• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    A multi-target stance detection based on Bi-LSTM network with position-weight

    2020-11-27 09:17:20XuYilong徐翼龍LiWenfaWangGongmingHuangLingyun
    High Technology Letters 2020年4期

    Xu Yilong (徐翼龍), Li Wenfa, Wang Gongming, Huang Lingyun

    (*Smart City College, Beijing Union University, Beijing 100101, P.R.China)(**College of Robotics, Beijing Union University, Beijing 100101, P.R.China)(***Tianyuan Network Co., Ltd., Beijing 100193, P.R.China)(****Beijing Tianyuan Network Co., Ltd., Beijing 100193, P.R.China)(*****Chinatelecom Information Development Co., Ltd., Beijing 100093, P.R.China)

    Abstract

    Key words: long short-term memory (LSTM), multi-target, natural language processing, stance detection

    0 Introduction

    In recent years, the continuous improvement and development of social media has led an increasing number of people to use social media to share and discuss their attitudes toward different people, events, and objects. Analysis of such texts containing stances in the social media may help us understand their preferences and opinions. Such information plays an important role in public opinion analysis. A large number of researchers, such as Wang et al.[1]and Li et al.[2], have used stance detection technology to find such information.

    Multi-target stance detection[3]is a sub-task of stance detection. It is used to mine the stance classifications of different targets in one text. Typical examples include mining the opinions of different politicians in elections and analyzing user recognition of different brands in similar products. In addition to determining the stance of the target, multi-target stance detection identifies the corresponding positions of different targets in the same text.

    In the fields of multi-target stance detection, most methods combine the 2 tasks of target location (determine the context that describes the different goals) and stance detection (determine stance label based on a goal) into one task during execution. So, these methods tend to enlarge the structure of the model to enhance its ability to mine features.The result, however, provides the comprehensive optimal solution of the 2 tasks rather than the optimal solution of stance detection. Thus, stance detection of a certain target is easily affected by other target descriptions, which may reduce the accuracy of the result. Therefore, target location and stance detection should be executed successively and independently.

    To enable such execution, the proposal is as follows. First, the context range in the text corresponding to the different goals needs to be located. In the case of the above example presented here, the context range concerns ‘Hillary Clinton being a liar.’ Then, the stance is determined by analyzing the target text in the context range. Based on the above statement, a bidirectional long short-term memory (Bi-LSTM) with position-weight is proposed to carry out the multi-target stance detection. Bi-LSTM can describe the dependency relationship between words from front to back and from back to front, and the position-weight vector can describe the impact of words on the different targets of stance detection.The multi-target stance detection database of the American election in 2016 is used to validate the proposed method.

    1 Related work

    In recent years, given the rapid growth in the number of social media users, researchers have begun to focus on stance detection from social media texts. In 2016, the international conferences SemEval[4]and the 5th CCF International Conference on Natural Language Processing and Chinese Computing (NLPCC)[5]provided annotated data on stance detection from the social media. Thereafter, some researchers began studying different types of data for stance detection[6,7]. Given the similarity between stance detection and sentiment analysis, researchers made efforts to distinguish between them[8], and attempted using sentiment analysis to obtain improved stance detection effects[9].

    With regard to the social media, deep learning methods, including the traditional CNN and recurrent neural network (RNN)[10-13]as well as fusion models[14-17], are typically used to detect stance.

    Subsequently, researchers began applying stance detection to texts containing different targets in the same category. This is called multi-target stance detection, and is regarded as a sub-task of stance detection[18-21]. For example, Liu et al.[19]proposed an approach to automatically obtain zones of each target and combined it with the LSTM method to obtain the corresponding stance. The results demonstrated the effectiveness of two-target stance detection. Lin et al.[21]designed a topic-based approach to detect multiple standpoints in Web text to generate a stance classifier according to the distribution of the standpoint-related topic-term. They produced the parameter values of the classifier with this adaptive method and proved its effectiveness through experiments.

    The above methods do not use the positional relationship between words in the text and targets to help the algorithm enhance the ability to distinction between the content describing the different targets.Therefore, in order to obtain the best stance detection effect, it is necessary to extract the appropriate clause as the input text according to the context range corresponding to the target so as to avoid the influence of unrelated text. Therefore, in this paper, an unsupervised method to extract the context ranges of different targets in the text is proposed. Then, the Bi-LSTM network with position-weight is generated by combining position-weight with the Bi-LSTM approach. Finally, the stance labels of different targets are predicted with LSTM and Softmax classification. The details of the approach are explained in the next section.

    2 Proposed method

    The architecture of our model is shown in Fig.1. It consists of the following 5 modules: embedded layer, Bi-LSTM layer, position-weight fusion layer, LSTM layer, and Softmax classifier. The result of combining the word embeddings of all the target topics and the input text serves as the input of the model, and the output consists of the author’s stance labels for all the possible target topics.

    Fig.1 Model architecture

    2.1 Embedding layer

    The embedding layer transforms every word in the input text into one vector, each of which expresses the relationship between the words applicable to the context.By representing each word in a text as a 1×nvector, the text can be represented as anl×nmatrix (lis the number of words in the text, andnis the dimension of each lexical vector). Accordingly, the input text can be converted into a numerical matrix, which facilitates the feature extraction by the algorithm.

    2.2 Bi-LSTM layer

    To extract valid features from unstructured text, LSTM is used to encode the text. The input of the LSTM is a tensor formed by arranging the embedded vectors of the words to be processed in order from front to back. The corresponding output is a tensor composed of implicit states of the LSTM units in order from front to back. LSTM can describe long-distance lexical dependency in the text and is suitable for text data modeling[22].

    The Bi-LSTM network consists of a forward LSTM and a backward LSTM. The input of the forward LSTM network is composed of the embedded vectors of words arranged in order from front to back, and the input of the backward LSTM network is a series of the embedded vectors of words arranged in the opposite order. Thus, Bi-LSTM can describe the dependency relationship between words in the front to back and back to front directions. The output of Bi-LSTM is the result of the splicing of the output of the forward and backward LSTM units. Therefore, in Bi-LSTM network, each word will be first transmitted to a forward LSTM unit and then to a backward LSTM unit, and its output is the result of the splicing of the hidden states of the 2 LSTM units.

    In the LSTM model[23], a unittis calculated as follows:

    it=σ(xtUi+ht-1Wi+bi)

    (1)

    ft=σ(xtUf+ht-1Wf+bf)

    (2)

    ot=σ(xtUo+ht-1Wo+bo)

    (3)

    qt=tanh(xtUq+ht-1Wq+bq)

    (4)

    pt=ft×pt-1+it×qt

    (5)

    ht=ot×tanh(pt)

    (6)

    whereU∈Rd×nandW∈Rn×nare weight matrixes,b∈Rnis the offset vector,dis the dimension of the word embedding,σand tanh represent sigmoid and tanh activation functions andnis the output size of the LSTM network. The LSTM model consists of input gateit, forgetting gateft, and output gateot.

    2.3 Position-weight fusion layer

    When using Bi-LSTM alone to extract the features, it becomes difficult to analyze the differences between multiple targets of the text. This leads to lack of pertinence when the algorithm processes multiple targets in the same text. Therefore, in order to reflect the differences among the corresponding features of different targets in the text, a two-stage method is designed. The first step calculates the ultimate position-weight vector, and the second step concatenates the position-weight vector and output of the Bi-LSTM layer.

    2.3.1 Calculating the final position-weight vector

    (7)

    (8)

    (9)

    At this point, each component of vectorErepresents the influence of each word on the target, as shown in Fig.2. Each element inEis a value between 0 and 1.

    Fig.2 Position-weight vector of 2 targets in the same text

    In order to control the effect of vectorEon the prediction result, the coefficientμis used to expand each component of vectorEby a factor ofμ. The influence of positional weight on system can be changed by adjustingμ, as follows:

    Eμ=E×μ

    (10)

    whereEμis the ultimate position-weight vector. Each element inEμis a value between 0 andμ.

    2.3.2 Concatenating position-weight vector and output of Bi-LSTM

    In the Bi-LSTM network, the output of each word is composed of the spliced hidden states of the forward and backward LSTM units. In addition, each word corresponds to one position-weight in theEμ. Thus, a new vector is produced by concatenating the position-weight of each word and the Bi-LSTM output. This vector is taken as the output of the position-weight fusion layer. This vector can not only describe the dependency between words in the different directions, but it can also describe the impact of a word on the different targets of stance detection.

    2.4 LSTM layer

    To determine the stance labels from the fusion of the position-weight and the output of Bi-LSTM, the LSTM is used for re-encoding[23]. This process will re-extract features from the fused tensor from the previous section in the order of the text.The input of this layer is the output vector of the position-weight fusion layer, and the output is the hidden state of the last LSTM unit.

    2.5 Softmax classifier

    The output of the LSTM layer is taken as the input of this layer, and the Softmax classifier[24]is used to predict the stance labels of the different targets.

    3 Experiment

    3.1 Experimental setting

    The specific process of completing the multi-objective position detection task is shown in Fig.3.

    Fig.3 Flow chart for multi-target position detection

    The experiment used the stance detection corpus for the US 2016 general election constructed by Sobhani et al.[3]. This corpus contains 3 datasets, each of which is a collection of tweets and stance labels of 2 candidates. In the original corpus, 2 target words of each sentence were combined for analysis in Ref.[3]. Distribution of data are shown in Table 1. In addition, the model parameters are shown in Table 2.

    Table 1 Details of the experimental datasets

    Table 2 Main parameter setting in our experiment

    3.2 Evaluation metric

    As a category task, stance detection is more inclined to improve the classification accuracy of the “favor” and “against” stances. Therefore, the averageF1 scores of “favor” and “against” (Favg) were used as the evaluation indictors[4].

    3.3 Baselines

    The selected baselines are as follows.

    Sequence-to-sequence (Seq2Seq)[26]. Recently, the Seq2seq model has achieved good performance when dealing with timing problems. Therefore, Ref.[3] applied this model to the multi-target stance detection problem. In this method, text is used as the input of the model, and the stance labels representing different targets are output. The advantage of this algorithm is that it not only mines the stance related to the target from the text, but also refers to the relationship between multiple targets.

    Target-related zone modeling (TRZM)[19]. This model is proposed for multi-target stance detection tasks.It uses a region segmentation method to divide a text containing 2 targets into 4 parts, and then a multi-input LSTM is used to process these parts to detect the stance results.

    3.4 Results and discussion

    In order to verify the effectiveness of the proposed method, the following 2 experiments are carried out: comparison between the proposed method and the related baselines, and comparisons of different parameters in the position-weight fusion layer.

    3.4.1 Comparison between the proposed method and the related baselines

    The experimental result of the algorithm is compared with those of the other algorithms, as shown in Table 3, where PW-Bi-LSTM is the bidirectional LSTM network with position-weight proposed in this paper. There is the result of PW-Bi-LSTM>TRZM >Seq2Seq, when comparing theF1 value of different methods. The conclusions drawn from these results are as follows.

    1) Although this method has the ability to refer to different labels to detect the stance, the method does not take into account the effect of the positional relationship between the text and the target. This may be the reason why its effect is lower than TRZM and the model in this article.

    2) The effect of TRZM is not good, but it can meet the actual requirement, because the combination of feature extraction and deep learning is a good way to improve multi-target stance detection.But this method splits the integrity of the text, which may be the reason for its poor performance.

    3) The proposed method outperformed the other methods in 3 datasets and macroFavgare at 1.4% higher than the corresponding values in the other algorithms. Compared with the other methods, the proposed method can automatically extract the position features of different targets in the text and expand the tolerance for input difference. For input text with different targets, other methods may be impacted by other targets when detecting the given target stance, and their accuracies decrease subsequently. However, the proposed method can avoid the influence of irrelevant targets, and the accuracy does not change much.

    Table 3 Performances of our approach and the compared methods

    3.4.2 Comparisons of different parameters in the position-weight fusion layer

    One of the key parameters affecting the performance of the proposed method is the coefficientμ, mentioned in Section 2.3. In order to determine the influence of the ultimate position-weight vector on the algorithm and to find the optimal coefficientμin the position-weight fusion layer,Favgfor different values ofμin the development and test sets in the 3 datasets are compared, as shown in Fig.4. The figure shows that when the ultimate position-weight vector is added to our algorithm (i.e.,μ≠0),Favgare significantly improved, which indicates that this addition can improve the result of the multi-target stance detection.In addition, the effect of the proposed algorithm is related to the coefficientμ. In the 3 datasets, the best results in development sets are achieved whenμequals 3, 5 and 10, respectively. Thus, the effect of the proposed algorithm can be improved by adjusting the coefficientμ.

    Fig.4 Favg for different coefficients (μ) in the proposed method. The x-axis denotes the coefficient size, and the y-axis refers to Favg

    4 Conclusions

    In this study, Bi-LSTM network with position-weight for multi-target stance detection is proposed.The positional relationship between word and target is represented as a vector. And then this vector is embedded into the Bi-LSTM model to refine the stance detection. The experimental results demonstrate the validity of the proposed method, which states that adding the multi-target information can expand the tolerance for the input difference and diversity. In the future, additional position feature extraction methods and actual data covering a wider range of topics will be adopted for continuous improvement and optimization of the algorithm. In addition, it leads to a large volatility of the experiment that the number of data sets used in this paper is small. Therefore, in the follow-up work, the study of the volatility of the results will be considered.

    国产欧美另类精品又又久久亚洲欧美| 2021少妇久久久久久久久久久| 三级国产精品片| av在线老鸭窝| 日韩熟女老妇一区二区性免费视频| 一级,二级,三级黄色视频| 美女国产视频在线观看| 2018国产大陆天天弄谢| 亚洲欧美日韩卡通动漫| 亚洲人与动物交配视频| 内地一区二区视频在线| 亚洲成色77777| 91国产中文字幕| 2018国产大陆天天弄谢| 少妇人妻精品综合一区二区| 美女中出高潮动态图| 亚洲成人av在线免费| 欧美bdsm另类| 国产成人免费无遮挡视频| 免费看av在线观看网站| 国产一区二区三区综合在线观看 | 欧美亚洲 丝袜 人妻 在线| 自拍欧美九色日韩亚洲蝌蚪91| 男男h啪啪无遮挡| 美女视频免费永久观看网站| 国产成人一区二区在线| 日本色播在线视频| 免费观看无遮挡的男女| av线在线观看网站| 日韩熟女老妇一区二区性免费视频| 国产一区二区在线观看日韩| 国产成人免费无遮挡视频| 晚上一个人看的免费电影| 国产毛片在线视频| 只有这里有精品99| 精品少妇久久久久久888优播| 天堂俺去俺来也www色官网| av视频免费观看在线观看| 永久免费av网站大全| 亚洲精品色激情综合| 能在线免费看毛片的网站| 亚洲av在线观看美女高潮| 五月开心婷婷网| 大香蕉久久成人网| 日本av手机在线免费观看| 啦啦啦啦在线视频资源| 女人久久www免费人成看片| 最黄视频免费看| av国产精品久久久久影院| 国产亚洲一区二区精品| 久久鲁丝午夜福利片| 欧美日韩视频精品一区| 在线观看免费高清a一片| 美女视频免费永久观看网站| 老司机影院毛片| 亚洲av成人精品一二三区| 久久 成人 亚洲| 男女无遮挡免费网站观看| 波野结衣二区三区在线| 黑人高潮一二区| av电影中文网址| 久久久久久久久久久丰满| 久久女婷五月综合色啪小说| 爱豆传媒免费全集在线观看| 99热6这里只有精品| 亚洲人成网站在线观看播放| 黄片无遮挡物在线观看| av一本久久久久| 国产成人aa在线观看| 日韩欧美一区视频在线观看| 中文欧美无线码| 黑人欧美特级aaaaaa片| 内地一区二区视频在线| 在线看a的网站| 777米奇影视久久| 国产精品嫩草影院av在线观看| 亚洲欧美色中文字幕在线| 视频中文字幕在线观看| 午夜激情福利司机影院| 国产精品人妻久久久久久| 欧美精品一区二区大全| 夫妻午夜视频| 超碰97精品在线观看| 欧美激情国产日韩精品一区| 亚洲国产精品专区欧美| 亚洲国产精品成人久久小说| 99久久精品一区二区三区| 22中文网久久字幕| 亚洲精品久久午夜乱码| 中文字幕免费在线视频6| 国产精品一区二区三区四区免费观看| 亚洲欧洲国产日韩| 一本一本综合久久| 考比视频在线观看| 五月伊人婷婷丁香| av卡一久久| 日日啪夜夜爽| 久久99一区二区三区| 2018国产大陆天天弄谢| 婷婷成人精品国产| 全区人妻精品视频| 亚洲精品国产色婷婷电影| 秋霞在线观看毛片| 伦理电影大哥的女人| 视频区图区小说| 亚洲成人手机| 成年女人在线观看亚洲视频| 最新的欧美精品一区二区| 午夜久久久在线观看| 水蜜桃什么品种好| 国产精品国产av在线观看| 超色免费av| 久久综合国产亚洲精品| 亚洲精品456在线播放app| 伦精品一区二区三区| 欧美日韩视频精品一区| 欧美日韩国产mv在线观看视频| 午夜影院在线不卡| 黄片无遮挡物在线观看| 一区二区三区免费毛片| 国产亚洲精品第一综合不卡 | 成人国产av品久久久| 波野结衣二区三区在线| 亚州av有码| 成年人午夜在线观看视频| 亚洲精品久久成人aⅴ小说 | 欧美xxxx性猛交bbbb| 国产精品不卡视频一区二区| 日本午夜av视频| 美女福利国产在线| 精品视频人人做人人爽| 看非洲黑人一级黄片| 成人无遮挡网站| 亚洲第一av免费看| 欧美精品一区二区免费开放| 日韩欧美精品免费久久| 国产精品人妻久久久久久| av免费观看日本| 热re99久久国产66热| 久久久a久久爽久久v久久| 我的老师免费观看完整版| av天堂久久9| 女的被弄到高潮叫床怎么办| 边亲边吃奶的免费视频| 日日爽夜夜爽网站| 精品一区二区三卡| 26uuu在线亚洲综合色| 亚洲综合精品二区| 欧美变态另类bdsm刘玥| 亚洲怡红院男人天堂| 日韩亚洲欧美综合| 人妻一区二区av| 九九久久精品国产亚洲av麻豆| 免费观看的影片在线观看| 亚洲精品久久成人aⅴ小说 | 亚洲成人一二三区av| 成人亚洲精品一区在线观看| 狂野欧美激情性xxxx在线观看| 国产一级毛片在线| 男女免费视频国产| 久久久久久久精品精品| 久久精品国产亚洲av天美| 男女免费视频国产| 国产成人av激情在线播放 | 91国产中文字幕| 国产精品久久久久久av不卡| 亚洲精华国产精华液的使用体验| 久久精品久久久久久噜噜老黄| 午夜老司机福利剧场| 久久婷婷青草| 成人国产麻豆网| 色婷婷久久久亚洲欧美| 女人久久www免费人成看片| 午夜激情久久久久久久| 久久久久久久大尺度免费视频| 最近中文字幕2019免费版| 日韩av免费高清视频| 国产亚洲一区二区精品| 高清黄色对白视频在线免费看| 久久综合国产亚洲精品| 美女中出高潮动态图| 如日韩欧美国产精品一区二区三区 | 美女cb高潮喷水在线观看| 国产精品人妻久久久久久| 日韩不卡一区二区三区视频在线| 最近的中文字幕免费完整| 亚洲精品美女久久av网站| 各种免费的搞黄视频| 亚洲五月色婷婷综合| 黄色配什么色好看| 欧美国产精品一级二级三级| 国产亚洲av片在线观看秒播厂| 国产av精品麻豆| 色哟哟·www| 亚洲精品456在线播放app| 夜夜看夜夜爽夜夜摸| 亚洲欧洲精品一区二区精品久久久 | 亚洲久久久国产精品| 久久久久久伊人网av| 狂野欧美白嫩少妇大欣赏| 国产欧美亚洲国产| 男女国产视频网站| 久久久久久久亚洲中文字幕| 精品国产乱码久久久久久小说| 女性被躁到高潮视频| 人人妻人人爽人人添夜夜欢视频| 有码 亚洲区| 在线观看www视频免费| 黑丝袜美女国产一区| 成人影院久久| 亚洲精品一区蜜桃| 超色免费av| 国产在视频线精品| 日韩熟女老妇一区二区性免费视频| 日本猛色少妇xxxxx猛交久久| 亚洲精品456在线播放app| 日本-黄色视频高清免费观看| 国产精品女同一区二区软件| 亚洲丝袜综合中文字幕| 99热国产这里只有精品6| 99久国产av精品国产电影| 两个人免费观看高清视频| 26uuu在线亚洲综合色| 国产成人aa在线观看| 成人亚洲精品一区在线观看| 男女国产视频网站| 中文字幕久久专区| 成人国产av品久久久| 免费观看在线日韩| 国产免费视频播放在线视频| 午夜福利,免费看| 亚州av有码| 亚洲国产欧美日韩在线播放| 亚洲一区二区三区欧美精品| 成人无遮挡网站| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 亚洲成人av在线免费| 亚洲av电影在线观看一区二区三区| 久久精品国产鲁丝片午夜精品| 午夜日本视频在线| 亚洲av免费高清在线观看| 国产精品99久久久久久久久| 欧美国产精品一级二级三级| 成人综合一区亚洲| 亚洲av.av天堂| 性色av一级| 久久人妻熟女aⅴ| av国产精品久久久久影院| 日韩一区二区视频免费看| 国产欧美日韩综合在线一区二区| 建设人人有责人人尽责人人享有的| 欧美日韩综合久久久久久| 综合色丁香网| 国产精品不卡视频一区二区| 免费av中文字幕在线| 十八禁高潮呻吟视频| 久久久午夜欧美精品| 午夜福利影视在线免费观看| .国产精品久久| 久久综合国产亚洲精品| 国产不卡av网站在线观看| 桃花免费在线播放| 99热这里只有精品一区| 制服诱惑二区| 亚洲五月色婷婷综合| 日本-黄色视频高清免费观看| 免费观看无遮挡的男女| 不卡视频在线观看欧美| 激情五月婷婷亚洲| 精品视频人人做人人爽| 国产男人的电影天堂91| 99久久人妻综合| 国产精品成人在线| 亚洲人与动物交配视频| av网站免费在线观看视频| 精品卡一卡二卡四卡免费| 欧美老熟妇乱子伦牲交| 一边亲一边摸免费视频| 久久久国产欧美日韩av| 日韩伦理黄色片| 亚洲欧美日韩另类电影网站| 插逼视频在线观看| 热re99久久国产66热| 久久久久久久久久成人| 97在线视频观看| 久久久a久久爽久久v久久| 看非洲黑人一级黄片| 国产精品国产三级国产专区5o| 欧美xxⅹ黑人| 99久久精品国产国产毛片| 看免费成人av毛片| 人人妻人人添人人爽欧美一区卜| kizo精华| 免费av中文字幕在线| 午夜影院在线不卡| 久久久久视频综合| 又黄又爽又刺激的免费视频.| 免费播放大片免费观看视频在线观看| 亚洲国产成人一精品久久久| 日本av免费视频播放| 丝袜脚勾引网站| 99视频精品全部免费 在线| xxxhd国产人妻xxx| 日本黄色日本黄色录像| 在线观看国产h片| 中文字幕久久专区| 午夜激情久久久久久久| 大又大粗又爽又黄少妇毛片口| 色婷婷av一区二区三区视频| 熟妇人妻不卡中文字幕| 精品国产乱码久久久久久小说| 天堂俺去俺来也www色官网| 欧美精品人与动牲交sv欧美| 女性被躁到高潮视频| 熟女电影av网| 一本大道久久a久久精品| .国产精品久久| 亚洲精品av麻豆狂野| 伦精品一区二区三区| 日韩强制内射视频| 赤兔流量卡办理| 亚洲av福利一区| 极品少妇高潮喷水抽搐| 七月丁香在线播放| 午夜福利视频在线观看免费| 视频区图区小说| 晚上一个人看的免费电影| 成人手机av| 51国产日韩欧美| 成人毛片a级毛片在线播放| 日韩免费高清中文字幕av| 看十八女毛片水多多多| 亚洲婷婷狠狠爱综合网| 国产精品一区二区在线观看99| 亚洲精品久久午夜乱码| 国产一区二区三区综合在线观看 | 国产无遮挡羞羞视频在线观看| 91午夜精品亚洲一区二区三区| 国产精品熟女久久久久浪| 夜夜看夜夜爽夜夜摸| 丰满少妇做爰视频| 熟女电影av网| 国产精品熟女久久久久浪| 免费观看av网站的网址| 夜夜骑夜夜射夜夜干| 成人免费观看视频高清| 高清不卡的av网站| 久久女婷五月综合色啪小说| 一级毛片我不卡| 国产男女超爽视频在线观看| 成人无遮挡网站| 夫妻性生交免费视频一级片| videossex国产| www.av在线官网国产| 久久人人爽av亚洲精品天堂| 亚洲国产精品999| 亚洲精品国产色婷婷电影| av专区在线播放| 午夜久久久在线观看| 男人添女人高潮全过程视频| 国产精品欧美亚洲77777| 91成人精品电影| 国产成人免费观看mmmm| 老司机影院毛片| 好男人视频免费观看在线| 亚洲av二区三区四区| av国产精品久久久久影院| 99re6热这里在线精品视频| av天堂久久9| 国产成人午夜福利电影在线观看| 伦理电影免费视频| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 国产永久视频网站| 午夜激情福利司机影院| 国产午夜精品久久久久久一区二区三区| 国产乱来视频区| 只有这里有精品99| 欧美亚洲日本最大视频资源| 久久精品久久久久久噜噜老黄| 午夜精品国产一区二区电影| 久久久久精品久久久久真实原创| 97在线人人人人妻| 黑人高潮一二区| 精品久久久噜噜| 18禁裸乳无遮挡动漫免费视频| 欧美精品高潮呻吟av久久| 99久久中文字幕三级久久日本| 欧美 日韩 精品 国产| 一区在线观看完整版| 亚洲精品中文字幕在线视频| 欧美bdsm另类| 国产乱人偷精品视频| 草草在线视频免费看| 自线自在国产av| 免费播放大片免费观看视频在线观看| 极品少妇高潮喷水抽搐| xxx大片免费视频| 久久精品熟女亚洲av麻豆精品| 一级片'在线观看视频| 国产成人精品一,二区| 精品久久蜜臀av无| 午夜免费观看性视频| 国产视频首页在线观看| 久久av网站| 亚洲情色 制服丝袜| 亚洲,欧美,日韩| 午夜免费鲁丝| 女人久久www免费人成看片| 王馨瑶露胸无遮挡在线观看| 亚洲欧美一区二区三区黑人 | 国语对白做爰xxxⅹ性视频网站| 欧美最新免费一区二区三区| 在现免费观看毛片| 亚洲精品亚洲一区二区| 国产日韩欧美视频二区| 亚洲美女黄色视频免费看| 欧美3d第一页| 亚洲欧美成人综合另类久久久| 久久久久久人妻| 亚洲国产av影院在线观看| 乱码一卡2卡4卡精品| 自拍欧美九色日韩亚洲蝌蚪91| 亚洲丝袜综合中文字幕| 黑人欧美特级aaaaaa片| 国产精品.久久久| 国模一区二区三区四区视频| 三级国产精品欧美在线观看| 一边摸一边做爽爽视频免费| 日本av免费视频播放| 99热这里只有精品一区| 一本—道久久a久久精品蜜桃钙片| 成人综合一区亚洲| 国产精品一区二区在线不卡| 国产在线免费精品| 最近手机中文字幕大全| 日韩av在线免费看完整版不卡| 一级黄片播放器| 人成视频在线观看免费观看| 一本大道久久a久久精品| 久久女婷五月综合色啪小说| 视频中文字幕在线观看| 久热这里只有精品99| 五月伊人婷婷丁香| 在线观看www视频免费| 22中文网久久字幕| 99久久综合免费| 国产淫语在线视频| 久久精品久久久久久噜噜老黄| 青春草国产在线视频| 久久人妻熟女aⅴ| 嫩草影院入口| 久久av网站| 日韩av免费高清视频| 久久精品国产鲁丝片午夜精品| 亚洲精品日韩av片在线观看| 午夜激情av网站| 国产成人精品久久久久久| 国产成人a∨麻豆精品| 日韩中文字幕视频在线看片| 香蕉精品网在线| 欧美日韩在线观看h| 亚洲美女搞黄在线观看| 777米奇影视久久| 国产成人午夜福利电影在线观看| 国产av国产精品国产| 全区人妻精品视频| 少妇人妻精品综合一区二区| 国产 一区精品| 国产乱人偷精品视频| 五月玫瑰六月丁香| 蜜桃在线观看..| 亚洲,一卡二卡三卡| 免费观看av网站的网址| 韩国av在线不卡| 哪个播放器可以免费观看大片| 久久精品国产鲁丝片午夜精品| 亚洲精品色激情综合| 免费看不卡的av| 免费观看无遮挡的男女| 永久网站在线| 韩国高清视频一区二区三区| 日韩制服骚丝袜av| 国产淫语在线视频| 精品少妇久久久久久888优播| 久久国产精品大桥未久av| 欧美日韩av久久| 如日韩欧美国产精品一区二区三区 | 亚洲精品美女久久av网站| 亚洲国产最新在线播放| 男女免费视频国产| 亚洲精品中文字幕在线视频| 日日撸夜夜添| 久久久a久久爽久久v久久| 日本vs欧美在线观看视频| 在线观看一区二区三区激情| 91久久精品国产一区二区三区| 80岁老熟妇乱子伦牲交| 久久久久精品久久久久真实原创| 婷婷成人精品国产| 在线观看免费日韩欧美大片 | 成年美女黄网站色视频大全免费 | 熟女电影av网| 老司机影院成人| 91久久精品电影网| 插阴视频在线观看视频| 黄色配什么色好看| 国精品久久久久久国模美| 国产精品99久久久久久久久| 搡老乐熟女国产| 日韩视频在线欧美| 大码成人一级视频| 午夜福利视频在线观看免费| 美女国产视频在线观看| 亚洲精品乱码久久久v下载方式| 国产黄频视频在线观看| 少妇 在线观看| 日韩av不卡免费在线播放| 久久精品夜色国产| 日韩av不卡免费在线播放| 国产成人aa在线观看| 美女脱内裤让男人舔精品视频| 综合色丁香网| 欧美人与善性xxx| 日韩中文字幕视频在线看片| 两个人免费观看高清视频| 国产精品女同一区二区软件| 国产欧美亚洲国产| 丰满少妇做爰视频| 免费观看av网站的网址| 夜夜骑夜夜射夜夜干| 国产白丝娇喘喷水9色精品| 国产综合精华液| 国产在线视频一区二区| 男男h啪啪无遮挡| 伦理电影大哥的女人| 国产av国产精品国产| 蜜桃在线观看..| 人人澡人人妻人| 伊人久久精品亚洲午夜| 国产黄片视频在线免费观看| 一个人看视频在线观看www免费| 亚洲欧洲精品一区二区精品久久久 | 欧美日韩精品成人综合77777| 少妇人妻精品综合一区二区| 亚洲精品亚洲一区二区| 久久精品国产亚洲网站| 国产免费一级a男人的天堂| 人妻少妇偷人精品九色| 免费高清在线观看视频在线观看| 99热这里只有是精品在线观看| 在线观看免费日韩欧美大片 | 亚洲精品aⅴ在线观看| 久久久久国产精品人妻一区二区| 亚洲av国产av综合av卡| 水蜜桃什么品种好| 久久热精品热| 三级国产精品片| 哪个播放器可以免费观看大片| 成年av动漫网址| 国产成人免费观看mmmm| tube8黄色片| 久久ye,这里只有精品| 欧美老熟妇乱子伦牲交| 在线观看免费高清a一片| 久久女婷五月综合色啪小说| 高清欧美精品videossex| 一级,二级,三级黄色视频| 99热这里只有是精品在线观看| 看非洲黑人一级黄片| 日本欧美视频一区| 爱豆传媒免费全集在线观看| 国产av一区二区精品久久| 国产成人av激情在线播放 | 日韩三级伦理在线观看| 99久久精品一区二区三区| 免费大片18禁| 国产男女超爽视频在线观看| 亚洲国产精品成人久久小说| av播播在线观看一区| 亚洲国产成人一精品久久久| 国产精品秋霞免费鲁丝片| 亚洲少妇的诱惑av| 男女边吃奶边做爰视频| 秋霞伦理黄片| 久久精品久久精品一区二区三区| 大陆偷拍与自拍| 精品人妻熟女av久视频| 日本av免费视频播放| 十八禁高潮呻吟视频| 男女高潮啪啪啪动态图| 一个人看视频在线观看www免费| 美女内射精品一级片tv| 成人亚洲精品一区在线观看| 美女cb高潮喷水在线观看| 天堂中文最新版在线下载| 99热全是精品| 又大又黄又爽视频免费| 亚洲人成网站在线播| 日韩大片免费观看网站| 欧美变态另类bdsm刘玥| 亚洲精品av麻豆狂野| 亚洲成人av在线免费| 少妇人妻精品综合一区二区| 精品国产乱码久久久久久小说| 免费黄频网站在线观看国产| 国产精品欧美亚洲77777| 国产在线免费精品| 色婷婷久久久亚洲欧美| 中文欧美无线码| 新久久久久国产一级毛片| 亚洲综合色网址| 亚洲人成网站在线观看播放| av卡一久久| 日韩人妻高清精品专区| 成年人午夜在线观看视频|