• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Numerical simulation of impact of supersonic molecular beam injection on edge localized modes

    2020-12-02 08:10:58YuanzhenWANG王元震TianyangXIA夏天陽andYueLIU劉悅
    Plasma Science and Technology 2020年12期

    Yuanzhen WANG (王元震) , Tianyang XIA (夏天陽) and Yue LIU (劉悅)

    1 Key Laboratory of Materials Modification by Laser, Ion and Electron Beams (Ministry of Education),School of Physics, Dalian University of Technology, Dalian 116024, People’s Republic of China

    2 Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031, People’s Republic of China

    Abstract

    Keywords: BOUT++ code, SMBI, P-B mode, ELM, ELM size

    1.Introduction

    The high confinement mode (H-mode) [1] is a promising operational regime for existing and future tokamaks including the International Thermonuclear Experimental Reactor (ITER) [2].During an H-mode discharge, a transport barrier with large pressure gradient close to the plasma edge is formed.As a result,a‘pedestal’is built in the outer region of the pressure profile [3].Turbulence and transport processes are suppressed in the pedestal, which may be due to theE×Bshear flow [4, 5].Because of magneto-hydrodynamic instabilities, the pedestal collapses periodically releasing particles and energy to the outside known as edge localized modes(ELMs)[6].In experiments,the eruption of filamentary structures from the plasma edge is observed during ELMs [7].In theoretical researches,ELMs are explained by the theory of peeling-ballooning (PB)mode[8].Some codes such as ELITE[9]and BOUT++[10] can simulate P-B modes.The ELITE code is mainly used for linear simulations.The three-field [11], five-field[12]and six-field[13]modules in the BOUT++framework can perform not only linear, but nonlinear simulations including the effects of diamagnetic drift,E×Bdrift,resistivity and hyper-resistivity [14].

    ELMs may cause unacceptable erosion of plasma-facing components (PFCs) [15].In order to ease the ELM erosion problem, methods have been developed to reduce the ELM size and mitigate the impact of ELMs,such as pellet injection[16, 17], lower hybrid current drive [18], resonant magnetic perturbation [19, 20], impurity injection [21, 22] and supersonic molecular beam injection(SMBI)[23].In this work,the impact of SMBI on ELMs is studied.SMBI is a fuel injection method of tokamaks [24].It is found that the ELM size decreases and the frequency of ELMs increases after the deposition of SMBI [23].Moreover, a recent research shows that seeding mixed gas is more efficient [25].The physics of the ELM mitigation phenomena by SMBI is poorly understood.Rhee et al used a cellular automata model to simulate the ELM mitigation by SMBI, and they believe that shallow SMBI deposition is sufficient for ELM mitigation [26].Huang et al added source terms to the five-field module of BOUT++ framework, and also did some simulation researches about this [27, 28].Their results show that adding particle sources at different locations of the pedestal has different impacts on ELMs.Experimental results show that SMBI reduces the ion temperature in the pedestal, while the ELM size is reduced[29].We think that the low-speed ions seeded by SMBI cool the ions in the pedestal by Coulomb collisions with them [30], so that the ELM size is reduced at the same time.Based on this thought,we built a model considering the Coulomb collisions between the ions seeded by SMBI and the thermal ions in the pedestal in the three-field module of the BOUT++ framework.

    In this paper, the impact of SMBI on ELMs is investigated using a model built in the three-field module of the BOUT++ framework.The remainder of this paper is organized as follows.Section 2 shows the model and equilibrium used for simulations.Section 3 displays the simulation results and corresponding analysis.Section 4 is the summary.

    2.Model

    2.1.The form of SMBI and its interaction with plasma

    Suppose that the molecule seeded by SMBI isD2.According to experimental results, after the deposition of SMBI at the pedestal, the plasma density increases and the plasma temperature decreases.Due to these effects of SMBI, ELMs are mitigated [23, 25, 29].Based on the physical images of experiment, and to establish a practical model, we only consider the physics after the ionization and deposition of the particles seeded by SMBI.The processes of propagation and ionization of the particles are ignored.The particles seeded by SMBI are ionized into electrons and low-speed deuterium ions.The electrons are ignored, and we only consider the effect of the low-speed deuterium ions.The low-speed deuterium ions are called cold ions in the following text.The density, mass, velocity and temperature of the cold ions are denoted byni′,m,Vi′andTi′respectively.The plasma considered in our model is a deuterium plasma composed of electrons and deuterium ions.The deuterium ions in the plasma are called thermal ions in the following text, whose velocity and temperature are denoted byVandTirespectively.In this work, we assume a cold ion is transformed into a thermal ion immediately after a Coulomb collision.That is,the density of the cold deuterium ions decreases and the temperature is equal to the thermal ions after Coulomb collisions.The electron density and ion density in the plasma are both set ton=1019m?3, which do not change in space-time across the simulation domain.The density of cold ions is set to about 1018m?3,which changes with time and space.The increase of plasma density due to SMBI is approximated to zero.Cold ions exert a force on the thermal ions by Coulomb collisions, which is denoted byFii′.Therefore,

    whereFincludes the other forces.According to the approximation of the Coulomb collision operator in fluid equations[31], we getwhereνii′is the Coulomb collision frequency [32].Sincewe let

    Energy transfer also occurs between the cold ions and thermal ions by Coulomb collisions,which can be represented by,

    In this work, the densitynof the plasma is a constant.Therefore, we can multiplynon both two sides of equation (2-3) to get,

    wherePis the plasma pressure.

    At present, the calculation of Coulomb collision frequency is based mostly on the supposition that particles have fully collided with each other to meet the Boltzmann distribution [30, 32].If particles B satisfy the Boltzmann distribution, their thermal speed isVB, their density isnBand the collision frequency among them isνBB.Then, according to previous derivation [30], we obtain,

    Figure 1.(a) Locations of x0 at the equilibrium pressure profile when SMBI is deposited at the top, middle and bottom of the pedestal.

    Here,we first estimate the Coulomb collision frequencyνiiamong the thermal ions satisfying the Boltzmann distribution.We letνeibe the Coulomb collision frequency between the electrons and thermal ions in the plasma satisfying the Boltzmann distribution,then[32].In tokamak edge plasma, the typical Lundquist numberwhereνeiis about 105s?1[14].Therefore,νiiis about 103s?1.Next, we estimate the Coulomb collision frequencyν′′iiamong the cold ions satisfying the Boltzmann distribution.It can be seen from equation (2-5) thatThe speed of the thermal ionsViis about 105m s?1,and the speed of the cold ions seeded by SMBI is about 103m s?1.So we get

    The cold ions and thermal ions obviously have not fully collided with each other.So the calculation ofν′iineeds to know the velocity distributions of the cold ions and thermal ions,respectively,and do a complex integral operation.In this work, we do not do direct calculation, but estimateν′iiin a more feasible way.According to equation (2-5), we assume the order of νii′is between the orders ofνiiandνi′i′,andνii′is proportional to ni′.That is to say, the order ofνii′is 103?108s?1,andνii′=kii′ni′,where kii′is a constant.According to the orders ofνii′and ni′,the order of kii′is 10?15?10?10m3s?1.Due to limited computing resources,and in order to see the impact of SMBI on an ELM in 100-200 Alfvén time τA(about 10?7s),the value ofνii′is set to about 105s?1,which changes with ni′.Correspondingly,kii′=10?13m3s?1,which is a fixed value.

    In experiment, the cold ion density has fluctuating distributions in the poloidal and toroidal directions.In order to make the model more practical, we make an approximation that the density of cold ions is uniform in the poloidal and toroidal directions,but is set to change with time and satisfy a spatial distribution in the radial direction [28].

    Figure 2.Radial equilibrium profiles of (a) pressure P0, parallel current density ‖J and (b) safety factor q.

    wherenfis the amplitude of the cold ion density andtis the duration of the simulations.Fromt=0 tot=200τA, the amplitude of cold ion density decreases from the maximumnfto 0.xgis the grid number in thexdirection (i.e.the radial direction),x0is used to determine the central radial location of the distribution andxwis used to determine the width of the distribution.The distribution of′niis used to represent the distribution of SMBI deposited at the pedestal.Its distribution in the radial direction is shown in figure 1.

    2.2.BOUT++ three-field equations with the impact of SMBI

    From equations (2-4) and (A5) in the appendix, we get three collision terms because of the impact of SMBI, which areWe call them momentum collision term,gradient collision term and energy collision term, respectively.The three-field equations [14]with these terms are,

    The equilibrium used in the simulations is the cbm18_dens8 shifted circular equilibrium [33], which is unstable to P-B modes.The profiles of its pressure, parallel current density and safety factor are shown in figure 2.Its major radiusR0is3.4 m,minor radiusais1.2 m,toroidal field on axisB0is2 T,edge safety factorqais3.03,normalized betaβNis 1.51 and normalized pedestal widthis0.049.

    The radial simulation range isis the normalizedψ.The inner radial boundary conditions are =U0,andThe outer radial boundary conditions areandφ= 0.In the simulations, a field-aligned (flux) coordinate system is used [34], whose coordinatesx,yandzare the radial-like,poloidal-like and toroidal-like coordinates.The simulation domain is periodic inyandz.The resolutions inxandyare 516 and 64, respectively.For efficiency, in the linear simulations,of the torus is simulated (nis the toroidal mode number),and the resolution inzis 16.In the nonlinear simulations,of the torus is simulated, and the resolution inzis 64.In a linear simulation fornmode, the given initial perturbation is a perturbation with only thenharmonic.In the nonlinear simulations,the given initial perturbation is a perturbation with only theharmonic.

    Figure 3.(a)Growth rates of the P-B modes with only the momentum collision term when nf is different.(b)Growth rates of the P-B modes with only the energy collision term when nf is different.(c) Growth rates of the P-B modes with both the momentum and energy collision terms when nf is different.(d) Growth rates of the P-B modes with both the momentum and energy collision terms when xw is different.

    3.Results and discussion

    3.1.Linear simulations

    The equations with and without the collision terms are used to simulate ELMs.In order to simulate P-B modes, we setn=15.When there is no collision term, the growth rateγis 0.2487ωA,whereωA=VA/R0is the Alfvén frequency andVAis the Alfvén velocity.When there is only the gradient collision term, the growth rate does not change.When there is the momentum collision term or the energy collision term,the growth rate decreases.In the simulations,nfis set to 1 × 1017m?3,5 × 1017m?3,1 × 1018m?3,1.5 × 1018m?3and 2 × 1018m?3,xwis set toa/13, 2a/13, 3a/13, 4a/13 and /a5 13, andx0is set to locate at the top, middle and bottom of the pedestal.The growth rates are shown in figure 3, which have been normalized to an Alfvén frequencyωA.

    Figure 4.With both the momentum and energy collision terms, (a) growth rates of n=5, n=10, n=15 and n=20 modes when nf is different, (b) growth rates of n=5, n=10, n=15 and n=20 modes when xw is different.

    As can be seen from figure 3, the momentum collision term or the energy collision term reduces the growth rate of P-B modes, and between them the energy collision term plays a leading role.The reduction amplitude of the growth rate is increased when the amplitude or width of SMBI is increased, and when SMBI is deposited at the top, bottom and middle of the pedestal,the reduction amplitude increases successively.

    By contrast,when SMBI is deposited at the middle of the pedestal with both the momentum and energy collision terms,the effects of the amplitude and width of SMBI on the growth rate of =n5, =n10 and =n20 modes are also simulated.These modes are also considered to be P-B modes [14].In figure 4(a), the width of SMBI is fixed at /a4 13, and the effect of different amplitudes is investigated.In figure 4(b),the amplitude of SMBI is fixed at 1 × 1018m?3,and the effect of different widths is investigated.When the amplitude of SMBI reaches 2 × 1018m?3or the width of SMBI reaches 5a/13,then=5 mode hardly grows,and we simply think its growth rate is 0 without calculation.From figure 4,we know that the effects of SMBI on the P-B modes around n=5-20 are similar to =n15 mode.

    From the linear simulation results, we conclude that increasing the amplitude or width of SMBI is helpful to suppress ELMs, and when SMBI is deposited at the top,bottom and middle of the pedestal, the impact of SMBI on P-B modes increases successively.These results are similar to that of Huang et al [27, 28].

    3.2.Nonlinear simulations

    In order to investigate the impact of SMBI on the ELM size,ELMs are simulated nonlinearly.The size of an ELM is defined as [11] the ratio of the energy loss (ΔWped) to the pedestal stored energy (Wped),

    whereRinandRoutare the radial positions of the internal simulation boundary and the maximum pressure gradient,respectively.According to the results of linear simulations,both the momentum term and energy collision term are added to the equations used for nonlinear simulations, but the gradient collision term is neglected.

    First,the impacts of the amplitude and deposited location of SMBI on the ELM size are simulated.The amplitudenfis set to 5 × 1017m?3,1 × 1018m?3,1.5 × 1018m?3and 2 × 1018m?3.The widthxwis set to 4a/13.The locationx0is set to locate at the top, middle and bottom of the pedestal.The corresponding ELM sizes are shown in figure 5.It can be seen that the SMBI reduces the ELM size.The largernfis,the smaller the ELM size is.When SMBI is deposited at the bottom, top and middle of the pedestal with the same amplitude and width, the ELM size decreases successively.

    Comparing the result when SMBI is deposited at the pedestal top with the result when it is deposited at the bottom,there is a conflict between the linear and nonlinear simulations.The ELM size is smaller when SMBI is deposited at the pedestal top, but the corresponding P-B mode is more unstable.This conflict comes from the calculation of the energy lossΔWpedfor the ELM size in equation (3-1).Because of the location ofRout,〈P〉zincludes more pressure introduced from SMBI when SMBI is deposited at the pedestal top,which reduces the size ofΔWped.So the ELM size is smaller when SMBI is deposited at the pedestal top, even though the corresponding P-B mode is more unstable.

    Figure 5.With different n f ,the evolution of ELM sizes when SMBI is deposited at the top (a), middle (b) and bottom (c) of the pedestal.

    In figure 5, the time of a black dot corresponds to the time when filamentary structures of the ELM erupt [33].The pressure profiles averaged over (equilibrium) flux surfaces att=0 and at the times indicated by the black dots are shown in figure 6.The vertical axis is the total pressure (the sum of equilibrium pressure and toroidal average value of perturbation pressure) normalized by magnetic pressure.The black curve is the pressure profile at the beginning of the simulationt=0, which is the equilibrium pressure profile.The other curves represent the collapsed profiles at different times indicated by the black dots.Compared with the equilibrium pressure, due to the eruption of ELM, the inner part of the pressure profiles falls while the outer part of the pressure profiles rises.The only different parameter of (a), (b) and (c)in figure 6 is the deposited location of SMBI.Compared with the pressure profile of no SMBInf=0,when SMBI is deposited at the pedestal top,the reduction of the inner part of the pressure profiles is less,so that SMBI reduces the inward collapse amplitude of the pressure profiles.When SMBI is deposited at the pedestal bottom,the increase of the outer part of the pressure profiles is less, so that SMBI reduces the outward collapse amplitude of the pressure profiles.When SMBI is deposited at the pedestal middle, it reduces the collapse amplitude on both sides.The largernfis, the bigger the effect is.

    In figure 7,pressure perturbations at the times indicated by the black dots in figure 5 are shown, which are considered to be the filamentary structures of the ELMs.They are shown within the view of normalized poloidal flux(x-axis) and toroidal angle (y-axis) at the outer mid-plane.The data in each slice are normalized to its absolute maximum.(b), (c) and (d) in figure 7 show the filamentary structures when SMBI is deposited at different locations with an amplitude of 2 × 1018m?3and a width of 4a/13.Compared with the result without SMBI in figure 7(a), the SMBI reduces the radial extent of the filamentary structures,and the effects are different when it is deposited at different locations.When SMBI is deposited at the pedestal top, it reduces the inner extent of the filamentary structures.When SMBI is deposited at the pedestal bottom, it reduces the outer extent of the filamentary structures.When SMBI is deposited at the pedestal middle, it reduces both the inner and outer extents.

    Figure 6.Surface-averaged pressure profiles when SMBI is deposited at the top (a), middle (b) and bottom (c) of the pedestal.

    From figures 6 and 7, we conclude that when SMBI is deposited at the pedestal top, it reduces the inward collapse amplitude of the pressure profiles, which can improve the confinement efficiency during ELMs.When SMBI is deposited at the pedestal bottom, it reduces the outer extent of the filamentary structures, which can slow down the erosion of PFCs caused by ELMs.When SMBI is deposited at the middle of the pedestal,it has the above two effects at the same time.Therefore,to slow down the erosion of PFCs caused by ELMs,shallow deposition of SMBI such as at the middle and bottom of the pedestal is better.This can meet the needs of ELM mitigation.This conclusion is similar to that of Rhee et al [26].

    Finally, the impact of SMBI width on the ELM size is simulated.The amplitudenfis set to 1 × 1018m?3,the widthxwis set to /a2 13, /a3 13, /a4 13 and /a5 13,and the locationx0is set to locate at the top, middle and bottom of the pedestal.The corresponding ELM sizes are shown in figure 8.It can be seen that the SMBI reduces the ELM size.The largerxwis, the smaller the ELM size is.So when the width of SMBI is increased, its impact on the ELM size is increased.

    Figure 7.Pressure perturbations in the frame of normalized poloidal flux and toroidal angle when there is no SMBI(a), and when SMBI is deposited at the top (b), middle (c) and bottom (d) of the pedestal.

    4.Summary

    In this work,collision terms representing the impact of SMBI are added to the three-field equations in the BOUT++ code.The impact of SMBI on ELMs is investigated by linear and nonlinear simulations.The simulation results are analyzed and compared with others to find an optimal SMBI scenario.Linear simulation results show that the momentum collision term or the energy collision term reduces the growth rate of P-B modes, and between them the energy collision term plays a leading role.The reduction amplitude of the growth rate is increased when the amplitude or width of SMBI is increased, and when SMBI is deposited at the top,bottom and middle of the pedestal, the reduction amplitude increases successively.Thus, increasing the amplitude or width of SMBI is helpful to suppress ELMs,and when SMBI is deposited at the top,bottom and middle of the pedestal,the impact of SMBI on P-B modes increases successively.

    Nonlinear simulation results show that SMBI reduces the ELM size, and the reduction amplitude of the ELM size is increased when the amplitude or width of SMBI is increased.Moreover, when SMBI is deposited at the bottom, top and middle of the pedestal with the same amplitude and width,the reduction amplitude increases successively.Surface-averaged pressure profiles and filamentary structures are analyzed when the ELMs erupt.When SMBI is deposited at the top or middle of the pedestal, it reduces the inward collapse amplitude of the pressure profiles.This can improve the confinement efficiency during ELMs.When SMBI is deposited at the middle or bottom of the pedestal, it reduces the outer extent of the filamentary structures, which can slow down the erosion of PFCs caused by ELMs.Through the above results, we think that shallow deposition of SMBI such as at the middle and bottom of the pedestal with sufficient amplitude and width can meet the needs of ELM mitigation.

    Figure 8.With different x w ,the evolution of ELM sizes when SMBI is deposited at the top (a), middle (b) and bottom (c) of the pedestal.

    Acknowledgments

    The authors wish to thank X Q Xu and B D Dudson for their contributions to the BOUT++framework and R D Hazeltine for his contribution to plasma theory.This work was supported by the National Key R&D Program of China (Grant Nos.2018YFE0303102 and 2017YFE0301100).This work was also partially supported by National Natural Science Foundation of China (Grant No.11675217) and the Youth Innovation Promotion Association of Chinese Academy of Sciences (Grant No.2017479).

    Appendix.Deducing the momentum equation into a vorticity equation

    LettingF= ??P+J×Bin equation (2-1), we get,

    If the left side of equation (A1) is denoted byfii′,the shear-Alfvén law is obtained [31]:

    The first term on the left side of equation (A2) is,

    It is equivalent to,

    In the direction perpendicular to the magnetic field, only the contribution ofE×Bdrift is included in the velocity[31].That is to say,so that

    ORCID iDs

    Yuanzhen WANG (王元震) https://orcid.org/0000-0001-5943-301X

    在线观看午夜福利视频| 交换朋友夫妻互换小说| 伊人久久大香线蕉亚洲五| 在线观看免费午夜福利视频| 欧美激情 高清一区二区三区| 亚洲国产精品999在线| 人人妻人人添人人爽欧美一区卜| 久久香蕉激情| 丝袜人妻中文字幕| 午夜福利免费观看在线| 日韩欧美一区视频在线观看| 日本五十路高清| 国产精品一区二区精品视频观看| 欧美日韩国产mv在线观看视频| 可以在线观看毛片的网站| 午夜成年电影在线免费观看| 亚洲国产欧美网| 777久久人妻少妇嫩草av网站| 亚洲专区中文字幕在线| 日韩欧美一区二区三区在线观看| av网站免费在线观看视频| x7x7x7水蜜桃| 一本综合久久免费| 欧美日本亚洲视频在线播放| 天堂中文最新版在线下载| 色婷婷av一区二区三区视频| 欧美人与性动交α欧美软件| av中文乱码字幕在线| 美女高潮到喷水免费观看| 国产成人影院久久av| 自拍欧美九色日韩亚洲蝌蚪91| 精品久久久精品久久久| 天天影视国产精品| 老鸭窝网址在线观看| 女人被狂操c到高潮| 色播在线永久视频| 亚洲全国av大片| 黄色视频不卡| 黄色片一级片一级黄色片| 国产成人av激情在线播放| 水蜜桃什么品种好| 国产91精品成人一区二区三区| 电影成人av| 国产熟女午夜一区二区三区| 成人av一区二区三区在线看| 亚洲成a人片在线一区二区| 91麻豆av在线| 美女扒开内裤让男人捅视频| 久久久国产一区二区| www.熟女人妻精品国产| 最新美女视频免费是黄的| 成人永久免费在线观看视频| 别揉我奶头~嗯~啊~动态视频| 欧美黑人欧美精品刺激| 国产精品 国内视频| 免费久久久久久久精品成人欧美视频| 午夜激情av网站| 在线观看一区二区三区| 18禁裸乳无遮挡免费网站照片 | 久久国产精品男人的天堂亚洲| 亚洲av电影在线进入| 后天国语完整版免费观看| 搡老乐熟女国产| 精品少妇一区二区三区视频日本电影| 久热这里只有精品99| 国产成人精品无人区| 久久久国产一区二区| 午夜激情av网站| 丰满的人妻完整版| 久久香蕉激情| 一本大道久久a久久精品| 久久人人精品亚洲av| 亚洲性夜色夜夜综合| 亚洲成a人片在线一区二区| 久久精品亚洲精品国产色婷小说| 啦啦啦免费观看视频1| 日日干狠狠操夜夜爽| 首页视频小说图片口味搜索| 国产免费男女视频| 他把我摸到了高潮在线观看| 亚洲人成电影免费在线| 精品国产国语对白av| 国产三级在线视频| 色精品久久人妻99蜜桃| 黑人欧美特级aaaaaa片| 999久久久国产精品视频| 亚洲精品粉嫩美女一区| x7x7x7水蜜桃| 亚洲精品一卡2卡三卡4卡5卡| 另类亚洲欧美激情| 日韩有码中文字幕| 老司机深夜福利视频在线观看| 天天影视国产精品| 如日韩欧美国产精品一区二区三区| 制服人妻中文乱码| 男人舔女人的私密视频| 国产精品日韩av在线免费观看 | 亚洲精品美女久久av网站| 亚洲人成电影免费在线| 日韩免费高清中文字幕av| 搡老岳熟女国产| 日本免费a在线| 欧美一级毛片孕妇| 丰满饥渴人妻一区二区三| 长腿黑丝高跟| 国产精品亚洲av一区麻豆| 欧美乱码精品一区二区三区| 男人舔女人下体高潮全视频| 18美女黄网站色大片免费观看| 欧美久久黑人一区二区| 大型黄色视频在线免费观看| 午夜亚洲福利在线播放| 9色porny在线观看| 国产亚洲精品第一综合不卡| 国产伦人伦偷精品视频| 精品欧美一区二区三区在线| 欧美成人午夜精品| 女生性感内裤真人,穿戴方法视频| 99久久国产精品久久久| 欧美乱色亚洲激情| 亚洲av美国av| 久久久精品国产亚洲av高清涩受| 搡老熟女国产l中国老女人| 美女午夜性视频免费| 亚洲aⅴ乱码一区二区在线播放 | 少妇裸体淫交视频免费看高清 | 亚洲国产精品sss在线观看 | 亚洲欧美精品综合一区二区三区| 午夜免费观看网址| 免费不卡黄色视频| 国产精品99久久99久久久不卡| 国产精品香港三级国产av潘金莲| 欧美日韩视频精品一区| 女人爽到高潮嗷嗷叫在线视频| 欧美日本亚洲视频在线播放| 午夜福利在线观看吧| 久久久久久久久免费视频了| 91字幕亚洲| 午夜福利在线免费观看网站| 国产单亲对白刺激| 国产精品1区2区在线观看.| 在线免费观看的www视频| 日本一区二区免费在线视频| 麻豆一二三区av精品| 亚洲美女黄片视频| tocl精华| 色婷婷久久久亚洲欧美| 日韩三级视频一区二区三区| 高清av免费在线| 天堂俺去俺来也www色官网| av有码第一页| 夫妻午夜视频| 丝袜在线中文字幕| 51午夜福利影视在线观看| 校园春色视频在线观看| 精品国产亚洲在线| 免费女性裸体啪啪无遮挡网站| 亚洲欧美精品综合久久99| 欧美成人午夜精品| 亚洲av电影在线进入| 性欧美人与动物交配| 一二三四在线观看免费中文在| 国产91精品成人一区二区三区| 国产精品美女特级片免费视频播放器 | 国产激情久久老熟女| 亚洲精品一卡2卡三卡4卡5卡| 免费高清视频大片| 欧美日韩亚洲国产一区二区在线观看| 伊人久久大香线蕉亚洲五| 国产精品av久久久久免费| 婷婷丁香在线五月| 女人被躁到高潮嗷嗷叫费观| 精品免费久久久久久久清纯| 国产激情欧美一区二区| 午夜a级毛片| 欧美成狂野欧美在线观看| 中文字幕av电影在线播放| 成人三级黄色视频| 日本一区二区免费在线视频| 国产精品99久久99久久久不卡| 亚洲av美国av| 亚洲第一欧美日韩一区二区三区| ponron亚洲| 性色av乱码一区二区三区2| 亚洲国产中文字幕在线视频| 大型黄色视频在线免费观看| 在线观看午夜福利视频| 亚洲自偷自拍图片 自拍| 国产免费av片在线观看野外av| 一级作爱视频免费观看| 97人妻天天添夜夜摸| 亚洲,欧美精品.| 国产精品美女特级片免费视频播放器 | 女同久久另类99精品国产91| 大陆偷拍与自拍| 欧洲精品卡2卡3卡4卡5卡区| 人人妻,人人澡人人爽秒播| 夜夜爽天天搞| 午夜91福利影院| 免费av毛片视频| 精品无人区乱码1区二区| 激情在线观看视频在线高清| 天天添夜夜摸| 亚洲精品国产色婷婷电影| 好男人电影高清在线观看| 狠狠狠狠99中文字幕| 久久久久久久久免费视频了| 一级a爱片免费观看的视频| 久久性视频一级片| 免费日韩欧美在线观看| 亚洲av日韩精品久久久久久密| 亚洲国产中文字幕在线视频| 99久久人妻综合| 久久天躁狠狠躁夜夜2o2o| 色综合婷婷激情| av视频免费观看在线观看| 99热国产这里只有精品6| 精品福利观看| 黑丝袜美女国产一区| www.熟女人妻精品国产| 91成人精品电影| 十八禁人妻一区二区| 国产成人免费无遮挡视频| 婷婷六月久久综合丁香| 久久久久国产一级毛片高清牌| 亚洲成人免费电影在线观看| 国产成人精品无人区| 日日夜夜操网爽| 亚洲第一av免费看| 日本vs欧美在线观看视频| 国产亚洲精品久久久久久毛片| 大陆偷拍与自拍| 亚洲情色 制服丝袜| 在线视频色国产色| 日韩一卡2卡3卡4卡2021年| 国产乱人伦免费视频| 成人免费观看视频高清| 91老司机精品| 在线观看免费视频网站a站| 如日韩欧美国产精品一区二区三区| 久久人人爽av亚洲精品天堂| 日韩欧美一区视频在线观看| 99久久综合精品五月天人人| 久久欧美精品欧美久久欧美| 91国产中文字幕| 99国产精品一区二区三区| 亚洲av美国av| 国产精品久久电影中文字幕| 搡老岳熟女国产| 男人操女人黄网站| 国产亚洲精品一区二区www| 999久久久国产精品视频| 久久精品91蜜桃| 9热在线视频观看99| 亚洲精品国产区一区二| 亚洲,欧美精品.| 国产熟女午夜一区二区三区| av电影中文网址| 在线视频色国产色| 精品免费久久久久久久清纯| 91大片在线观看| 国产无遮挡羞羞视频在线观看| 午夜福利免费观看在线| 国产国语露脸激情在线看| 搡老熟女国产l中国老女人| 丁香欧美五月| 国产成人精品久久二区二区91| 中出人妻视频一区二区| 亚洲中文字幕日韩| 日本黄色日本黄色录像| 很黄的视频免费| 欧美激情久久久久久爽电影 | 久久人人97超碰香蕉20202| www.999成人在线观看| 国产成人av教育| 亚洲欧美一区二区三区久久| 精品久久久久久,| 亚洲中文av在线| 国产单亲对白刺激| 国产精品野战在线观看 | 国产欧美日韩综合在线一区二区| 脱女人内裤的视频| 国产亚洲av高清不卡| 精品一品国产午夜福利视频| 满18在线观看网站| 久久伊人香网站| 亚洲欧美精品综合一区二区三区| 欧美av亚洲av综合av国产av| 大陆偷拍与自拍| 老司机午夜福利在线观看视频| 咕卡用的链子| 又紧又爽又黄一区二区| 国产欧美日韩一区二区三区在线| 99re在线观看精品视频| 国产午夜精品久久久久久| 在线观看午夜福利视频| 欧美日韩亚洲国产一区二区在线观看| 日韩国内少妇激情av| 18禁观看日本| 19禁男女啪啪无遮挡网站| 亚洲aⅴ乱码一区二区在线播放 | 国产一区二区三区在线臀色熟女 | 国产熟女xx| 亚洲欧美日韩另类电影网站| 亚洲第一青青草原| 国产欧美日韩一区二区精品| 两性午夜刺激爽爽歪歪视频在线观看 | 久久精品91蜜桃| 黑丝袜美女国产一区| 欧美中文日本在线观看视频| 日本五十路高清| 香蕉国产在线看| 757午夜福利合集在线观看| 黄色视频,在线免费观看| 中文字幕av电影在线播放| 美女高潮喷水抽搐中文字幕| 久久人妻av系列| 在线观看免费视频网站a站| 狂野欧美激情性xxxx| 欧美日韩亚洲高清精品| av福利片在线| 国产欧美日韩一区二区三区在线| 真人一进一出gif抽搐免费| 亚洲欧美激情在线| a级毛片在线看网站| 岛国在线观看网站| 69av精品久久久久久| 欧美性长视频在线观看| 国产亚洲欧美在线一区二区| 国产在线精品亚洲第一网站| 岛国视频午夜一区免费看| 亚洲精品国产色婷婷电影| 亚洲片人在线观看| 国内久久婷婷六月综合欲色啪| 一a级毛片在线观看| 精品欧美一区二区三区在线| 亚洲少妇的诱惑av| 夜夜夜夜夜久久久久| 大型黄色视频在线免费观看| 国产麻豆69| 精品一区二区三区视频在线观看免费 | 高清av免费在线| 啦啦啦免费观看视频1| 中文字幕色久视频| 国产亚洲精品第一综合不卡| 亚洲欧美激情综合另类| 久久人人精品亚洲av| 色婷婷av一区二区三区视频| 亚洲成人精品中文字幕电影 | 国产欧美日韩一区二区三区在线| 国产熟女午夜一区二区三区| 999精品在线视频| 如日韩欧美国产精品一区二区三区| 侵犯人妻中文字幕一二三四区| 亚洲av熟女| 欧美日韩瑟瑟在线播放| 交换朋友夫妻互换小说| 侵犯人妻中文字幕一二三四区| 国产成人精品无人区| 757午夜福利合集在线观看| 久久精品国产亚洲av高清一级| 咕卡用的链子| 久久中文字幕人妻熟女| 亚洲专区字幕在线| 国产成人精品久久二区二区91| netflix在线观看网站| 国产蜜桃级精品一区二区三区| 黄色片一级片一级黄色片| 一本大道久久a久久精品| 欧美老熟妇乱子伦牲交| 亚洲欧美激情综合另类| 亚洲专区国产一区二区| 日本免费a在线| 一级毛片精品| 亚洲精品一二三| 欧美中文日本在线观看视频| 超碰97精品在线观看| 极品教师在线免费播放| 窝窝影院91人妻| 国产欧美日韩一区二区三| 最新在线观看一区二区三区| 国产亚洲av高清不卡| 女性生殖器流出的白浆| 在线播放国产精品三级| 久久久久亚洲av毛片大全| 99riav亚洲国产免费| 久久久久久免费高清国产稀缺| 色精品久久人妻99蜜桃| 欧美精品亚洲一区二区| 国产精华一区二区三区| 一进一出抽搐gif免费好疼 | 一级a爱片免费观看的视频| 大码成人一级视频| 久久国产精品男人的天堂亚洲| 国产极品粉嫩免费观看在线| 伊人久久大香线蕉亚洲五| 精品熟女少妇八av免费久了| 国产欧美日韩一区二区三区在线| 无人区码免费观看不卡| 亚洲美女黄片视频| 国产精品久久电影中文字幕| 宅男免费午夜| 两个人看的免费小视频| 国产精品一区二区三区四区久久 | 欧美人与性动交α欧美精品济南到| 在线观看免费视频日本深夜| 久久人妻福利社区极品人妻图片| 国产99久久九九免费精品| av视频免费观看在线观看| 在线av久久热| 18禁观看日本| 欧美日韩视频精品一区| 久久国产精品影院| 淫秽高清视频在线观看| 高清欧美精品videossex| 国产成人精品无人区| 一二三四在线观看免费中文在| a级毛片在线看网站| 亚洲熟女毛片儿| 91国产中文字幕| 99久久久亚洲精品蜜臀av| 人人妻人人澡人人看| 亚洲少妇的诱惑av| 亚洲男人的天堂狠狠| 亚洲激情在线av| 欧美久久黑人一区二区| 国产一区二区三区综合在线观看| 亚洲精品av麻豆狂野| 免费高清在线观看日韩| a级毛片黄视频| 18禁裸乳无遮挡免费网站照片 | 中文字幕av电影在线播放| 亚洲人成77777在线视频| 无限看片的www在线观看| 久久人妻熟女aⅴ| 曰老女人黄片| 两性夫妻黄色片| 免费在线观看影片大全网站| e午夜精品久久久久久久| 日韩成人在线观看一区二区三区| www.精华液| 亚洲视频免费观看视频| 黄色怎么调成土黄色| 一个人免费在线观看的高清视频| 黄色a级毛片大全视频| 亚洲,欧美精品.| 久久久久久久久免费视频了| 亚洲精品国产精品久久久不卡| 热re99久久国产66热| 18禁美女被吸乳视频| 国产精品一区二区精品视频观看| 嫁个100分男人电影在线观看| 老司机靠b影院| 国产国语露脸激情在线看| 久久国产乱子伦精品免费另类| 成人亚洲精品av一区二区 | 日日爽夜夜爽网站| 午夜亚洲福利在线播放| 一边摸一边做爽爽视频免费| 国产国语露脸激情在线看| 天天躁狠狠躁夜夜躁狠狠躁| 午夜成年电影在线免费观看| 亚洲久久久国产精品| 色综合婷婷激情| 满18在线观看网站| 超碰97精品在线观看| 精品久久久久久电影网| 国产又色又爽无遮挡免费看| 淫妇啪啪啪对白视频| 欧美日本中文国产一区发布| 老司机深夜福利视频在线观看| 电影成人av| 丰满饥渴人妻一区二区三| 精品国产一区二区久久| 一区福利在线观看| 久久人人爽av亚洲精品天堂| 99精国产麻豆久久婷婷| 九色亚洲精品在线播放| 欧美人与性动交α欧美精品济南到| 日韩精品青青久久久久久| www国产在线视频色| 91麻豆精品激情在线观看国产 | 久久精品国产亚洲av高清一级| 国产精品1区2区在线观看.| 麻豆国产av国片精品| 亚洲av成人不卡在线观看播放网| 精品久久久久久成人av| 亚洲精品美女久久av网站| 成人永久免费在线观看视频| 99riav亚洲国产免费| 成人国产一区最新在线观看| 性欧美人与动物交配| 国产91精品成人一区二区三区| 真人做人爱边吃奶动态| 久久中文字幕人妻熟女| 国产精品亚洲一级av第二区| 18禁黄网站禁片午夜丰满| 久久国产乱子伦精品免费另类| 亚洲精品国产色婷婷电影| 国产精品日韩av在线免费观看 | av欧美777| 9色porny在线观看| 国产有黄有色有爽视频| 日韩中文字幕欧美一区二区| 性少妇av在线| 久热这里只有精品99| av国产精品久久久久影院| 精品免费久久久久久久清纯| 国产无遮挡羞羞视频在线观看| 桃色一区二区三区在线观看| 18禁国产床啪视频网站| 成人精品一区二区免费| a级毛片在线看网站| 三上悠亚av全集在线观看| 91麻豆av在线| 88av欧美| 超碰成人久久| 中国美女看黄片| 女人被躁到高潮嗷嗷叫费观| 欧美中文日本在线观看视频| 亚洲第一青青草原| 亚洲av成人一区二区三| 日韩大码丰满熟妇| 18禁观看日本| 免费av中文字幕在线| 国产精品日韩av在线免费观看 | 另类亚洲欧美激情| 亚洲午夜理论影院| 亚洲一区二区三区欧美精品| 婷婷精品国产亚洲av在线| 在线播放国产精品三级| 嫩草影院精品99| 麻豆成人av在线观看| 精品久久久久久电影网| 久久精品国产清高在天天线| 精品久久久精品久久久| 91国产中文字幕| 亚洲欧美日韩无卡精品| 人妻丰满熟妇av一区二区三区| 日本a在线网址| 在线观看免费视频日本深夜| 女人精品久久久久毛片| 欧美黑人欧美精品刺激| 国产亚洲精品一区二区www| 嫁个100分男人电影在线观看| 国产野战对白在线观看| 中文字幕最新亚洲高清| av在线天堂中文字幕 | 国产精品久久久久久人妻精品电影| 麻豆久久精品国产亚洲av | 91精品三级在线观看| www日本在线高清视频| 久久九九热精品免费| 最好的美女福利视频网| 最近最新中文字幕大全电影3 | 久久国产精品男人的天堂亚洲| 久久热在线av| 日韩视频一区二区在线观看| 成人特级黄色片久久久久久久| 久久精品国产99精品国产亚洲性色 | 美女午夜性视频免费| 50天的宝宝边吃奶边哭怎么回事| 91av网站免费观看| 老司机靠b影院| 欧美一级毛片孕妇| 国产三级黄色录像| 亚洲午夜精品一区,二区,三区| 久9热在线精品视频| 国产又爽黄色视频| 精品一区二区三区av网在线观看| 亚洲av熟女| 成人国产一区最新在线观看| 欧美大码av| 久久中文字幕一级| 久久精品91蜜桃| 色综合欧美亚洲国产小说| 午夜福利,免费看| 色婷婷久久久亚洲欧美| 视频区图区小说| 国产一卡二卡三卡精品| 午夜日韩欧美国产| 麻豆av在线久日| 亚洲精品在线观看二区| 人人澡人人妻人| 亚洲一码二码三码区别大吗| 老熟妇仑乱视频hdxx| 黄色丝袜av网址大全| 免费观看人在逋| 超碰97精品在线观看| 国产激情久久老熟女| 亚洲中文av在线| 亚洲人成网站在线播放欧美日韩| 精品久久蜜臀av无| videosex国产| 一二三四社区在线视频社区8| av电影中文网址| 别揉我奶头~嗯~啊~动态视频| 国产蜜桃级精品一区二区三区| 国产伦一二天堂av在线观看| 制服诱惑二区| 80岁老熟妇乱子伦牲交| 无限看片的www在线观看| 中文欧美无线码| 精品一品国产午夜福利视频| 欧美乱码精品一区二区三区| 国产精品偷伦视频观看了| av在线播放免费不卡| 亚洲欧美一区二区三区久久| 大香蕉久久成人网| avwww免费| 久久国产亚洲av麻豆专区| 黄片大片在线免费观看| 在线观看一区二区三区| av电影中文网址| 国产精品美女特级片免费视频播放器 |