.0246, which indicates that the prediction works well.

    After Bob acquires all the predicted data (denoted asXout), the parameter estimation can be proceeded.In Fig.6,we performance of the ANN-based CVQKD system in terms of the secret key rate.ForS=1,it is the case of the ideal ANN scheme that the neural networks can predict all the data with complete accuracy.In addition, we also test the performance of secret key rate at different block lengths.We find that the ANN-based scheme has more advantages than the traditional one in terms of both transmission distance and secret key rate.The closer the value of prediction accuracySapproaches to 100%, the higher the secret key rate is, as shown in Eq.(17).The performance of the ANN-based scheme is closer to that of the ideal one,which results from the tunable parametern/N.

    The improvement ofSdepends much on block length.Within certain range,prediction accuracy,as well as transmission distance, can be improved by the increased block length since more data provide the sufficient training.In Fig.7, we show effect of block length (blue-solid line) on the prediction accuracyS.For the block length that is no less than 106,the value ofSis between [80%,83%], whereas for the data length less than 106, a significant decrease of prediction accuracy can be observed, which indicates that adequate data are required for the performance improvement.In addition,due to the finite-size effect,small amounts of data may lead to the decrease of the secret key rate.However, when the block length is up to 107,Scan be improved slightly.The reason is that once there is enough data for the training, without optimizing the ANN, increasing data length makes no sense to improve the training and predicting ability of the ANN.As the growth of the block length, it takes more time in the training and predicting, which will be a great challenge for the real-time performance of the system.The time spent in the post-processing of CVQKD system via ANN depends on the structure of ANN itself, the algorithm of training and prediction,and the performance of the computer running ANN.The most important factor is the block length of the data.When the blocks length are 105,106,and 107,the times required to complete the post-processing are about two minutes, ten minutes and two hours,respectively.The performance of the computer used in our experiments is middling,with following configuration: core i5-10400F, 16G RAM, and 500G SSD.Obviously,The training time can be significantly reduced with a more powerful computer.In addition, during one working process of CVQKD system in optical fiber,the fitting relationship obtained by training the first data block can also be used in the subsequent data blocks.Therefore,we do not need to train every data block.Meanwhile,in Fig.7,we can also find that with the increase of transmission distance,the prediction accuracy gradually decreases.This is because the longer the distance,the more distorted the signal.

    Fig.5.Comparison between X and Xout. X represents the true values of Alice’s raw keys, and Xout denotes the predicted values that Bob gets through the ANN.

    In order to illustrate the characteristics of our scheme better, the method-of-moments (MM) scheme[42]and the transformed scheme by changing the implementation order of estimation and reconciliation(we call it exchanging order scheme for short)[25]are selected,to compare with our scheme.All of them can be used for the parameter estimations.The principles of these three schemes are completely different, our scheme uses a trained ANN to predict raw keys,while the MM scheme and the exchanging order scheme uses MM method to find a new estimator for σ2and changes the implementation order of parameter estimation and reconciliation, respectively.Compared with the other two competitors, our scheme is algorithmically simpler.In terms of disadvantages,more time is needed to train the networks in the ANN-based scheme, the performance of the estimator in the MM scheme is poor in minimizing variance and bias, and the exchanging order scheme requires an additional parameter estimation for channel characteristics, which increases the system complexity.And in terms of applicable scenario, our scheme is suitable for medium block length and unstable channel scenarios, while MM scheme is appropriate for long block length and high-loss channel, and the remaining scheme is applied to the stable system with slowly changing characteristics.Finally, we compared the secret key rates of the three schemes when the block lengthN=108and the transmission distanceL=30 km,there are 0.0507,0.085,and 0.036,respectively.It is important to note that this is not the best performance of our scheme,we can increase the key rate by improving the structure of the neural networks, adjusting the parameters’value,and optimizing the training and predicting algorithm.For example, instead of BP neural networks, we can use the radial basis function (RBF) neural networks, which contains input layer,hidden layer(only one)and output layer.Various forms of RBF function can be used as the activation function in hidden layer, take Gaussian function for example, its expression can be written as follows:

    where φi(·)represents thei-th RBF function,xpis thep-th input,cirepresents the center ofi-th node in the hidden layer,andis the variance of the Gaussian function.Then thej-th output of the RBF neural networks reads

    wherewijis the connection weight of the hidden layer to the output layer.Compared with BP networks,RBF networks can approximate arbitrary function with higher precision.Our experiments show that the key rate can be increased by 3% or even more by using the RBF networks and selecting appropriate parameters, such as the dimension of the input data,the spread of radial basis function, and so on.It should be noted that although RBF networks can avoid the local minimum problem and thus achieve higher prediction accuracy,its structure can be more complex.Since there is no specific law to follow in neural networks design at present,quite a lot of continuous attempts are essential to improve the key rate.We believe that different approaches,or combinations of them,may lead to better performance.In general, although the key rate of the ANN-based scheme is not the highest,the complexity of the algorithm is low, and additional hardware is barely required.The property that ANN can approach any rational number in theory makes it have the most prominent advantage, that is, suitable for the complex, variable and unstable channels.

    Fig.6.Secret key rate as a function of transmission distance.From left to right,red-dotted lines,blue-dashed lines,and green-solid lines,correspond to the traditional scheme,the ANN-based scheme,and the ideal ANN scheme,respectively.

    Fig.7.The A–N curve shows how the prediction accuracy varies with the length of the data(blue-solid line,L=20 km).The A–L curve represents the variation of the prediction accuracy with transmission distance (red-dotted line,N=1.2×107).

    5.Conclusion

    We have presented an ANN-involved parameter estimation scheme for performance improvement of the CVQKD system,where BP neural networks are placed in the data postprocessing stage without disclosing the raw keys.After being preprocessed,Alice’s and Bob’s original data are fed into the ANN to start the training experiments, in which the structure and the parameters of the ANN are constantly adjusted until the regression curve and error curve show that the ANN has achieved its best performance.Relationship between the data is obtained at the end of the training experiments before the ANN’s prediction.It is secure from Eve’s eavesdropping since none of the original data is disclosed.Simulation results suggest that the ANN-based scheme has shown better performance in the parameter estimation, secret key rate, capacity for carrying information and the accuracy of prediction,compared with the traditional scheme and other schemes.Besides,the ANN-based scheme,which requires very few additional devices,can be expediently implemented in the practical CVQKD systems.

    欧美黑人巨大hd| 午夜福利成人在线免费观看| 亚洲国产欧美网| 欧美日韩综合久久久久久 | 国产97色在线日韩免费| 国产探花在线观看一区二区| 亚洲成人免费电影在线观看| 男女下面进入的视频免费午夜| 国产亚洲欧美在线一区二区| 在线观看免费午夜福利视频| 午夜精品一区二区三区免费看| 亚洲av五月六月丁香网| 亚洲乱码一区二区免费版| 一二三四社区在线视频社区8| 欧美zozozo另类| 国产日本99.免费观看| 啦啦啦观看免费观看视频高清| 国产精品99久久99久久久不卡| 午夜影院日韩av| 九色成人免费人妻av| 午夜老司机福利剧场| 亚洲欧美精品综合久久99| 中文字幕高清在线视频| 日本成人三级电影网站| 国产主播在线观看一区二区| 亚洲欧美一区二区三区黑人| 亚洲欧美精品综合久久99| 国产亚洲精品av在线| 1000部很黄的大片| 草草在线视频免费看| 天美传媒精品一区二区| 老司机午夜福利在线观看视频| 久久久久久久久中文| 老汉色∧v一级毛片| www.色视频.com| 国产高清有码在线观看视频| 一卡2卡三卡四卡精品乱码亚洲| 韩国av一区二区三区四区| 国产高清视频在线播放一区| 久久久久久久午夜电影| 免费在线观看成人毛片| 久久久久免费精品人妻一区二区| 亚洲 国产 在线| 日本精品一区二区三区蜜桃| 国产淫片久久久久久久久 | 色综合欧美亚洲国产小说| 在线观看舔阴道视频| 一进一出抽搐gif免费好疼| 国产蜜桃级精品一区二区三区| 一夜夜www| 国产视频内射| 国产亚洲精品一区二区www| 久久精品人妻少妇| 最近视频中文字幕2019在线8| 欧美色视频一区免费| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 国产免费男女视频| av国产免费在线观看| 偷拍熟女少妇极品色| 中文字幕精品亚洲无线码一区| 窝窝影院91人妻| 亚洲一区二区三区色噜噜| 国产精品一及| 好男人在线观看高清免费视频| 制服人妻中文乱码| 精品一区二区三区人妻视频| 深夜精品福利| 可以在线观看的亚洲视频| 国产色婷婷99| 97碰自拍视频| 少妇裸体淫交视频免费看高清| bbb黄色大片| 啦啦啦韩国在线观看视频| 国产午夜福利久久久久久| 欧美黄色片欧美黄色片| 在线观看日韩欧美| netflix在线观看网站| 又粗又爽又猛毛片免费看| 麻豆国产97在线/欧美| 亚洲欧美日韩高清专用| 午夜视频国产福利| 2021天堂中文幕一二区在线观| 综合色av麻豆| 老司机午夜福利在线观看视频| 免费看光身美女| 精品久久久久久,| 18禁在线播放成人免费| 狂野欧美激情性xxxx| 亚洲一区二区三区不卡视频| 男女下面进入的视频免费午夜| 国产精品久久久久久人妻精品电影| 中出人妻视频一区二区| 女同久久另类99精品国产91| 国产亚洲欧美在线一区二区| 操出白浆在线播放| 丁香六月欧美| 丁香欧美五月| 一区二区三区免费毛片| 丰满人妻熟妇乱又伦精品不卡| 波野结衣二区三区在线 | 麻豆成人午夜福利视频| 日韩欧美国产在线观看| 12—13女人毛片做爰片一| 久久精品国产清高在天天线| 美女cb高潮喷水在线观看| 天堂网av新在线| 身体一侧抽搐| 久久久精品欧美日韩精品| 在线免费观看不下载黄p国产 | 最近最新中文字幕大全电影3| 欧美日韩黄片免| 国产免费av片在线观看野外av| 一个人观看的视频www高清免费观看| 欧美另类亚洲清纯唯美| 国产黄片美女视频| 亚洲18禁久久av| 欧美色视频一区免费| 天堂av国产一区二区熟女人妻| 亚洲 国产 在线| 俄罗斯特黄特色一大片| 性欧美人与动物交配| 久久精品国产亚洲av涩爱 | 国内毛片毛片毛片毛片毛片| 蜜桃久久精品国产亚洲av| 在线观看免费视频日本深夜| 亚洲熟妇中文字幕五十中出| 欧美日韩福利视频一区二区| 特级一级黄色大片| 日韩欧美一区二区三区在线观看| 狠狠狠狠99中文字幕| 精品99又大又爽又粗少妇毛片 | 久久久久精品国产欧美久久久| 在线a可以看的网站| 色吧在线观看| 热99re8久久精品国产| 在线播放无遮挡| 无遮挡黄片免费观看| 狠狠狠狠99中文字幕| www.熟女人妻精品国产| 亚洲 欧美 日韩 在线 免费| 亚洲av成人av| 欧美3d第一页| 久久香蕉精品热| 亚洲内射少妇av| 在线免费观看不下载黄p国产 | 别揉我奶头~嗯~啊~动态视频| 91麻豆av在线| 蜜桃亚洲精品一区二区三区| 国产三级黄色录像| 精品久久久久久久末码| 熟女少妇亚洲综合色aaa.| 亚洲一区二区三区不卡视频| 亚洲 国产 在线| 床上黄色一级片| 国产精华一区二区三区| 亚洲久久久久久中文字幕| 啦啦啦观看免费观看视频高清| 国产视频一区二区在线看| 中文字幕人成人乱码亚洲影| 国产高清有码在线观看视频| 日本黄色片子视频| 亚洲人成网站高清观看| 亚洲av五月六月丁香网| 精华霜和精华液先用哪个| 国产精品三级大全| 天美传媒精品一区二区| 99久久精品国产亚洲精品| 夜夜躁狠狠躁天天躁| 激情在线观看视频在线高清| 国产一区二区三区视频了| 国产精品免费一区二区三区在线| 亚洲国产欧洲综合997久久,| 99久久无色码亚洲精品果冻| 国产精品久久久久久久久免 | www.www免费av| 最新在线观看一区二区三区| 99久久成人亚洲精品观看| 欧美日韩国产亚洲二区| 亚洲精品在线观看二区| 亚洲av成人av| 国产成人影院久久av| 制服丝袜大香蕉在线| 午夜影院日韩av| 一进一出好大好爽视频| 亚洲精品国产精品久久久不卡| 高清毛片免费观看视频网站| 亚洲精品456在线播放app | 男女床上黄色一级片免费看| 两个人视频免费观看高清| 97超级碰碰碰精品色视频在线观看| 天堂影院成人在线观看| 日韩精品中文字幕看吧| 国产av在哪里看| 久久精品影院6| 一本一本综合久久| 国产又黄又爽又无遮挡在线| 国产黄片美女视频| 女人高潮潮喷娇喘18禁视频| 91在线精品国自产拍蜜月 | 中文字幕熟女人妻在线| 国产aⅴ精品一区二区三区波| 久久久久久九九精品二区国产| 我要搜黄色片| 亚洲欧美日韩高清在线视频| 男女下面进入的视频免费午夜| 国产精品嫩草影院av在线观看 | 国产精品亚洲av一区麻豆| 免费av不卡在线播放| 国产三级黄色录像| 亚洲aⅴ乱码一区二区在线播放| 色综合欧美亚洲国产小说| 国产一级毛片七仙女欲春2| 九九热线精品视视频播放| 亚洲av电影不卡..在线观看| 99国产极品粉嫩在线观看| 一个人观看的视频www高清免费观看| 精品国内亚洲2022精品成人| 国产主播在线观看一区二区| 成人鲁丝片一二三区免费| 麻豆成人av在线观看| 久久久精品欧美日韩精品| 久久久久精品国产欧美久久久| 伊人久久大香线蕉亚洲五| 成人午夜高清在线视频| 国产av麻豆久久久久久久| 女同久久另类99精品国产91| 偷拍熟女少妇极品色| 国产 一区 欧美 日韩| 波多野结衣高清无吗| 一个人观看的视频www高清免费观看| a级一级毛片免费在线观看| 啦啦啦免费观看视频1| 久久午夜亚洲精品久久| 白带黄色成豆腐渣| 免费大片18禁| 99精品在免费线老司机午夜| 国产主播在线观看一区二区| 美女 人体艺术 gogo| 成年版毛片免费区| 免费观看人在逋| 国产高清三级在线| 中文字幕人成人乱码亚洲影| 亚洲成a人片在线一区二区| 国产精品1区2区在线观看.| 亚洲精品粉嫩美女一区| 久久久久精品国产欧美久久久| 午夜福利高清视频| 十八禁人妻一区二区| 精品人妻一区二区三区麻豆 | 俺也久久电影网| 国产精品99久久久久久久久| 有码 亚洲区| 婷婷丁香在线五月| 中文亚洲av片在线观看爽| 国产精品精品国产色婷婷| 级片在线观看| 日本 av在线| 国产麻豆成人av免费视频| 一个人看的www免费观看视频| 国产一区二区亚洲精品在线观看| 国产 一区 欧美 日韩| 国产成人系列免费观看| xxxwww97欧美| 伊人久久大香线蕉亚洲五| 日韩高清综合在线| 又黄又爽又免费观看的视频| 我要搜黄色片| 99久久99久久久精品蜜桃| 久久久久久久久久黄片| 亚洲男人的天堂狠狠| 好男人电影高清在线观看| 国产精品久久视频播放| 婷婷亚洲欧美| 日本a在线网址| 亚洲av中文字字幕乱码综合| 国产欧美日韩精品亚洲av| 狂野欧美激情性xxxx| 精品电影一区二区在线| 99在线视频只有这里精品首页| 网址你懂的国产日韩在线| av在线天堂中文字幕| 亚洲人成网站高清观看| 国产91精品成人一区二区三区| 久久草成人影院| 国产精品综合久久久久久久免费| 男插女下体视频免费在线播放| 老司机深夜福利视频在线观看| 久久香蕉国产精品| 亚洲av成人精品一区久久| 午夜福利欧美成人| 色视频www国产| 色哟哟哟哟哟哟| 一区二区三区免费毛片| 99国产精品一区二区三区| 国产精品日韩av在线免费观看| 尤物成人国产欧美一区二区三区| 午夜福利欧美成人| 蜜桃亚洲精品一区二区三区| 久久欧美精品欧美久久欧美| 18禁黄网站禁片午夜丰满| 日本黄色视频三级网站网址| 最后的刺客免费高清国语| 欧美绝顶高潮抽搐喷水| 天天添夜夜摸| netflix在线观看网站| 久久精品影院6| 亚洲天堂国产精品一区在线| 国产精品久久久久久精品电影| 91麻豆av在线| 亚洲精品成人久久久久久| 在线看三级毛片| 麻豆久久精品国产亚洲av| 欧美成人一区二区免费高清观看| 亚洲av二区三区四区| 18禁美女被吸乳视频| 一区二区三区国产精品乱码| 成人特级av手机在线观看| 久久人妻av系列| 色噜噜av男人的天堂激情| 老司机午夜十八禁免费视频| 大型黄色视频在线免费观看| 亚洲人与动物交配视频| 欧美一区二区精品小视频在线| 午夜免费激情av| 少妇高潮的动态图| 久久久久久久久久黄片| 在线观看日韩欧美| 免费看光身美女| 一a级毛片在线观看| 毛片女人毛片| av专区在线播放| 国产成人系列免费观看| 日韩高清综合在线| 国产激情偷乱视频一区二区| 国产精品影院久久| 国产精品久久久久久人妻精品电影| xxx96com| 国产三级在线视频| 免费搜索国产男女视频| 亚洲人成网站高清观看| 免费看a级黄色片| 亚洲精华国产精华精| 日日摸夜夜添夜夜添小说| 久久精品国产自在天天线| 成年人黄色毛片网站| 国产伦在线观看视频一区| 一进一出好大好爽视频| 日本黄色片子视频| 国产视频一区二区在线看| 九九热线精品视视频播放| 精品国内亚洲2022精品成人| www.999成人在线观看| 精品人妻一区二区三区麻豆 | 很黄的视频免费| 亚洲成人久久性| 亚洲成av人片免费观看| 老汉色∧v一级毛片| 久久九九热精品免费| 午夜两性在线视频| 毛片女人毛片| 99久久久亚洲精品蜜臀av| 午夜精品在线福利| 99久久久亚洲精品蜜臀av| 日韩亚洲欧美综合| 亚洲一区二区三区色噜噜| 青草久久国产| 12—13女人毛片做爰片一| 日韩亚洲欧美综合| 国内少妇人妻偷人精品xxx网站| 成年人黄色毛片网站| 亚洲 欧美 日韩 在线 免费| 欧美性猛交╳xxx乱大交人| av专区在线播放| 19禁男女啪啪无遮挡网站| 99精品在免费线老司机午夜| 久久久久久久午夜电影| 欧美高清成人免费视频www| 90打野战视频偷拍视频| 欧美日本视频| 偷拍熟女少妇极品色| 香蕉久久夜色| 日日干狠狠操夜夜爽| 国内精品一区二区在线观看| 女人十人毛片免费观看3o分钟| 亚洲国产精品合色在线| 丝袜美腿在线中文| 在线a可以看的网站| 久久久久国内视频| 欧美区成人在线视频| 一本久久中文字幕| 1000部很黄的大片| 成人性生交大片免费视频hd| 欧美又色又爽又黄视频| 少妇的丰满在线观看| 美女免费视频网站| 日本三级黄在线观看| 国内揄拍国产精品人妻在线| 日本在线视频免费播放| 久久久久久久久久黄片| 窝窝影院91人妻| 亚洲精品国产精品久久久不卡| 国产伦精品一区二区三区四那| 成人特级av手机在线观看| 在线国产一区二区在线| 午夜亚洲福利在线播放| 国产精品99久久久久久久久| 欧美在线一区亚洲| av福利片在线观看| 一本久久中文字幕| 一进一出抽搐gif免费好疼| 亚洲成人久久爱视频| 亚洲av成人不卡在线观看播放网| 热99re8久久精品国产| 亚洲精品在线观看二区| 欧美丝袜亚洲另类 | av福利片在线观看| 青草久久国产| 久久精品人妻少妇| 久久久国产成人精品二区| 国产真人三级小视频在线观看| 99久国产av精品| 国产主播在线观看一区二区| 日本一本二区三区精品| 成年女人永久免费观看视频| 国产亚洲精品一区二区www| 日本a在线网址| 亚洲av五月六月丁香网| 男人的好看免费观看在线视频| 国产一区二区三区视频了| 欧美日韩一级在线毛片| 人人妻,人人澡人人爽秒播| 性欧美人与动物交配| 一a级毛片在线观看| 亚洲第一电影网av| 免费高清视频大片| 国产亚洲精品av在线| 一夜夜www| 网址你懂的国产日韩在线| 午夜老司机福利剧场| 成人特级黄色片久久久久久久| 久9热在线精品视频| 亚洲精品亚洲一区二区| 成人鲁丝片一二三区免费| 色噜噜av男人的天堂激情| 久久久久九九精品影院| 网址你懂的国产日韩在线| www.www免费av| 麻豆久久精品国产亚洲av| 国产成人av教育| 亚洲成人精品中文字幕电影| 成人亚洲精品av一区二区| 久久久久久久久大av| 国内精品久久久久精免费| 国产黄a三级三级三级人| 欧美日本视频| 久久亚洲真实| 欧美日韩黄片免| 无人区码免费观看不卡| 国产真人三级小视频在线观看| www.熟女人妻精品国产| 床上黄色一级片| 日韩欧美在线乱码| 69av精品久久久久久| 小说图片视频综合网站| 久久性视频一级片| 国产精品影院久久| 国产精品久久电影中文字幕| 天堂动漫精品| 国产亚洲精品综合一区在线观看| 欧美在线一区亚洲| 999久久久精品免费观看国产| 国产成人av教育| 国产午夜精品久久久久久一区二区三区 | 男人的好看免费观看在线视频| 老汉色∧v一级毛片| 可以在线观看的亚洲视频| 亚洲精品一区av在线观看| 亚洲男人的天堂狠狠| 国产成年人精品一区二区| 色综合婷婷激情| 天美传媒精品一区二区| 色老头精品视频在线观看| 国产精华一区二区三区| 婷婷精品国产亚洲av在线| 亚洲avbb在线观看| 岛国视频午夜一区免费看| 亚洲国产欧美网| 日韩av在线大香蕉| 熟妇人妻久久中文字幕3abv| 久久久国产精品麻豆| 亚洲国产欧美网| 亚洲国产精品成人综合色| 国产精品亚洲一级av第二区| 无人区码免费观看不卡| 男女下面进入的视频免费午夜| 午夜久久久久精精品| 国产伦精品一区二区三区视频9 | 好男人电影高清在线观看| 国产成人av教育| 久久精品人妻少妇| 久久久久性生活片| 国产蜜桃级精品一区二区三区| 国产精品电影一区二区三区| 超碰av人人做人人爽久久 | 亚洲精品色激情综合| 日本在线视频免费播放| 3wmmmm亚洲av在线观看| bbb黄色大片| 亚洲中文字幕一区二区三区有码在线看| av视频在线观看入口| 久久久久免费精品人妻一区二区| 哪里可以看免费的av片| 九色国产91popny在线| 久久婷婷人人爽人人干人人爱| 亚洲一区高清亚洲精品| 最好的美女福利视频网| 操出白浆在线播放| 人妻夜夜爽99麻豆av| 嫁个100分男人电影在线观看| 亚洲成av人片在线播放无| 丰满乱子伦码专区| 丁香六月欧美| 亚洲熟妇熟女久久| 一本精品99久久精品77| 国产免费av片在线观看野外av| 午夜福利成人在线免费观看| 亚洲欧美日韩无卡精品| 日本黄色片子视频| 色在线成人网| 最新在线观看一区二区三区| 亚洲精品在线观看二区| 免费在线观看成人毛片| 国产午夜精品久久久久久一区二区三区 | 久久亚洲真实| 国产精品综合久久久久久久免费| 亚洲精品456在线播放app | avwww免费| 欧美一级a爱片免费观看看| 日本免费a在线| 精品国产亚洲在线| 欧美中文日本在线观看视频| 国产成年人精品一区二区| 欧美+日韩+精品| 国产亚洲av嫩草精品影院| 午夜福利18| 亚洲天堂国产精品一区在线| 18禁在线播放成人免费| 一区二区三区激情视频| 国产成人欧美在线观看| 亚洲av美国av| 国产伦一二天堂av在线观看| 亚洲最大成人手机在线| 美女免费视频网站| 看免费av毛片| 免费人成视频x8x8入口观看| 国产午夜福利久久久久久| 欧美3d第一页| 色在线成人网| 夜夜躁狠狠躁天天躁| 亚洲av第一区精品v没综合| 我的老师免费观看完整版| www国产在线视频色| 亚洲熟妇中文字幕五十中出| 又黄又粗又硬又大视频| 日韩亚洲欧美综合| 午夜福利欧美成人| 午夜视频国产福利| 在线观看午夜福利视频| 午夜福利18| 夜夜躁狠狠躁天天躁| av视频在线观看入口| 久久久久久九九精品二区国产| 欧洲精品卡2卡3卡4卡5卡区| 亚洲av电影在线进入| 变态另类成人亚洲欧美熟女| xxxwww97欧美| 亚洲18禁久久av| 久久久久国产精品人妻aⅴ院| 日韩有码中文字幕| 国产蜜桃级精品一区二区三区| 在线播放无遮挡| 国产精华一区二区三区| 村上凉子中文字幕在线| 国产在线精品亚洲第一网站| 香蕉丝袜av| 悠悠久久av| 日本三级黄在线观看| 听说在线观看完整版免费高清| 精品一区二区三区视频在线观看免费| 国产精品亚洲av一区麻豆| 国产欧美日韩精品亚洲av| 国产乱人伦免费视频| 在线看三级毛片| 黄片小视频在线播放| 亚洲国产日韩欧美精品在线观看 | 国产一级毛片七仙女欲春2| 特大巨黑吊av在线直播| 色综合站精品国产| 在线天堂最新版资源| 女人被狂操c到高潮| 99在线人妻在线中文字幕| 国产精品98久久久久久宅男小说| 两人在一起打扑克的视频| 国产精品一区二区三区四区久久| 激情在线观看视频在线高清| 国内精品久久久久久久电影| 日本精品一区二区三区蜜桃| 欧美不卡视频在线免费观看| 国产日本99.免费观看| 波多野结衣高清作品| 国产黄片美女视频| 夜夜夜夜夜久久久久| 亚洲熟妇熟女久久| 在线a可以看的网站| 久久草成人影院|