• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Parameter estimation of continuous variable quantum key distribution system via artificial neural networks

    2022-02-24 09:38:50HaoLuo羅浩YiJunWang王一軍WeiYe葉煒HaiZhong鐘海YiYuMao毛宜鈺andYingGuo郭迎
    Chinese Physics B 2022年2期

    Hao Luo(羅浩), Yi-Jun Wang(王一軍), Wei Ye(葉煒), Hai Zhong(鐘海),?,Yi-Yu Mao(毛宜鈺), and Ying Guo(郭迎),?

    1School of Automation,Central South University,Changsha 410083,China

    2School of Computer Science and Engineering,Central South University,Changsha 410083,China

    3College of Applied Science,Jiangxi University of Science and Technology,Ganzhou 341000,China

    Continuous-variable quantum key distribution(CVQKD)allows legitimate parties to extract and exchange secret keys.However,the tradeoff between the secret key rate and the accuracy of parameter estimation still around the present CVQKD system.In this paper,we suggest an approach for parameter estimation of the CVQKD system via artificial neural networks(ANN), which can be merged in post-processing with less additional devices.The ANN-based training scheme, enables key prediction without exposing any raw key.Experimental results show that the error between the predicted values and the true ones is in a reasonable range.The CVQKD system can be improved in terms of the secret key rate and the parameter estimation,which involves less additional devices than the traditional CVQKD system.

    Keywords: quantum key distribution,artificial neural networks,secret key rate,parameter estimation

    1.Introduction

    Quantum key distribution (QKD)[1]enables two legitimate parts, Alice and Bob, to exchange secret keys through an insecure channel controlled by a potential eavesdropper,Eve.This technology can be combined with the classical onetime-pad cryptographic system, thereby providing information transmission with unconditional security.[2]There are two branches for QKD,i.e., continuous-variable (CV) QKD and discrete-variable(DV)QKD.Unlike the latter using the singlephoton resources(or detectors),[1]the former has the potential of high-key rate and low-cost implementations as it can be compatible with current standard telecom components such as homodyne and heterodyne detectors.[3]Over the past few years,achievements have been made for CVQKD in both theories and experiments.[4–13]The most mature CVQKD protocol is the prestigious Gaussian-modulated coherent state(GMCS)protocol,[4]which has been proved secure against collective attacks and coherent attacks.[14–17]In the GMCS protocol,Alice first encodes the secret key information by modulating the quadraturesxandpof coherent states with independent Gaussian distributions[18]and then sends them to Bob through an insecure quantum channel.After that, Bob proceeds homodyne detection (measures one of the two quadratures randomly) or heterodyne detection (measures both the two quadratures).[6,19–21]After the post-processing process that involves sifting, parameter estimation, reconciliation and privacy amplification,Alice and Bob share the correlated raw keys.

    In order to estimate a bound on the maximum information that may have been eavesdropped by Eve, the channel transmittanceTand excess noise ξ need to be estimated.Traditional channel parameter estimation needs disclose parts of the raw keys.The more raw keys disclosed,the more accuracy the channel estimation would be.However, more disclosed raw keys leads to less capacity for carrying information,resulting in a lower secret key rate.Recent years, several works have been done on channel parameter estimation.For example, a parameter estimation was suggested for performance improvement of the CVQKD system,[22]which can be applied to low-Earth orbits and underwater communication scenarios by using the Monte Carlo approach.Chaiet al.proposed a parameter estimation method for implementation of the atmospheric GMCS CVQKD.[23]Guo[24]suggested a method for phase estimation and compensation of the CVQKD system,which can reconstruct the phase drifts even at low signal-to-noise ratio conditions.Wanget al.improved the accuracy of parameter estimation, realized by exchanging the order of parameter estimation and information reconciliation.[25]Yang suggested an improved four-state protocol in which the covariance matrix can be estimated from experimental data without using the linear channel assumption,guaranteeing its unconditional security in the asymptotical limits.[26]Liet al.considered an impact of denial-of-service attack on channel parameter estimation and suggested a method to prevent this attack.[27]However,the tradeoff between the secret key rate and the accuracy of parameter estimation is still unsolved.

    In this paper, we propose an ANN-based parameter estimation scheme for performance improvement of the CVQKD system.In post-processing, Alice and Bob have to do some pretreatment to the raw keys(data dividing and normalizing),which are sequentially sent to the ANN for the training,aiming to learn the relationship between the initially prepared and received data.The ANN has the capacity of predicting all the data that Alice holds with few errors.Using this method,Alice and Bob can proceed estimation without disclosing any raw key to Eve.It can be used for the parameter estimation and attack prediction without heavily loading any additional devices,which is feasible to implement for the traditional CVQKD system.

    This paper is organized as follows.In Section 2, we illustrate the framework of ANN-based parameter estimation scheme, and establish the ANN model for the CVQKD system.In Section 3, we show the performance of the ANNinvolved CVQKD system in terms of the secret key rate.In Section 4, the experimental results demonstrate the effect of the ANN-based parameter estimation scheme on the CVQKD system,including the secret key rate,the error range between the predicted values and the true values, as well as the relationship between the prediction accuracy and the block length.Finally,we make conclusions in Section 5.

    2.ANN-based parameter estimation of CVQKD

    For a traditional GMCS CVQKD protocol, it can be described as follows.Alice prepares the signal carriers with Gaussian modulation, which are sent to Bob through an unreliable quantum channel monitored by Eve.For the received signals, Bob proceeds the measurements by using homodyne or heterodyne detectors.Subsequently, Alice and Bob perform the data post-processing through an authenticated classical channel.As for the post-processing, Alice and Bob compare their encoding and measurement quadratures with each other and keep the data that they have performed with the same quadratures.By disclosing a subset of the raw keys, the parameter estimation is then proceeded to obtain an upper bound of the information that Eve can steal from.In the end, Alice and Bob could decorrelate their joint data from Eve via reconciliation and privacy amplification, while their data remain correlated.[28]The secret key rateKcan be given by

    whereICis the mutual information between Alice and Bob,IEthe upper bound of information that Eve can obtain, andMthe amount of the information revealed during the postprocessing.

    It is known that the post-processing has became a main restraint on the performance of CVQKD systems.Recently, the hardest issues have been devoted to parameter estimation,[23,25,29]reconciliation,[30–32]and privacy amplification,[33,34]but the tradeoff between the secret key rate and the accuracy of parameter estimation is still faced with challenges.

    Fortunately, the ANN, known as the MP model,[35]is now a popular machine learning technique[36,37]based on the principle of neural networks in biology and network topology,aiming to process complex information by simulating nervous system of human brain.[38]It is an operational model composing a large number of nodes(neurons).In Fig.1(a), it shows the structure of a multiple-input neuron.Thej-th outputojreads

    wherexiis thei-th input,wijis the weight ofxion thej-th path,bis bias that measures the difficulty of activation, and φ(·)represents the activation function.Figure 1(b)shows the structure of back propagation(BP)neural networks, which is employed in this paper.BP neural network is a multi-layer feed-forward neural networks, composed of input layer, hidden layer and output layer,the amount of the hidden layer can be one or more.

    Fig.1.(a)Structure of a multiple-input neuron.(b)Structure of the BP neural networks.

    The ANN-based CVQKD is shown in Fig.2.A set of coherent states,with desired modulation varianceVA,are prepared and multiplexed with the strong local oscillator(LO)by a polarization beam splitter.In the LO path, the delay line is employed to separate the LO from the signal in the time domain so that the time multiplexing can be realized.At the receiver,demultiplexing is executed by using polarization controller and polarization beam splitter.Through another delay line placed in the signal path, the delay of the LO due to the time multiplexing design is compensated so that both the signal and the LO can be precisely aligned.After Bob’s homodyne detection,Alice and Bob have two correlated sequencesxiandyi,respectively.Taking into account the additive white Gaussian noise(AWGN)channel,[39]xiandyican be related by

    whereNis the total number of the raw keys,zirepresents Gaussian noise,xi~N(0,VA),t=√is the quantum channel loss with transmittanceT∈[0,1],zi~N(0,σ2), andyi~N(0,t2VA+σ2).Here η represents the efficiency of the detector,σ2=N0+ηTξ+Vel,N0is the variance of the shot noise,andVeldenotes the detector’s electronic noise.

    Fig.2.Schematic diagram of the ANN-based CVQKD system.LD: Laser diode.BS: Beam splitter; LO: Local oscillator; AM: Amplitude modulator; PM: Phase modulator; VA: Variable attenuator; PBS: Polarization beam splitter; PC: Polarization controller; PIN: PIN photodiode;DPPC:Data pre-processing center;Alice and Bob do pretreatment(including data dividing and data normalizing)to their own original data through their respective DPPC,then the data are transmitted through an authenticated channel.ANN:Artificial neural networks;DTC:Data terminal center,including reconciliation and privacy amplification.

    For the parameter estimations, we take into account the transmittanceT, the excess noise ξ, and the maximum informationIE.Traditionally,we needs to disclose part of the raw keys,typically 50%,whereas in the proposed method none of the raw keys will be wasted.The ANN-based post-processing can be described as follows, it is worth noting that the data exchanged between Alice and Bob is achieved through the authentication channel, that is, the data may be eavesdropped,but cannot be tampered with.

    Theoretically, through the above-mentioned steps, Bob could have exactly all the sameXas Alice has.Then, along with his own raw keysY, he can proceed the parameter estimation without sacrificing any raw keys to the potential adversary, Eve.Consequently, Alice and Bob can achieve not only the high accuracy of parameter estimation but also the high secret key rate.But note that since the ANN algorithm is nothing more than an approximation of arbitrary function by learning the observed data and making prediction,it is impossible to obtain the completely correct results.Simply put,there are errors in the predicted data, which will lead to the deviation of parameter estimation, and eventually lead to the lower key rate than the ideal case.However, it is possible to achieve as high accuracy as possible by optimizing the structure of the ANN-involved CVQKD system and adjusting the suitable parameters.

    3.Security analysis

    After elaborating the schematic diagram of the ANNbased CVQKD system,we shall pay attention to the derivation of secret key rate.In the asymptotical case,[8]the key rate can be given by

    whereVξrepresents the variance of excess noise, β ∈[0,1]refers to the efficiency of the reconciliation,I(x:y)is the mutual information of Alice and Bob,(y:E) is the upper bound of information that Eve can obtain from Bob’s information, εPEis the probability that the true values of the parameters are not inside the confidence region.In order to ensure the security of the CVQKD system as much as possible without underestimating the eavesdropping,the worst case,that is,the case with the minimum key rate, needs to be considered.For this case,the minimum valueTminforTand the maximum valueshould be used.Then we can get the key rate in the finite-size case[39]

    wherenis the amount of the raw keys used for key extraction,whilem=N?nraw keys can be used for estimation,and Δ(n)is related to the security of the privacy amplification(PA).The parameter Δ(n)has the form

    where Hxis the Hilbert space of variablex,, and εPAare components of the failure probability of the whole CVQKD protocol.We assume dimHx=2, and a conservative value 10?10for.Thus,Δ(n)can be approximated as

    Note although theoretically there is no raw key disclosed for parameter estimation in this scheme, it does not mean thatn=N(details will be shown in Section 4).In homodyne detection,I(x:y)can be derived from[40]

    whereVBis Bob’s measured variance,VB|Ais the conditional variance, χtot= χline+χhom/Tminis the total noise,χline=1/Tmin?1+ξ is the channel-added noise,and χhom=[(1 ?η)+Vel]/η is detection-added noise.We note thatTmin=.

    To acquiretminand, the maximum-likelihood estimatorsandcan be used for the transmission model of Eq.(3)

    For the Holevo bound,[8]it can be simplified as

    whereG(x)=(x+1)log2(x+1)?xlog2x, λiis symplectic eigenvalue of the corresponding covariance matrix given by(in homodyne detection case)

    where we have

    Using Eq.(9),the estimatorsandcan be derived.After substituting them into Eq.(11), we obtaintminand.Combining Eq.(8) with Eq.(13), we getIhom(x:y) and,and hence derive the secret key rateKfrom Eq.(5).

    4.Numerical simulation

    In the ANN-based scenario, the value ofn/Nshould be one in theory as no raw key is sacrificed.But it is impossible for the actual neural networks to make the predicted value exactly the same as the real one, meaning thatnis always less thanN.Therefore, it is still valid in Eq.(4) for this scheme except thatnrepresents the amount of Alice’s raw keys that predicted correctly by Bob.We take into account

    which is the prediction accuracy.Then we have

    The value ofn/Nis usually assumed to be 0.5 in our experiment, as in the traditional scheme.However, the value ofSdepends on the performance of the ANN.

    We set the parameters of the ANN in Table 1,that is a BP neural networks which has a hidden layer with 12 neurons.In hidden layer,we take the activation function

    Table 1.Parameter settings.

    and the output layer activation function

    As for the training function,we take the Levenberg–Marquardt algorithm, which is used for solving the non-linear least squares problems.These can minimize the problems arise in training process of the ANN.

    At the beginning,all the variables and vectors are calculated and fed into the ANN,which randomly divides the data into three parts,i.e., training data, verification data, and test data, accounting for 70%, 15%,and 15%,respectively.After that, the networks begins to learn.The learning process will be repeated until the lowest level of error is achieved.(L=20 km,d=80,N=1.2×106).

    Fig.3.Regression diagram of the first learning for

    Figure 3 shows the regression graph of the first learning(for the relationship, while figure 4 represents the second learning(for the relationshipQ(‖yj‖)=‖xj‖).In these two graphs,the horizontal axis and the vertical axis represent the target value and the output value,respectively.Ideally,the output value should be equal to the target value,which is represented by a dotted line in the diagram.The black circles represent the data points,and the solid lines represent the fitting curves based on them.Theoretically,the closer the fitting curve is to the dotted line,the better the training effect of the ANN will be.After adequate training,the fitting curve of a perfect ANN should coincide with the “Y=T” curve, reflecting the most accurate description of the data relationship.But in reality,on the one hand,under the existing technology,such ideal ANN can not be constructed.On the other hand,if the fitting degree is too high(R=1),the overfitting occurs,that is, the training effect is perfect but the prediction effect is greatly deviated.During the two stages of training in our experiment, the fitting curve is close to the dotted line.The value ofRis greater than 0.8,meaning that the output and the target fit well.Besides,the values of minimum mean squared error(MSE)in two sequential training processes are relatively small,0.026163 and 0.023441,respectively.Both the regression diagram and the MSE reveal that the ANN is well trained.

    Fig.4.Regression diagram of the second learning for Q(‖yj‖)=‖xj‖(L=20 km,d=80,N=1.2×106).

    After sufficient training, we began with the prediction process.To demonstrate the effect of the prediction, we randomly select some of Alice’s raw keys,and compare them with the predicted values.As shown in Fig.5,it shows that the two values are relatively close.In fact, the final mean relative error (MRE) we obtain from the experiment is 0.0246, which indicates that the prediction works well.

    After Bob acquires all the predicted data (denoted asXout), the parameter estimation can be proceeded.In Fig.6,we performance of the ANN-based CVQKD system in terms of the secret key rate.ForS=1,it is the case of the ideal ANN scheme that the neural networks can predict all the data with complete accuracy.In addition, we also test the performance of secret key rate at different block lengths.We find that the ANN-based scheme has more advantages than the traditional one in terms of both transmission distance and secret key rate.The closer the value of prediction accuracySapproaches to 100%, the higher the secret key rate is, as shown in Eq.(17).The performance of the ANN-based scheme is closer to that of the ideal one,which results from the tunable parametern/N.

    The improvement ofSdepends much on block length.Within certain range,prediction accuracy,as well as transmission distance, can be improved by the increased block length since more data provide the sufficient training.In Fig.7, we show effect of block length (blue-solid line) on the prediction accuracyS.For the block length that is no less than 106,the value ofSis between [80%,83%], whereas for the data length less than 106, a significant decrease of prediction accuracy can be observed, which indicates that adequate data are required for the performance improvement.In addition,due to the finite-size effect,small amounts of data may lead to the decrease of the secret key rate.However, when the block length is up to 107,Scan be improved slightly.The reason is that once there is enough data for the training, without optimizing the ANN, increasing data length makes no sense to improve the training and predicting ability of the ANN.As the growth of the block length, it takes more time in the training and predicting, which will be a great challenge for the real-time performance of the system.The time spent in the post-processing of CVQKD system via ANN depends on the structure of ANN itself, the algorithm of training and prediction,and the performance of the computer running ANN.The most important factor is the block length of the data.When the blocks length are 105,106,and 107,the times required to complete the post-processing are about two minutes, ten minutes and two hours,respectively.The performance of the computer used in our experiments is middling,with following configuration: core i5-10400F, 16G RAM, and 500G SSD.Obviously,The training time can be significantly reduced with a more powerful computer.In addition, during one working process of CVQKD system in optical fiber,the fitting relationship obtained by training the first data block can also be used in the subsequent data blocks.Therefore,we do not need to train every data block.Meanwhile,in Fig.7,we can also find that with the increase of transmission distance,the prediction accuracy gradually decreases.This is because the longer the distance,the more distorted the signal.

    Fig.5.Comparison between X and Xout. X represents the true values of Alice’s raw keys, and Xout denotes the predicted values that Bob gets through the ANN.

    In order to illustrate the characteristics of our scheme better, the method-of-moments (MM) scheme[42]and the transformed scheme by changing the implementation order of estimation and reconciliation(we call it exchanging order scheme for short)[25]are selected,to compare with our scheme.All of them can be used for the parameter estimations.The principles of these three schemes are completely different, our scheme uses a trained ANN to predict raw keys,while the MM scheme and the exchanging order scheme uses MM method to find a new estimator for σ2and changes the implementation order of parameter estimation and reconciliation, respectively.Compared with the other two competitors, our scheme is algorithmically simpler.In terms of disadvantages,more time is needed to train the networks in the ANN-based scheme, the performance of the estimator in the MM scheme is poor in minimizing variance and bias, and the exchanging order scheme requires an additional parameter estimation for channel characteristics, which increases the system complexity.And in terms of applicable scenario, our scheme is suitable for medium block length and unstable channel scenarios, while MM scheme is appropriate for long block length and high-loss channel, and the remaining scheme is applied to the stable system with slowly changing characteristics.Finally, we compared the secret key rates of the three schemes when the block lengthN=108and the transmission distanceL=30 km,there are 0.0507,0.085,and 0.036,respectively.It is important to note that this is not the best performance of our scheme,we can increase the key rate by improving the structure of the neural networks, adjusting the parameters’value,and optimizing the training and predicting algorithm.For example, instead of BP neural networks, we can use the radial basis function (RBF) neural networks, which contains input layer,hidden layer(only one)and output layer.Various forms of RBF function can be used as the activation function in hidden layer, take Gaussian function for example, its expression can be written as follows:

    where φi(·)represents thei-th RBF function,xpis thep-th input,cirepresents the center ofi-th node in the hidden layer,andis the variance of the Gaussian function.Then thej-th output of the RBF neural networks reads

    wherewijis the connection weight of the hidden layer to the output layer.Compared with BP networks,RBF networks can approximate arbitrary function with higher precision.Our experiments show that the key rate can be increased by 3% or even more by using the RBF networks and selecting appropriate parameters, such as the dimension of the input data,the spread of radial basis function, and so on.It should be noted that although RBF networks can avoid the local minimum problem and thus achieve higher prediction accuracy,its structure can be more complex.Since there is no specific law to follow in neural networks design at present,quite a lot of continuous attempts are essential to improve the key rate.We believe that different approaches,or combinations of them,may lead to better performance.In general, although the key rate of the ANN-based scheme is not the highest,the complexity of the algorithm is low, and additional hardware is barely required.The property that ANN can approach any rational number in theory makes it have the most prominent advantage, that is, suitable for the complex, variable and unstable channels.

    Fig.6.Secret key rate as a function of transmission distance.From left to right,red-dotted lines,blue-dashed lines,and green-solid lines,correspond to the traditional scheme,the ANN-based scheme,and the ideal ANN scheme,respectively.

    Fig.7.The A–N curve shows how the prediction accuracy varies with the length of the data(blue-solid line,L=20 km).The A–L curve represents the variation of the prediction accuracy with transmission distance (red-dotted line,N=1.2×107).

    5.Conclusion

    We have presented an ANN-involved parameter estimation scheme for performance improvement of the CVQKD system,where BP neural networks are placed in the data postprocessing stage without disclosing the raw keys.After being preprocessed,Alice’s and Bob’s original data are fed into the ANN to start the training experiments, in which the structure and the parameters of the ANN are constantly adjusted until the regression curve and error curve show that the ANN has achieved its best performance.Relationship between the data is obtained at the end of the training experiments before the ANN’s prediction.It is secure from Eve’s eavesdropping since none of the original data is disclosed.Simulation results suggest that the ANN-based scheme has shown better performance in the parameter estimation, secret key rate, capacity for carrying information and the accuracy of prediction,compared with the traditional scheme and other schemes.Besides,the ANN-based scheme,which requires very few additional devices,can be expediently implemented in the practical CVQKD systems.

    欧美bdsm另类| 在线观看午夜福利视频| 特级一级黄色大片| 老师上课跳d突然被开到最大视频| 免费黄网站久久成人精品| 免费看日本二区| 国产亚洲91精品色在线| 夜夜看夜夜爽夜夜摸| 成人永久免费在线观看视频| 伦精品一区二区三区| 人妻丰满熟妇av一区二区三区| 少妇的逼水好多| 久久久久久久亚洲中文字幕| 精品一区二区三区av网在线观看| 亚洲国产精品国产精品| 国产又黄又爽又无遮挡在线| 能在线免费观看的黄片| 一区二区三区免费毛片| videossex国产| 在线观看午夜福利视频| 欧美成人a在线观看| 国产黄色小视频在线观看| 听说在线观看完整版免费高清| 黑人高潮一二区| 男女做爰动态图高潮gif福利片| 给我免费播放毛片高清在线观看| av视频在线观看入口| 岛国在线免费视频观看| av视频在线观看入口| 亚洲精品久久国产高清桃花| 欧美成人一区二区免费高清观看| 男女之事视频高清在线观看| 男女之事视频高清在线观看| 天美传媒精品一区二区| 日韩欧美免费精品| 男女之事视频高清在线观看| 91在线精品国自产拍蜜月| 俄罗斯特黄特色一大片| 国产高清视频在线观看网站| 欧美精品国产亚洲| 听说在线观看完整版免费高清| 岛国在线免费视频观看| 99九九线精品视频在线观看视频| or卡值多少钱| 亚洲婷婷狠狠爱综合网| 久久精品影院6| 精品久久国产蜜桃| 国产一区二区激情短视频| 搡老妇女老女人老熟妇| 性插视频无遮挡在线免费观看| 可以在线观看的亚洲视频| 成人二区视频| 精品久久久久久成人av| 人妻丰满熟妇av一区二区三区| 在线国产一区二区在线| 成人精品一区二区免费| 亚洲精华国产精华液的使用体验 | 精品一区二区免费观看| 亚洲真实伦在线观看| 精华霜和精华液先用哪个| 在线免费观看的www视频| 97在线视频观看| 少妇猛男粗大的猛烈进出视频 | 蜜臀久久99精品久久宅男| 久久精品国产自在天天线| 91麻豆精品激情在线观看国产| 黑人高潮一二区| 91久久精品国产一区二区三区| 亚洲性夜色夜夜综合| 一夜夜www| 一本久久中文字幕| 免费观看的影片在线观看| 午夜爱爱视频在线播放| 成人鲁丝片一二三区免费| 久久99热6这里只有精品| 国产欧美日韩一区二区精品| 国产片特级美女逼逼视频| 97超级碰碰碰精品色视频在线观看| 久久精品国产99精品国产亚洲性色| 又爽又黄a免费视频| 国产色婷婷99| 亚洲精华国产精华液的使用体验 | 小蜜桃在线观看免费完整版高清| 欧美人与善性xxx| 99久久九九国产精品国产免费| .国产精品久久| 欧美日韩一区二区视频在线观看视频在线 | 麻豆精品久久久久久蜜桃| 99热这里只有是精品在线观看| 色av中文字幕| 国产精品一区二区免费欧美| 久久久久久久久中文| 欧美激情久久久久久爽电影| 你懂的网址亚洲精品在线观看 | 中文字幕精品亚洲无线码一区| 国产中年淑女户外野战色| 精品午夜福利视频在线观看一区| 亚洲精品国产av成人精品 | 熟妇人妻久久中文字幕3abv| h日本视频在线播放| 丝袜喷水一区| 国产色爽女视频免费观看| 国产精品一二三区在线看| 久久人人爽人人片av| 久久精品国产亚洲网站| 老司机午夜福利在线观看视频| 国产久久久一区二区三区| 一本精品99久久精品77| 18+在线观看网站| 成人亚洲欧美一区二区av| 婷婷精品国产亚洲av在线| 欧美日本亚洲视频在线播放| 婷婷色综合大香蕉| 99热网站在线观看| 十八禁网站免费在线| 狠狠狠狠99中文字幕| 国产黄色视频一区二区在线观看 | 亚洲av免费在线观看| 国产一区二区在线av高清观看| 综合色丁香网| 久久天躁狠狠躁夜夜2o2o| 久久九九热精品免费| 少妇熟女欧美另类| 欧美3d第一页| 级片在线观看| av专区在线播放| 人妻制服诱惑在线中文字幕| 在线观看66精品国产| 嫩草影视91久久| eeuss影院久久| 国产一区二区激情短视频| 卡戴珊不雅视频在线播放| 日本欧美国产在线视频| 女人被狂操c到高潮| 99久久成人亚洲精品观看| 日韩欧美在线乱码| 色综合色国产| 色哟哟哟哟哟哟| 国产真实伦视频高清在线观看| 99久久中文字幕三级久久日本| 久久久久久久午夜电影| 日本爱情动作片www.在线观看 | 欧美日韩国产亚洲二区| 欧美最新免费一区二区三区| 国产高清视频在线播放一区| 国产午夜精品久久久久久一区二区三区 | 亚洲成人久久性| 在线观看一区二区三区| 美女黄网站色视频| 免费高清视频大片| 成人午夜高清在线视频| 亚洲四区av| 国产精品久久久久久久久免| 级片在线观看| 亚洲成av人片在线播放无| 91狼人影院| 精品不卡国产一区二区三区| 日韩一本色道免费dvd| eeuss影院久久| 国产精品三级大全| 99久久无色码亚洲精品果冻| 日韩 亚洲 欧美在线| av黄色大香蕉| 尾随美女入室| av天堂中文字幕网| 午夜福利18| 男女边吃奶边做爰视频| 欧美xxxx黑人xx丫x性爽| 亚洲精品456在线播放app| 99精品在免费线老司机午夜| 国产精品国产高清国产av| 天天躁夜夜躁狠狠久久av| 亚洲一区二区三区色噜噜| 变态另类成人亚洲欧美熟女| 自拍偷自拍亚洲精品老妇| 国产欧美日韩精品亚洲av| 国产成人a∨麻豆精品| 免费在线观看成人毛片| 国产综合懂色| 国产伦一二天堂av在线观看| 黄色一级大片看看| 欧美+亚洲+日韩+国产| 亚洲综合色惰| 中国国产av一级| 国产欧美日韩一区二区精品| 国产精品久久久久久久久免| 精品国内亚洲2022精品成人| 欧美不卡视频在线免费观看| 三级国产精品欧美在线观看| 自拍偷自拍亚洲精品老妇| 免费高清视频大片| 性插视频无遮挡在线免费观看| 亚洲成a人片在线一区二区| 久久久精品大字幕| 久久久久久久久久成人| 人妻夜夜爽99麻豆av| 亚洲av.av天堂| 国产高清有码在线观看视频| 秋霞在线观看毛片| 国产探花在线观看一区二区| 亚洲最大成人中文| ponron亚洲| 色综合亚洲欧美另类图片| 国产精品女同一区二区软件| 男女之事视频高清在线观看| 99国产精品一区二区蜜桃av| 99riav亚洲国产免费| 在现免费观看毛片| 免费看日本二区| 天堂av国产一区二区熟女人妻| 国产黄片美女视频| 成人三级黄色视频| 亚洲国产欧美人成| 99riav亚洲国产免费| 99久国产av精品| 亚洲国产日韩欧美精品在线观看| 久久精品91蜜桃| 国产蜜桃级精品一区二区三区| 男女之事视频高清在线观看| 国产黄色视频一区二区在线观看 | 丰满的人妻完整版| 日韩成人av中文字幕在线观看 | 国产极品精品免费视频能看的| 日本色播在线视频| 国产精品三级大全| 美女cb高潮喷水在线观看| 国产91av在线免费观看| 一本精品99久久精品77| 亚洲国产精品合色在线| 此物有八面人人有两片| 亚洲av成人av| 禁无遮挡网站| 欧美高清性xxxxhd video| 一个人看视频在线观看www免费| 波多野结衣高清无吗| 国产精品日韩av在线免费观看| 久久国内精品自在自线图片| 亚洲人成网站在线播| 日韩欧美在线乱码| 久久热精品热| 国产高清视频在线观看网站| 久久久久国内视频| 亚洲av电影不卡..在线观看| 伦精品一区二区三区| 久久精品人妻少妇| 久久精品影院6| 亚洲最大成人手机在线| 级片在线观看| 亚洲性久久影院| 此物有八面人人有两片| 亚洲熟妇中文字幕五十中出| 国模一区二区三区四区视频| 欧美中文日本在线观看视频| 国产亚洲精品综合一区在线观看| 国产女主播在线喷水免费视频网站 | 中文字幕av在线有码专区| 一区二区三区高清视频在线| 色吧在线观看| 成人无遮挡网站| 精品99又大又爽又粗少妇毛片| 久久久久久久久久成人| 亚洲av中文av极速乱| 国产一区二区激情短视频| 亚洲欧美中文字幕日韩二区| 又黄又爽又刺激的免费视频.| .国产精品久久| 日韩欧美一区二区三区在线观看| 日韩成人av中文字幕在线观看 | 12—13女人毛片做爰片一| 亚洲av美国av| 午夜免费激情av| 真实男女啪啪啪动态图| 国产亚洲精品久久久久久毛片| 丰满的人妻完整版| 男女视频在线观看网站免费| 校园春色视频在线观看| 久久久久免费精品人妻一区二区| 99国产极品粉嫩在线观看| 国产一区二区亚洲精品在线观看| 亚洲欧美日韩高清专用| av在线老鸭窝| 插逼视频在线观看| 99久久中文字幕三级久久日本| 嫩草影院新地址| 亚洲久久久久久中文字幕| 成人高潮视频无遮挡免费网站| 五月伊人婷婷丁香| 少妇猛男粗大的猛烈进出视频 | 国内少妇人妻偷人精品xxx网站| 久久精品综合一区二区三区| 国产中年淑女户外野战色| 91在线观看av| 亚洲国产精品sss在线观看| 一夜夜www| 国内久久婷婷六月综合欲色啪| 亚洲av二区三区四区| 高清日韩中文字幕在线| 99久久精品国产国产毛片| 久久人妻av系列| 午夜福利高清视频| 成人漫画全彩无遮挡| 国产亚洲欧美98| 婷婷精品国产亚洲av| 色吧在线观看| 亚洲欧美日韩高清专用| 亚洲av中文字字幕乱码综合| av天堂在线播放| 亚洲av第一区精品v没综合| 精品日产1卡2卡| 国语自产精品视频在线第100页| 免费不卡的大黄色大毛片视频在线观看 | 露出奶头的视频| 精品午夜福利视频在线观看一区| 久久久久国产网址| 亚洲美女视频黄频| 久久国内精品自在自线图片| 国产激情偷乱视频一区二区| 神马国产精品三级电影在线观看| 黄色视频,在线免费观看| 男人狂女人下面高潮的视频| 国产黄片美女视频| 国产精品,欧美在线| 好男人在线观看高清免费视频| 精品一区二区三区av网在线观看| 久久精品人妻少妇| 精品免费久久久久久久清纯| 男人狂女人下面高潮的视频| 婷婷亚洲欧美| 色吧在线观看| 国产精品一区www在线观看| 少妇的逼水好多| 日本色播在线视频| 亚洲精品久久国产高清桃花| 99精品在免费线老司机午夜| 国产男靠女视频免费网站| 狠狠狠狠99中文字幕| 日本三级黄在线观看| 精品一区二区三区视频在线观看免费| 少妇的逼好多水| 久久人人爽人人片av| 不卡视频在线观看欧美| 99热网站在线观看| 在线免费十八禁| 亚洲性久久影院| 最新中文字幕久久久久| 男插女下体视频免费在线播放| 国产av麻豆久久久久久久| 黄片wwwwww| 亚洲最大成人手机在线| 久久久久久久久中文| 精品久久久久久久久亚洲| 欧美一区二区国产精品久久精品| 免费看av在线观看网站| 亚洲第一区二区三区不卡| or卡值多少钱| 国产久久久一区二区三区| 国产成人精品久久久久久| a级毛片免费高清观看在线播放| 韩国av在线不卡| 三级经典国产精品| 床上黄色一级片| 久久久国产成人精品二区| 国内精品一区二区在线观看| 日韩欧美三级三区| 一级黄片播放器| 国产高清不卡午夜福利| 亚洲熟妇中文字幕五十中出| 免费看日本二区| 人妻夜夜爽99麻豆av| 我要搜黄色片| 老师上课跳d突然被开到最大视频| 国产精品久久久久久久电影| a级毛片免费高清观看在线播放| 国产日本99.免费观看| 久久久久国产精品人妻aⅴ院| 丰满人妻一区二区三区视频av| 在现免费观看毛片| 免费av观看视频| 精品一区二区免费观看| 国产黄色视频一区二区在线观看 | 国产精品日韩av在线免费观看| 国产精品一二三区在线看| 免费无遮挡裸体视频| 日韩欧美三级三区| 秋霞在线观看毛片| 欧美区成人在线视频| 日韩强制内射视频| 中文字幕免费在线视频6| 我的老师免费观看完整版| 欧美性猛交黑人性爽| 蜜桃久久精品国产亚洲av| 精品人妻偷拍中文字幕| 少妇裸体淫交视频免费看高清| 精品久久久久久成人av| 男女啪啪激烈高潮av片| 91久久精品国产一区二区成人| 黄色欧美视频在线观看| 自拍偷自拍亚洲精品老妇| av卡一久久| av专区在线播放| 亚洲美女黄片视频| 99riav亚洲国产免费| 亚洲性久久影院| 黑人高潮一二区| 久久久国产成人精品二区| 插逼视频在线观看| av在线天堂中文字幕| av黄色大香蕉| 国产精品福利在线免费观看| 久久久久国内视频| 在线播放无遮挡| 国产精品,欧美在线| 女人被狂操c到高潮| 国内精品美女久久久久久| 18禁在线播放成人免费| 又爽又黄a免费视频| 99国产极品粉嫩在线观看| 最后的刺客免费高清国语| 亚洲无线观看免费| 国产精品久久久久久精品电影| 国产视频内射| 精品熟女少妇av免费看| 一区二区三区四区激情视频 | 乱码一卡2卡4卡精品| 国产三级在线视频| 毛片女人毛片| 国产精品1区2区在线观看.| 亚洲熟妇中文字幕五十中出| 美女高潮的动态| 国产精品亚洲一级av第二区| 国产国拍精品亚洲av在线观看| 干丝袜人妻中文字幕| 国内精品美女久久久久久| 日日干狠狠操夜夜爽| 人妻丰满熟妇av一区二区三区| 最新中文字幕久久久久| 美女 人体艺术 gogo| 国产毛片a区久久久久| 国产一区二区亚洲精品在线观看| 亚洲不卡免费看| 亚洲成人精品中文字幕电影| 亚洲av免费高清在线观看| 黄色一级大片看看| 久久精品影院6| 一本精品99久久精品77| 综合色av麻豆| 久久久久久伊人网av| 亚洲精品一区av在线观看| 大型黄色视频在线免费观看| 三级国产精品欧美在线观看| 亚洲中文字幕日韩| 国产男人的电影天堂91| 欧美成人精品欧美一级黄| 免费观看在线日韩| 日本免费a在线| 国产探花在线观看一区二区| 亚洲欧美成人综合另类久久久 | 在线观看av片永久免费下载| 高清毛片免费观看视频网站| 色综合色国产| 色综合站精品国产| 老师上课跳d突然被开到最大视频| 国产精品无大码| 国产美女午夜福利| 日本黄色视频三级网站网址| 日韩成人av中文字幕在线观看 | 国产私拍福利视频在线观看| 欧美色欧美亚洲另类二区| 1000部很黄的大片| 一个人观看的视频www高清免费观看| 看片在线看免费视频| 国产精品人妻久久久影院| 免费看av在线观看网站| 免费在线观看影片大全网站| 国产成人a∨麻豆精品| 两性午夜刺激爽爽歪歪视频在线观看| 国产精品三级大全| 真实男女啪啪啪动态图| 亚洲精品成人久久久久久| 啦啦啦啦在线视频资源| 亚洲精品亚洲一区二区| 午夜精品在线福利| 看十八女毛片水多多多| 少妇裸体淫交视频免费看高清| 麻豆一二三区av精品| a级毛色黄片| 精品熟女少妇av免费看| 欧美成人a在线观看| 中国美白少妇内射xxxbb| 亚洲内射少妇av| 老女人水多毛片| 久久这里只有精品中国| 精品午夜福利视频在线观看一区| 欧美日本亚洲视频在线播放| 熟女人妻精品中文字幕| 不卡一级毛片| 最近手机中文字幕大全| 精品福利观看| 69人妻影院| 免费一级毛片在线播放高清视频| 精品午夜福利在线看| 精品人妻一区二区三区麻豆 | 我要看日韩黄色一级片| 国产aⅴ精品一区二区三区波| 少妇被粗大猛烈的视频| 女人被狂操c到高潮| 婷婷精品国产亚洲av在线| 欧美xxxx性猛交bbbb| 国内精品美女久久久久久| 亚洲婷婷狠狠爱综合网| 一个人看视频在线观看www免费| 亚洲性夜色夜夜综合| 亚洲av中文字字幕乱码综合| 久久精品影院6| 男女那种视频在线观看| 久久久久久伊人网av| 亚洲美女搞黄在线观看 | 日本黄色片子视频| 国产三级中文精品| 麻豆国产av国片精品| 精品熟女少妇av免费看| 一边摸一边抽搐一进一小说| 国产成人freesex在线 | 国产精品不卡视频一区二区| 在线免费观看的www视频| 又黄又爽又刺激的免费视频.| 国产精品免费一区二区三区在线| 亚洲精品乱码久久久v下载方式| www日本黄色视频网| 国产精品久久久久久久久免| 亚洲成人精品中文字幕电影| 麻豆精品久久久久久蜜桃| 国产爱豆传媒在线观看| 别揉我奶头~嗯~啊~动态视频| 亚洲第一区二区三区不卡| 日本一二三区视频观看| 黄色日韩在线| 日日摸夜夜添夜夜爱| 伦理电影大哥的女人| 国产成人a∨麻豆精品| 亚洲av五月六月丁香网| 免费人成视频x8x8入口观看| 老熟妇乱子伦视频在线观看| 听说在线观看完整版免费高清| 成人综合一区亚洲| 天堂√8在线中文| 青春草视频在线免费观看| 亚洲av美国av| 99热精品在线国产| 我的女老师完整版在线观看| 老师上课跳d突然被开到最大视频| 99热网站在线观看| 久久久久精品国产欧美久久久| 我的女老师完整版在线观看| 日本在线视频免费播放| 久久久成人免费电影| 国产综合懂色| 亚洲av美国av| 中文在线观看免费www的网站| 亚洲成人中文字幕在线播放| 免费黄网站久久成人精品| 18禁黄网站禁片免费观看直播| 欧美中文日本在线观看视频| www日本黄色视频网| 长腿黑丝高跟| 嫩草影院入口| 国产精品乱码一区二三区的特点| 一区二区三区四区激情视频 | 一个人看的www免费观看视频| 观看美女的网站| 大又大粗又爽又黄少妇毛片口| 国产精品久久久久久精品电影| 国产aⅴ精品一区二区三区波| 99在线人妻在线中文字幕| 小蜜桃在线观看免费完整版高清| 免费大片18禁| 日韩精品中文字幕看吧| videossex国产| 国产精品久久久久久久电影| 国产淫片久久久久久久久| 蜜臀久久99精品久久宅男| 日韩 亚洲 欧美在线| 日日啪夜夜撸| 老司机午夜福利在线观看视频| 热99在线观看视频| 老女人水多毛片| 亚洲av成人av| 国产精品人妻久久久久久| 18禁在线播放成人免费| 天天一区二区日本电影三级| 岛国在线免费视频观看| 国产白丝娇喘喷水9色精品| 欧美成人一区二区免费高清观看| 欧美日韩一区二区视频在线观看视频在线 | 美女内射精品一级片tv| 亚洲成人av在线免费| 男人的好看免费观看在线视频| av.在线天堂| 国产成人aa在线观看| 91午夜精品亚洲一区二区三区| 亚洲一区高清亚洲精品| 欧美又色又爽又黄视频| 国产v大片淫在线免费观看| 婷婷色综合大香蕉| 中文在线观看免费www的网站| 亚洲内射少妇av| 久久久久久久久久成人| 一边摸一边抽搐一进一小说| 久久精品91蜜桃| 午夜激情福利司机影院| 你懂的网址亚洲精品在线观看 | 国内精品美女久久久久久| 午夜激情福利司机影院| 91av网一区二区| 午夜福利成人在线免费观看|