• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    自由基誘導的水溶液中氟西汀的降解:脈沖輻解及穩(wěn)態(tài)輻照研究

    2017-05-12 06:58:02吉天翼劉艷成趙劍鋒王文鋒吳明紅
    物理化學學報 2017年4期
    關鍵詞:羥基自由基脈沖

    吉天翼 劉艷成 趙劍鋒,3 徐 剛 王文鋒,* 吳明紅,*

    自由基誘導的水溶液中氟西汀的降解:脈沖輻解及穩(wěn)態(tài)輻照研究

    吉天翼1,2劉艷成2趙劍鋒2,3徐 剛1王文鋒2,*吳明紅1,*

    (1上海大學環(huán)境與化學工程學院,上海200444;2中國科學院上海應用物理研究所,上海201800;3中國科學院大學,北京100049)

    本文運用脈沖輻解探究了不同自由基與藥物氟西汀(FLX)之間的反應。羥基自由基(·OH)與FLX反應生成苯環(huán)上的羥基加成物,而硫酸根陰離子自由基則通過單電子氧化FLX生成苯陽離子自由基,該中間產(chǎn)物再進一步與水反應生成苯環(huán)上的羥基加成物。本研究測定了三種自由基·OH,水合電子以及與 FLX反應的反應速率常數(shù)分別為:7.8×109,2.3×109和1.1×109mol·L-1·s-1。本文還運用電子束輻照技術探究了不同輻照條件下的FLX降解效果,結合HPLC和紫外可見光譜儀進行分析。在N2O和空氣飽和的兩種條件下,F(xiàn)LX溶液經(jīng)1.5 kGy輻照后降解效率均達到90%以上,而N2飽和條件下,加入0.1 mol·L-1的叔丁醇的FLX溶液經(jīng)1.5 kGy輻照后僅有43%分解。此外,酸性和中性條件下FLX的降解效率均大于堿性條件下的。結果闡明了飽和空氣的FLX溶液在中性條件下的降解效果最佳,且·OH誘導的反應比更有利于FLX的分解。本研究期望對于進一步探究FLX的降解反應提供有益的幫助。

    氟西??;脈沖輻解;羥基自由基;硫酸根陰離子自由基;降解

    Key Words: Fluoxetine;Pulse radiolysis;Hydroxyl radical;Sulfate radical anion;Degradation

    1 Introduction

    Recently,social and scientific concerns about the occurrence of pharmaceutical and personal care products(PPCPs)in the environmental water have increased1,2.Many drugs have been detected in environmental water due to the widespread use of pharmaceuticals and the insufficient removal processes in ordinary water and wastewater treatment3,4.Furthermore,concerns have also been raised about the potential impacts of their parent compounds and biologically active metabolites on environmental and human health5.Therefore,PPCPs have been recognized as environmental pollutants6.

    Fluoxetine(FLX)(N-methyl-3-(p-trifluoromethylphenoxy)-3-phenylpropylamine,shown in Fig.1),also named Prozac,is widely used for treating depression and other neurological or mental diseases.As a selective serotonin reuptake inhibitor(SSRI), fluoxetine(FLX)and its demethylated active metabolite norfluoxetine(NFLX)were proposed as being potentially dangerous to the environment in a list of 10 pharmaceuticals7.Since they undergo incomplete decomposition in the wastewater treatment process,FLX and NFLX have been detected with the concentration level of ng·L-1in surface waters of most of countries8-11. Hence,it implied that wastewater effluents are an important source of FLX and NFLX residue in the surface water12,13.Furthermore, it was reported that some freshwater fishes were toxic and the copulation and maturity of microorganisms were distributed after exposure to FLX14,15.Therefore,although FLX and its metabolites are present in the environment in very low concentrations,they may present a potential hazard to the environmental water as well as to human health.

    FLX shows the most absorbance in the range of UV spectrum, but its photodegradation is limited in environmental water,even under appropriate conditions of pH and temperature.Kwon and Armbrust16illustrated the low biological degradability of FLX in wastewater treatment plants,as it was not only stable during hydrolysis and photolysis but also resistant to micro-biodegradation.Nowadays,advanced oxidation processes(AOPs)are a rapid and high-efficiency technology that have been used successfully to remove multiple pollutants by forming strong oxidants such as hydroxyl radicals(·OH)to eliminate contaminants and mineralization.To improve this degradation efficiency,a study reported that using sonochemical treatment as a mean of pretreatment combined with biological treatment to remove FLX17. FLX was eliminated in an Ar-saturated solution after 60 min of sonication,and 15%was mineralized after 360 min of ultrasonic irradiation.Radiation technology is considered to be an advanced oxidation processes(AOP)technique,and the radicals formed by radiolysis of water can degrade pollutants18,19.Silva et al.20reported FLX eliminated completely by electron beam irradiation at a dose of more than 2.5 kGy,while TOC was removed only 22%even at a dose of 20 kGy.Garrido et al.21discovered that FLX was oxidized mainly through the oxidations of the secondary amine group and aromatic ring,which yielded a transient cation-radical and then conducted further reactions.

    Fig.1 Molecular structure of FLX

    In this paper,we studied that different intermediates of water radiolysis reacted with FLX by monitoring the growth/decay of transient intermediates by using pulse radiolysis.The rate constants of radical reactions with FLX were determined,and the yield of FLX decomposition was investigated in different conditions by electron beam irradiation.Finally,we compared the rate constants of different radical reactions with FLX and the degradation rates of FLX under different conditions to discern the optimal conditions for eliminating FLX.

    2 Materials and methods

    2.1 Materials

    Fluoxetine hydrochloride(FLX·HCl)was purchased from Tokyo Chemical Industry(>98%purity).Tert-butanol and K2S2O8were obtained from Sigma-Aldrich.NaOH and phosphate(used for preparation of buffers,pH=7.1)were purchased form J&K Chemical Ltd.All chemicals were analytical reagents and employed without further purification.Sample solutions were prepared using ultra-pure water,and experiments were carried out at ambient temperature.Solutions were bubbled with N2O or N2(high purity,99.999%)for at least 20 min.

    2.2 Pulse radiolysis and steady state radiolysis

    The nanosecond pulse radiolysis experiments were conducted using a 10 MeV linear electron accelerator with high-energy electron pulse duration of 8 ns,and the details were described elsewhere22,23.As a thiocyanate dosimeter,0.1 mol·L-1KSCN solution bubbled with N2O was used to measure the pulse dosimetry using G[(CNS)2·-]=5.8 and by taking ε480nm=7600 dm3· m-1·cm-122.The dose of each electron pulse was 10 Gy.A500 W xenon lamp was used as the source of analyzing light,and the electron pulse and the detecting beam passed vertically through a quartz cell with an optical path length of 10 mm.

    Main radicals generated by water radiolysis were shown in Eq. (1),in which the G-values(μmol·J-1)shown in brackets are the radiation chemical yields of radicals24-26.To study the hydroxyl radical(·OH)reaction,sample solutions were pre-saturated with N2O to convert the hydrated electron(e-aq)and hydrogen atom(·H) to·OH under pulse radiolysis,as shown in Eqs.(2)and(3)24,27,28. To research the reducing reactions oftert-butanol was used to scavenge·OH in the N2saturated solutions as shown in Eq.(4)27,29.

    H2O?·OH(0.28),·H(0.06),H3O+(0.27),H2(0.05),

    Electron beam irradiation was accomplished utilizing a GJ-2-II electron accelerator with a 1.8 MeV beam energy during the steady state radiolysis study.The experiments were irradiated with a dose range of 0.5-20 kGy and a dose rate of 0.045 kGy·s-1.

    2.3 Analytical procedures

    The UV-visible experiments were performed using a Hitachi U-3900 spectrophotometer with the detection wavelength in the range of 190-500 nm.The concentrations of FLX before and after irradiation were measured using an HPLC system(Agilent 1200 series)equipped with a reversed C18column(250 mm×4.6 mm); the detection wavelength of the VW monitor was set as 226 nm. The mobile phase was a mixture of acetonitrile(ACN)and 10 mmol·L-1potassium monophosphate(50:50)at an isocratic mode(1 mL·min-1)30.The injection volume of the auto-sampler was set to 10 μL.

    3 Results and discussion

    3.1 Pulse radiolysis

    3.1.1 Hydroxyl radical reactions

    The concentration of 0.5 mmol·L-1FLX in the N2O-saturated solution at pH=7.1 was studied by pulse radiolysis.As shown in Fig.2,the transient absorption spectrum for the reaction of·OH with FLX depicts a characteristic absorption at 340 nm.After 1 μs, it was quenched rapidly with time increased.Merga et al.31reported that the absorption peak in the range of 300-350 nm corresponded to the·OH adduct,which was generated by the·OH attack on the aromatic ring.According to a previous report,FLX degraded to produce the hydroxylated and O-dealkylated intermediates under indirect photodegradation32.It is possible that·OH reacted with FLX as shown in the following equation:

    Fig.2 Transient absorption spectra obtained from hydroxyl radical oxidation with 5×10-4mol·L-1FLX in N2O-saturated aqueous solutions(pH=7.1)

    The inset of Fig.2 shows the buildup rate constant(kobs)monitored at 340 nm,with various concentrations of FLX ranging from 0.02 to 1 mmol·L-1.Therefore,the rate constant was determined to be 7.8×109mol·L-1·s-1based on the linear trend of the pseudo-first-order transient rate constant.The value of the rate constant of·OH reaction with FLX is similar to those reported about·OH reaction with benzene32,demonstrating that the formation of the hydroxylcyclohexadienyl radical is the first step in the reaction of·OH with FLX24,33.This result also suggests that the majority of·OH added to the benzene ring,rather than reacting with alkylbenzene in the abstraction of the hydrogen atom.

    3.1.2 Hydrated electron reactions

    To investigate the reaction of FLX with hydrated electrons,the experiment was performed in an N2-saturated sample solution with the addition of 0.1 mol·L-1tert-butanol to scavenge·OH,where e-aqis main reactor partner.Astrong broad band at the peak of 690 nm was observed after electron pulse irradiation(as shown in Fig.3a).And the spectrum exhibits the decay ofat 690 nm with different time in the presence and absence of FLX solution.Thedecay ofwas faster with 0.5 mmol·L-1FLX solution than without the addition of FLX solution.After 1 μs,the characteristic absorption ofdecayed completely in the 0.5 mmol·L-1FLX solution.Hence,the hydrated electron decay appears to be accelerated in the presence of FLX.

    Fig.3 (a)Time-resolved absorption spectra obtained from thereaction with 5×10-4mol·L-1FLX in N-saturated solutions2containing 0.1 mol·L-1tert-butanol(pH=7.1);(b)plot of the observed decay rate constant(kobs)as monitored by the reaction ofwith different concentrations of FLX at 690 nm

    Fig.3b shows that the plot of decay rate constant for the reaction ofwith different concentrations of FLX was observed in the decay signal ofat 690 nm.The curve was fitted to a linear trend of the pseudo-first-order rate constant,the value of the reaction ofwith FLX was determined to be 2.3×109mol·L-1·s-1.The

    3.1.3 Sulfate radical anion

    aq,with a yield of G(SO4·-)=2.7 μmol·J-1(Eq.(6))35.Fig.4 depicts the time-resolved absorption spectra of the SO4·-reaction with FLX recorded at different time,which shows strong absorption peaks at 350 and 460 nm.The characteristic absorption ofwas reported to be at 460 nm in previous studies36.Compared to the absorption spectrum of transient intermediate in the absence of FLX at 1 μs, it has a new absorption peak at 350 nm in the 0.5 mmol·L-1FLX solution.The characteristic absorption ofdecayed rapidly with increasing time,while the absorbance of transient intermediate increased at 350 nm(shown in Eq.(7)).Theradicalinduced degradation of some benzene compounds formed the intermediates of hydroxylated adducts of the benzene ring18.In this study,we conjectured that the SO4·-attacked to the aromatic ring by single electron oxidation,forming benzene radical cation and then further reacted with H2O,forming·OH adduct37.The bimolecular rate constant of the SO4·-radical reaction with FLX was estimated with the range concentration from 0.06-0.22 mmol·L-1, based on the pseudo-first-order decay rate constant(inset of Fig.4).And the value is 1.1×109mol·L-1·s-1,as determined from the decay of SO4·-at 460 nm.

    Fig.4 Time-resolved absorption spectra obtained in the reaction of SO·4-with 5×10-4mol·L-1FLX in N2-saturated solutions containing 0.1 mol·L-1K2S2O8and 0.1 mol·L-1tert-butanol(pH=7.1)

    3.2 Steady state radiolysis

    The initial concentration of 0.29 mmol·L-1FLX in air,N2O or N2bubbled solutions were irradiated with different doses by the electron beam irradiation.In the N2O-saturated solution,·OH is the dominant oxidant to oxidizes pollutants.While e-aqis an important reducing agent in the N2-saturated solution containing 0.1 mol·L-1tert-butanol as the selected radical scavenger.In the presence of dissolved O2,and H·were both converted into O2·-/ HO2·(Eqs.(8,9)),therefore,·OH+O2·-/HO2·reactions occur in the aerated solution19.

    Fig.5 displays the·OH-induced degradation efficiency of FLX in the N2O-saturated solution at pH=7.At a dose of 1.5 kGy,the decomposition yield of FLX was approximately 90%;at an absorbed dose of 5 kGy,more than 99%FLX was consumed.With the increasing dose,the characteristic absorption of FLX decreased at 226 nm,indicating the decomposition of FLX in the aqueous solution(inset of Fig.5).Meanwhile,when the absorbed dose was increased,the absorption peak at 265 nm also increased. It was also observed that the peak at approximately 265 nm was slightly redshifted after irradiation,and this same phenomenon also was observed in the spectrum of the air-saturated solution (data not shown).The peak at 265 nm was denoted the formation of changed aromatic rings38.It was also illustrated the hydroxylated product formed by·OH attacked to the aromatic ring.

    To study reactions of individual radical with FLX,the atmo-

    Fig.5 Effect of various doses on the yield of decomposition of the initial concentration of 0.29 mmol·L-1FLX in the

    N2O-saturated solution as determined by the HPLC system and integrating the area under the chromatographic peaksphere condition was changed to produce reactive radical intermediates.And the above experiments suggested that SO4·-can oxide with FLX,so we also further explored the efficiency ofoxidation with FLX.From the Fig.6,the efficiency of the·OH-induced reaction was slightly higher than the·OH+O2·-/HO2· reaction in the N2O and air atmospheres,but both reactions were much higher than theandreactions in the N2atmosphere. After being irradiated with a dose of 1.5 kGy,the initial FLX molecules deceased by 95%and 93%in N2O and air bubbled

    solutions,respectively,in contrast with 43%reaction)and 73%reaction)reductions in the N2-saturated solution.FLX were decomposed completely with·OH and·OH+reactions at a dose of 5 kGy,and more than 90%FLX were decomposed withandreactions.It was reported that the mineralization of ibuprofen by

    radical is better than·OH at pH=7 since the yield of oxidizing radicals increased about 2.2 times in the presence of K2S2O818.However,as proved by our transient study,·OH reaction with FLX was observed to be faster than SO4·-.Meanwhile,as shown by the steady state results,·OH-induced degradation of FLX is more efficient thanradicalinduced degradation.This is probably due to two reasons listed

    adical could not fully or mostly react with FLX because of the competitive reaction between the selfdecay of radical andradical reaction with FLX.The other reason is that the addition reaction of·OH radical is more efficient than the single electron oxidation ofradical in the ring opening reaction of FLX.

    The effect of degradation efficiency of FLX at different pH values was also examined.Fig.7 displays the decomposition yield of FLX in air-saturated solutions at pH 4,7 and 11.At a dose of 2 kGy,FLX had decomposed by more than 95%at pH 4 and 7. The decompositions of FLX both under acidic condition and the neutral condition were better than alkaline condition at a low absorbed dose.Additionally,it has been reported that the degradation of FLX increased at a condition of acidic pH by sonochemical treatment,which has been interpreted to reflect the

    Fig.6 Dependence of the yield of FLX radiolytic decomposition on the·OH reaction(■)in the N2O-saturated solution,the

    ·OH+O2·-/HO2·reaction(▲)in the air-saturated solution,and the(●)and? Fig.7 Dose dependence of the decomposition yield of the initial concentration of 0.29 mmol·L-1FLX in the

    air-saturated solution(·OH+O2·-/HO2·reaction) dominance of the hydrophilic form of FLX17.The pKavalue of FLX is 10.0530.Therefore,the substance exists mainly in its neutral form at pH=11,which is more stable at the time of radical attacking. 4 Conclusions

    This study has shown the transient reactions of FLX with different radicals in pulse radiolysis,and the degradation efficiencies of FLX by electron beam irradiation under different conditions. The·OH radical,solvated electrons,and sulfate radical anions quickly reacted with FLX with the rate constants of 7.8×109, 2.3×109,and 1.1×109mol·L-1·s-1,respectively.The experiments illustrated that the degradation of FLX was occurred both by oxidative and reducing radicals,and the oxidative radicals tend to be more efficient for the decomposition of FLX.Based on the results obtained in this study,we thought that hydroxylated adduct was formed by hydroxyl radical attacking the aromatic ring directly.While it was found that SO4·-reaction preferentially formed a benzene radial cation by single electron oxidation,the intermediates were further transformed into the·OH adduct by reacting with H2O.

    For the steady study,over 90%FLX degraded with an absorbed dose of 1.5 kGy both in the presence of oxygen(·OH+O2·-/HO2· reaction)and in its absence(·OH reaction).In comparing different oxidants,it was observed that the degradation rates of FLX with·OH were higher than that with SO4·-radical.It is possible that the yield of SO4·-radical reacted with FLX was not as much as the yield of·OH,and·OH adduct was more efficient for the ring opening reaction of FLX.Therefore,radiolytic degradation is likely an effective way of eliminating FLX in aqueous solution. And it is also recommended that the radiolytic degradation of FLX molecule was performed by·OH-induced reaction at a neutral condition.

    Acknowledgment: The authors gratefully thank the Shanghai Institute of Applied Physics,Chinese Academy of Sciences and the University of Shanghai.References

    (1)Sui,Q.;Huang,J.;Deng,S.B.;Chen,W.W.;Yu,G.Environ.

    (2) Subedi,B.;Kannan,K.Environ.Sci.Technol.2014,48,6661.

    (20) Silva,V.H.O.;Batista,A.P.D.S.;Borrely,S.I.Environ.Sci. Pollut.R 2016,23,11927.doi:10.1007/s11356-016-6410-1

    (21) Garrido,E.M.;Garrido,J.;Calheiros,R.;Marques,M.P.M.; Borges,F.J.Phys.Chem.A 2009,113,9934.doi:10.1021/ jp904306b

    (22)Yao,S.D.;Sheng,S.G.;Cai,J.H.;Zhang,J.S.;Lin,N.Y. Radiat.Phys.Chem.1995,46,105.doi:10.1016/0969-806X(94) 00120-9

    (23) Liu,Y.C.;Zhang,P.;Li,H.X.;Tang,R.Z.;Cui,R.R.;Wang, W.F.J.Photochem.Photobiol.B 2013,118,58.doi:10.1016/j. jphotobiol.2012.11.002

    (24) Buxton,G.V.J.Phys.Chem.Ref.Data 1988,17,513.

    Radical-Induced Degradation of Fluoxetine in Aqueous Solution by Pulse and Steady-State Radiolysis Studies

    JI Tian-Yi1,2LIU Yan-Cheng2ZHAO Jian-Feng2,3XU Gang1WANG Wen-Feng2,*WU Ming-Hong1,*
    (1School of Environment and Chemical Engineering,Shanghai University,Shanghai 200444,P.R.China;2Shanghai Institute of Applied Physics,Chinese Academy of Sciences,Shanghai 201800,P.R.China;3University of Chinese Academy of Sciences,Beijing 100049,P.R.China)

    The reactions of the pharmaceutical fluoxetine(FLX)with different radicals were investigated by pulse radiolysis.The reaction of hydroxyl radical(·OH)with FLX formed hydroxylated adduct of the aromatic ring,while oxidation of FLX by sulfate radical anion(SO4·-)formed benzene radical cation that further reacted with H2O to yield the·OH adduct.The determined rate constants of·OH,hydrated electrons(e-aq),and SO4·-with FLX were 7.8×109,2.3×109,and 1.1×109mol·L-1·s-1,respectively.In the steady-state radiolysis study, the degradation of FLX in different radiolytic conditions by electron beam irradiation was detected by HPLC and UV-Vis spectra techniques.It was found that FLX concentration decreased by more than 90%in both N2O and air-saturated solutions after 1.5 kGy irradiation.In contrast,only 43%of FLX was decomposed in N2-saturated solution containing 0.1 mol·L-1tert-butanol.The degradation rates of FLX in acidic and neutral solutions were higher than those in alkaline solutions.Our results showed that the degradation of FLX is optimal in air-saturated neutral solution,and·OH-induced degradation is more efficient than SO4·-oxidation of FLX.The obtained kinetic data and optimal conditions give some hints to understand the degradation of FLX.

    O644

    Technol.2011,45,3341.

    10.1021/es200248d

    doi:10.3866/PKU.WHXB201701092

    Received:November 8,2016;Revised:January 9,2017;Published online:January 9,2017.

    *Corresponding authors.WANG Wen-Feng,Email:wangwenfeng@sinap.ac.cn.WU Ming-Hong,Email:mhwu@shu.edu.cn.國家自然科學基金(21173252,41430644,11675098)資助項目

    doi:10.1021/es501709a

    (3) Wawryniuk,M.;Pietrzak,A.;Nalecz-Jawecki,G.Ecotox.

    Environ.Safe 2015,115,144.doi:10.1016/j.ecoenv.2015.02.014 (4) Subedi,B.;Kannan,K.Sci.Total Environ.2015,514,273.

    doi:10.1016/j.scitotenv.2015.01.098

    (5) Kümmerer,K.J.Environ.Manage.2009,90,2354.

    doi:10.1016/j.jenvman.2009.01.023

    (6)Boxall,A.B.;Rudd,M.A.;Brooks,B.W.;Caldwell,D.J.;

    Choi,K.;Hickmann,S.;Innes,E.;Ostapyk,K.;Staveley,J.P.;

    Verslycke,T.Environ.Health Perspect.2012,120,1221.

    doi:10.1289/ehp.1104477

    (7)Santos,L.H.M.L.M.;Gros,M.;Rodriguez-Mozaz,S.;

    Delerue-Matos,C.;Pena,A.;Barcelo,D.;Montenegro,M.C.B.

    S.M.Sci.Total Environ.2013,461,302.doi:10.1016/j.

    scitotenv.2013.04.077

    (8)Kolpin,D.W.;Furlong,E.T.;Meyer,M.T.;Thurman,E.M.; Zaugg,S.D.;Barber,L.B.;Buxton,H.T.Environ.Sci.Technol. 2003,36,1202.doi:10.1021/es0202356

    (9) Metcalfe,C.D.;Miao,X.S.;Koenig,B.G.;Struger,J.Environ.

    Toxicol.Chem.2003,22,2881.doi:10.1897/02-627

    (10) Wu,M.H.;Xiang,J.J.;Que,C.J.;Chen,F.F.;Xu,G.

    Chemosphere 2015,138,486.doi:10.1016/j. chemosphere.2015.07.002

    (11)Ma,R.X.;Wang,B.;Lu,S.Y.;Zhang,Y.Z.;Yin,L.;Huang,J.; Deng,S.B.;Wang,Y.J.;Yu,G.Sci.Total Environ.2016,557, 268.doi:10.1016/j.scitotenv.2016.03.053

    (12) Ottmar,K.J.;Colosi,L.M.;Smith,J.A.B Environ.Contam.

    Tox.2010,84,507.doi:10.1007/s00128-010-9990-3

    (13) Cardoso,O.;Porcher,J.M.;Sanchez,W.Chemosphere 2014,

    115,20.doi:10.1016/j.chemosphere.2014.02.004

    (14) Schultz,M.M.;Painter,M.M.;Bartell,S.E.;Logue,A.;

    Furlong,E.T.;Werner,S.L.;Schoenfuss,H.L.Aquat.Toxicol. 2011,104,38.doi:10.1016/j.aquatox.2011.03.011

    (15) Mendez,N.;Barata,C.Ecotoxicology 2015,24,106.

    doi:10.1007/s10646-014-1362-z

    (16)Kwon,J.W.;Armbrust,K.L.Environ.Toxicol.Chem.2006,25, 2561.doi:10.1897/05-613r.1

    (17) Serna-Galvis,E.A.;Silva-Agredo,J.;Giraldo-Aguirre,A.L.; Torres-Palma,R.A.Sci.Total Environ.2015,524,354. doi:10.1016/j.scitotenv.2015.04.053

    (18) Paul,J.;Naik,D.B.;Bhardwaj,Y.K.;Varshney,L.Radiat. Phys.Chem.2014,100,38.doi:10.1016/j. radphyschem.2014.03.016

    (19) Kovacs,K.;Mile,V.;Csay,T.;Takacs,E.;Wojnarovits,L. Environ.Sci.Pollut.R 2014,21,12693.doi:10.1007/s11356-014-3197-9doi:10.1063/1.555805

    (25) Song,W.H.;Cooper,W.J.;Mezyk,S.P.;Greaves,J.;Peake,B. M.Environ.Sci.Technol.2008,42,1256.doi:10.1021/ es702245n

    (26)Wu,M.H.;Liu,N.;Xu,G.;Ma,J.;Tang,L.;Wang,L.;Fu,H. Y.Radiat.Phys.Chem.2011,80,420.doi:10.1016/j. radphyschem.2010.10.008

    (27) Czapski,G.;Peled,E.Isr.J.Chem.1968,6,421.doi:10.1002/ ijch.196800054

    (28) Spinks,J.W.T.;Woods,R.J.Introduction to Radiation Chemistry;Wiley:New York,1990.

    (29) Wolfenden,B.S.;Willson,R.L.J.Chem.Soc.Perkin Trans. 1982,2,805.doi:10.1039/P29820000805

    (30) Mendez-Arriaga,F.;Otsu,T.;Oyama,T.;Gimenez,J.;Esplugas, S.;Hidaka,H.;Serpone,N.Water.Res.2011,45,2782. doi:10.1016/j.watres.2011.02.030

    (31) Merga,G.;Rao,B.S.M.;Mohan,H.;Mittal,J.P.J.Phys. Chem.2002,98,9158.doi:10.1021/j100088a012

    (32)Lam,M.W.;Young,C.J.;Mabury,S.A.Environ.Sci.Tech. 2005,39,513.doi:10.1021/es0494757

    (33) Sehested,K.;Christensen,H.C.;Hart,E.J.;Corfitzen,H.J. Phys.Chem.-Us 1975,79,310.doi:10.1021/J100571a005

    (34)Neta,P.;Madhavan,V.;Zemel,H.;Fessenden,R.W. Chemischer Informationsdienst 1977,8,163.doi:10.1002/ chin.197714152

    (35) Hentz,R.R.;Farhataziz;Hansen,E.M.J.Chem.Phys.1972, 57,2959.doi:10.1063/1.1678690

    (36)Choure,S.C.;Bamatraf,M.M.M.;Rao,B.S.M.;Das,R.; Mohan,H.;Mittal,J.P.J.Phys.Chem.A 1997,101,9837. doi:10.1021/jp971986a

    (37)Shibin,N.B.;Sreekanth,R.;Aravind,U.K.;Mohammed,K.M. A.;Chandrashekhar,N.V.;Joseph,J.;Sarkar,S.K.;Naik,D.B.; Aravindakumar,C.T.J.Phys.Org.Chem.2014,27,478. doi:10.1002/poc.3285

    (38) Illes,E.;Takacs,E.;Dombi,A.;Gajda-Schrantz,K.;Racz,G.; Gonter,K.;Wojnarovits,L.Sci.Total Environ.2013,447,286. doi:10.1016/j.scitotenv.2013.01.007

    猜你喜歡
    羥基自由基脈沖
    他們使阿秒光脈沖成為可能
    脈沖離散Ginzburg-Landau方程組的統(tǒng)計解及其極限行為
    自由基損傷與魚類普發(fā)性肝病
    自由基損傷與巴沙魚黃肉癥
    陸克定:掌控污染物壽命的自由基
    科學中國人(2018年8期)2018-07-23 02:26:46
    羥基喜樹堿PEG-PHDCA納米粒的制備及表征
    中成藥(2018年2期)2018-05-09 07:20:05
    黃芩苷脈沖片的制備
    中成藥(2017年12期)2018-01-19 02:06:54
    N,N’-二(2-羥基苯)-2-羥基苯二胺的鐵(Ⅲ)配合物的合成和晶體結構
    TEMPO催化合成3α-羥基-7-酮-5β-膽烷酸的研究
    檞皮苷及其苷元清除自由基作用的研究
    人妻人人澡人人爽人人| 国产亚洲午夜精品一区二区久久| 纵有疾风起免费观看全集完整版| 高清黄色对白视频在线免费看| 亚洲av日韩在线播放| 国产精品久久久久久久电影| 久久久久久久久久人人人人人人| 国产淫语在线视频| av在线老鸭窝| 国产精品成人在线| 免费观看a级毛片全部| 国产熟女欧美一区二区| 十八禁网站网址无遮挡| 夜夜看夜夜爽夜夜摸| 伦精品一区二区三区| 久久av网站| 成年美女黄网站色视频大全免费 | 婷婷色综合大香蕉| 一区在线观看完整版| 日韩精品有码人妻一区| 亚洲怡红院男人天堂| 日韩人妻高清精品专区| 久久久久精品久久久久真实原创| 最新的欧美精品一区二区| 男女边摸边吃奶| 国产精品国产三级专区第一集| 精品人妻偷拍中文字幕| 欧美日韩成人在线一区二区| 中文欧美无线码| 久久久久久久久大av| 成人国语在线视频| 午夜激情久久久久久久| 最黄视频免费看| 少妇的逼好多水| 免费大片18禁| 精品少妇内射三级| 国产免费一区二区三区四区乱码| 国模一区二区三区四区视频| 亚洲情色 制服丝袜| 日日爽夜夜爽网站| av电影中文网址| 成人影院久久| 国产亚洲最大av| 亚洲综合色网址| 欧美国产精品一级二级三级| 色哟哟·www| 成人影院久久| 日韩成人av中文字幕在线观看| 青春草亚洲视频在线观看| 国产精品欧美亚洲77777| 黑人猛操日本美女一级片| 久久人人爽av亚洲精品天堂| 国产成人a∨麻豆精品| 五月天丁香电影| 丝瓜视频免费看黄片| 91精品三级在线观看| 国产精品偷伦视频观看了| 黑人猛操日本美女一级片| 精品人妻熟女av久视频| 日韩在线高清观看一区二区三区| 男女边摸边吃奶| 免费久久久久久久精品成人欧美视频 | 制服丝袜香蕉在线| 免费av中文字幕在线| 女性被躁到高潮视频| 精品久久久噜噜| 高清午夜精品一区二区三区| 日本猛色少妇xxxxx猛交久久| 日韩免费高清中文字幕av| 97在线人人人人妻| 九九在线视频观看精品| 美女国产视频在线观看| 毛片一级片免费看久久久久| 三上悠亚av全集在线观看| 国产成人freesex在线| 天天躁夜夜躁狠狠久久av| 日韩av免费高清视频| 午夜福利影视在线免费观看| 亚洲第一av免费看| 国产极品天堂在线| 亚洲精品av麻豆狂野| 香蕉精品网在线| 国产精品99久久久久久久久| 欧美日韩精品成人综合77777| 天美传媒精品一区二区| 亚洲精品国产av蜜桃| kizo精华| 国产成人精品久久久久久| 亚洲精品日韩在线中文字幕| 国产亚洲精品久久久com| 黑人猛操日本美女一级片| 亚洲成人手机| 国产精品熟女久久久久浪| 国产精品一区www在线观看| 99热全是精品| 成年av动漫网址| 韩国av在线不卡| 欧美日韩国产mv在线观看视频| 国产 精品1| 老司机亚洲免费影院| 老司机影院成人| 亚洲欧美一区二区三区国产| 欧美丝袜亚洲另类| 黑人巨大精品欧美一区二区蜜桃 | 熟妇人妻不卡中文字幕| 伊人久久国产一区二区| 大又大粗又爽又黄少妇毛片口| 热99久久久久精品小说推荐| 欧美激情 高清一区二区三区| 国产免费现黄频在线看| 久久久久久久久久久久大奶| 国产亚洲午夜精品一区二区久久| 热re99久久精品国产66热6| 亚洲性久久影院| 一区二区三区精品91| 一级毛片电影观看| 国产欧美日韩一区二区三区在线 | 欧美精品亚洲一区二区| 欧美老熟妇乱子伦牲交| 亚洲欧洲国产日韩| 老司机影院成人| 日韩精品免费视频一区二区三区 | 亚洲色图 男人天堂 中文字幕 | 最近手机中文字幕大全| 久久毛片免费看一区二区三区| 视频在线观看一区二区三区| 中文字幕av电影在线播放| 如何舔出高潮| 熟女电影av网| 亚洲精品国产色婷婷电影| 麻豆精品久久久久久蜜桃| 欧美+日韩+精品| 日韩中字成人| 成人无遮挡网站| 久久久久久久亚洲中文字幕| av网站免费在线观看视频| av一本久久久久| 亚洲成人一二三区av| 国产精品.久久久| 日日撸夜夜添| 久久精品夜色国产| 亚洲国产日韩一区二区| 黑人高潮一二区| 亚洲欧美中文字幕日韩二区| 十八禁网站网址无遮挡| 国产精品国产三级国产av玫瑰| 2021少妇久久久久久久久久久| 亚洲第一av免费看| 国产午夜精品久久久久久一区二区三区| 久久人人爽av亚洲精品天堂| 老女人水多毛片| 欧美精品人与动牲交sv欧美| 免费大片18禁| 国产精品麻豆人妻色哟哟久久| 成人毛片60女人毛片免费| 2018国产大陆天天弄谢| 国产69精品久久久久777片| 成年人免费黄色播放视频| 亚洲av成人精品一二三区| 精品卡一卡二卡四卡免费| 在线观看人妻少妇| 国产黄色免费在线视频| 大片免费播放器 马上看| 少妇精品久久久久久久| 午夜av观看不卡| 一区二区三区免费毛片| 日韩成人伦理影院| 色婷婷av一区二区三区视频| 国产片特级美女逼逼视频| 考比视频在线观看| 最黄视频免费看| 成人无遮挡网站| 精品久久久噜噜| a级毛片在线看网站| 久久午夜综合久久蜜桃| 欧美亚洲日本最大视频资源| 国产成人精品久久久久久| a级毛片免费高清观看在线播放| 亚洲精品日本国产第一区| 少妇被粗大的猛进出69影院 | 69精品国产乱码久久久| 中文字幕精品免费在线观看视频 | 久久久久久久久久久久大奶| 久久 成人 亚洲| av在线app专区| 交换朋友夫妻互换小说| 国精品久久久久久国模美| 国产深夜福利视频在线观看| 日韩av在线免费看完整版不卡| 在线观看美女被高潮喷水网站| 内地一区二区视频在线| 天天操日日干夜夜撸| 久久ye,这里只有精品| 女的被弄到高潮叫床怎么办| 大陆偷拍与自拍| 又粗又硬又长又爽又黄的视频| 久久久久国产精品人妻一区二区| 亚洲人成77777在线视频| 黑人高潮一二区| 麻豆精品久久久久久蜜桃| 精品酒店卫生间| 精品久久蜜臀av无| 久久久久久久大尺度免费视频| 国产熟女欧美一区二区| 免费久久久久久久精品成人欧美视频 | 久久韩国三级中文字幕| 久久国产精品男人的天堂亚洲 | 视频中文字幕在线观看| 涩涩av久久男人的天堂| 国产午夜精品久久久久久一区二区三区| av国产久精品久网站免费入址| 80岁老熟妇乱子伦牲交| 久久久久久久久大av| 久久精品夜色国产| 亚洲第一区二区三区不卡| 中文字幕最新亚洲高清| 97在线人人人人妻| 成人毛片60女人毛片免费| 午夜av观看不卡| 成人影院久久| 久久久久久久亚洲中文字幕| 亚洲天堂av无毛| 亚洲欧美清纯卡通| 日韩,欧美,国产一区二区三区| 国产精品人妻久久久影院| 建设人人有责人人尽责人人享有的| 色网站视频免费| 免费av中文字幕在线| 香蕉精品网在线| av.在线天堂| 中文字幕最新亚洲高清| 丝袜喷水一区| 2022亚洲国产成人精品| 能在线免费看毛片的网站| 赤兔流量卡办理| 免费播放大片免费观看视频在线观看| 欧美日韩av久久| 亚洲精品美女久久av网站| 中国三级夫妇交换| 欧美成人精品欧美一级黄| 在线天堂最新版资源| 中文字幕最新亚洲高清| 国产成人精品一,二区| 国产精品成人在线| 久久久久精品性色| 人人妻人人澡人人爽人人夜夜| 多毛熟女@视频| 女的被弄到高潮叫床怎么办| 在线看a的网站| 日韩成人av中文字幕在线观看| tube8黄色片| 日产精品乱码卡一卡2卡三| 嫩草影院入口| 欧美激情 高清一区二区三区| 国产成人91sexporn| 欧美xxxx性猛交bbbb| 成人免费观看视频高清| 18禁在线播放成人免费| 在线观看免费视频网站a站| 69精品国产乱码久久久| 99热6这里只有精品| 亚洲成人av在线免费| 丰满乱子伦码专区| 精品亚洲成国产av| av免费观看日本| 成年人午夜在线观看视频| 亚洲国产日韩一区二区| 国产男女内射视频| 国产精品麻豆人妻色哟哟久久| 国产精品无大码| 亚洲av免费高清在线观看| 日日摸夜夜添夜夜添av毛片| 亚洲综合色网址| 亚洲国产欧美日韩在线播放| 男女啪啪激烈高潮av片| 好男人视频免费观看在线| 国产精品国产av在线观看| 一区二区av电影网| 少妇 在线观看| 夫妻性生交免费视频一级片| 在线观看美女被高潮喷水网站| 亚洲第一av免费看| 我的女老师完整版在线观看| 欧美日韩亚洲高清精品| 婷婷色麻豆天堂久久| 日韩欧美精品免费久久| 人妻制服诱惑在线中文字幕| 2018国产大陆天天弄谢| 免费黄频网站在线观看国产| av免费观看日本| 国产精品一区www在线观看| 国产成人精品在线电影| 久久青草综合色| 国产淫语在线视频| xxx大片免费视频| 亚洲国产欧美日韩在线播放| 免费高清在线观看视频在线观看| 黄色视频在线播放观看不卡| 国产成人精品久久久久久| 国产免费一区二区三区四区乱码| 女人久久www免费人成看片| 亚洲国产精品一区三区| 国产成人午夜福利电影在线观看| 午夜激情久久久久久久| 国产一区有黄有色的免费视频| 最新中文字幕久久久久| 香蕉精品网在线| 国产黄色免费在线视频| 狂野欧美激情性bbbbbb| 我的老师免费观看完整版| 精品少妇内射三级| 看免费成人av毛片| 国产高清国产精品国产三级| 赤兔流量卡办理| 高清av免费在线| 午夜福利视频在线观看免费| 亚洲av.av天堂| 成年av动漫网址| 哪个播放器可以免费观看大片| 国产精品国产三级国产专区5o| 国产永久视频网站| 51国产日韩欧美| 边亲边吃奶的免费视频| 亚洲精品日本国产第一区| 一级毛片黄色毛片免费观看视频| 亚洲国产最新在线播放| 国产av精品麻豆| 毛片一级片免费看久久久久| 亚洲人成77777在线视频| 久久 成人 亚洲| 国产成人freesex在线| 黄片播放在线免费| 高清视频免费观看一区二区| 黑人欧美特级aaaaaa片| 国产成人一区二区在线| 观看美女的网站| 色5月婷婷丁香| 久久ye,这里只有精品| 精品人妻在线不人妻| xxx大片免费视频| 一个人免费看片子| 我的女老师完整版在线观看| 少妇精品久久久久久久| 中文精品一卡2卡3卡4更新| 国产一区有黄有色的免费视频| 亚洲av.av天堂| 亚洲国产精品国产精品| 桃花免费在线播放| 亚洲国产毛片av蜜桃av| 又粗又硬又长又爽又黄的视频| 国产精品麻豆人妻色哟哟久久| 十分钟在线观看高清视频www| 久久久久久久久久久丰满| 国产精品秋霞免费鲁丝片| 免费黄网站久久成人精品| 少妇被粗大猛烈的视频| 欧美 日韩 精品 国产| av在线观看视频网站免费| 在线免费观看不下载黄p国产| 一区二区日韩欧美中文字幕 | 久久免费观看电影| 日本猛色少妇xxxxx猛交久久| 久久精品国产亚洲av天美| 亚洲精品自拍成人| 国产精品国产三级国产专区5o| 人体艺术视频欧美日本| 青青草视频在线视频观看| 麻豆成人av视频| 一本—道久久a久久精品蜜桃钙片| 热99国产精品久久久久久7| 午夜福利在线观看免费完整高清在| 制服人妻中文乱码| 亚洲第一av免费看| 五月玫瑰六月丁香| 久热久热在线精品观看| 国产熟女午夜一区二区三区 | 婷婷色麻豆天堂久久| 午夜91福利影院| 午夜福利视频精品| 免费高清在线观看日韩| 亚洲婷婷狠狠爱综合网| 亚洲三级黄色毛片| 国产成人免费观看mmmm| 欧美一级a爱片免费观看看| 久久久久视频综合| 日韩一区二区视频免费看| 国产精品免费大片| 熟女av电影| 欧美性感艳星| 国产一区二区三区综合在线观看 | 天堂俺去俺来也www色官网| 91国产中文字幕| 久久久精品区二区三区| 亚洲精品日韩av片在线观看| 成年av动漫网址| 日韩制服骚丝袜av| 国产在线一区二区三区精| 搡女人真爽免费视频火全软件| 王馨瑶露胸无遮挡在线观看| 亚洲第一区二区三区不卡| 在线 av 中文字幕| 美女脱内裤让男人舔精品视频| 亚洲精品国产av成人精品| 一个人看视频在线观看www免费| 伦理电影免费视频| 亚洲av在线观看美女高潮| 亚洲av.av天堂| 建设人人有责人人尽责人人享有的| 亚洲精品亚洲一区二区| 最后的刺客免费高清国语| 日本黄色日本黄色录像| 91精品国产国语对白视频| 亚洲精品一二三| 一级二级三级毛片免费看| 成人综合一区亚洲| av天堂久久9| 中文字幕久久专区| 狂野欧美激情性xxxx在线观看| 在线免费观看不下载黄p国产| av在线观看视频网站免费| 老司机影院成人| 男女啪啪激烈高潮av片| 国产老妇伦熟女老妇高清| 亚洲性久久影院| 亚洲欧美日韩卡通动漫| 97超碰精品成人国产| 日韩成人av中文字幕在线观看| 99热这里只有精品一区| 人人妻人人澡人人看| 精品亚洲成国产av| 亚洲国产av新网站| 亚洲av成人精品一区久久| 亚洲欧美成人综合另类久久久| 涩涩av久久男人的天堂| 男人操女人黄网站| 国产日韩欧美亚洲二区| 国产熟女午夜一区二区三区 | 亚洲中文av在线| 亚洲情色 制服丝袜| 人妻一区二区av| 女人精品久久久久毛片| 夜夜爽夜夜爽视频| 日本vs欧美在线观看视频| 新久久久久国产一级毛片| 国产精品无大码| 久久久久久人妻| 美女脱内裤让男人舔精品视频| 亚洲精品日本国产第一区| av有码第一页| 色视频在线一区二区三区| 插逼视频在线观看| 日韩成人av中文字幕在线观看| 99久久精品一区二区三区| 国产一区亚洲一区在线观看| 秋霞伦理黄片| 国产精品人妻久久久影院| 国产精品蜜桃在线观看| 七月丁香在线播放| 黑人巨大精品欧美一区二区蜜桃 | 中国国产av一级| 欧美精品高潮呻吟av久久| 一级毛片电影观看| av在线老鸭窝| 国产精品一区二区在线不卡| 成人免费观看视频高清| av不卡在线播放| 肉色欧美久久久久久久蜜桃| 99热6这里只有精品| 国产成人精品久久久久久| 亚洲精品成人av观看孕妇| 国产高清不卡午夜福利| 黄色毛片三级朝国网站| 永久网站在线| 亚洲四区av| 日韩av在线免费看完整版不卡| 男人爽女人下面视频在线观看| 汤姆久久久久久久影院中文字幕| 男男h啪啪无遮挡| 亚洲av日韩在线播放| 久久人人爽人人片av| 亚洲精品自拍成人| 久久久久久久国产电影| 看非洲黑人一级黄片| 91精品国产九色| 久久99一区二区三区| 大香蕉97超碰在线| 九草在线视频观看| 国产免费视频播放在线视频| 亚洲精品久久成人aⅴ小说 | 69精品国产乱码久久久| 麻豆精品久久久久久蜜桃| 国产男女超爽视频在线观看| 国产精品欧美亚洲77777| 18禁动态无遮挡网站| 国产一区二区三区av在线| 午夜福利影视在线免费观看| 国产伦理片在线播放av一区| 精品一区二区免费观看| 欧美xxxx性猛交bbbb| 欧美+日韩+精品| 亚洲一级一片aⅴ在线观看| 青春草国产在线视频| 久久毛片免费看一区二区三区| 日韩av免费高清视频| 欧美成人精品欧美一级黄| 伊人亚洲综合成人网| av不卡在线播放| 国产免费现黄频在线看| 男男h啪啪无遮挡| 亚洲欧美一区二区三区黑人 | 久久亚洲国产成人精品v| 国产免费视频播放在线视频| 久久亚洲国产成人精品v| 美女xxoo啪啪120秒动态图| 中文字幕久久专区| 国产精品免费大片| av有码第一页| 精品卡一卡二卡四卡免费| 在线看a的网站| 一本一本综合久久| 亚洲精品乱码久久久久久按摩| 丝袜脚勾引网站| 视频在线观看一区二区三区| 久久久精品区二区三区| 婷婷色麻豆天堂久久| 熟妇人妻不卡中文字幕| 免费播放大片免费观看视频在线观看| 中文字幕久久专区| 高清av免费在线| 黄色一级大片看看| 91久久精品国产一区二区成人| 人成视频在线观看免费观看| 国产精品嫩草影院av在线观看| 国产 一区精品| 天堂俺去俺来也www色官网| 日韩不卡一区二区三区视频在线| 亚洲av不卡在线观看| 黄片无遮挡物在线观看| 午夜福利视频在线观看免费| 一本色道久久久久久精品综合| 亚洲性久久影院| 久久人人爽av亚洲精品天堂| 日韩一区二区视频免费看| 一二三四中文在线观看免费高清| 国产在线视频一区二区| 国产片特级美女逼逼视频| 永久免费av网站大全| 三上悠亚av全集在线观看| av福利片在线| 秋霞伦理黄片| 久久影院123| kizo精华| 午夜福利影视在线免费观看| 在线观看免费日韩欧美大片 | 亚洲伊人久久精品综合| 国产乱人偷精品视频| av天堂久久9| 人人妻人人爽人人添夜夜欢视频| 亚洲四区av| 人妻夜夜爽99麻豆av| 欧美成人精品欧美一级黄| 国产欧美另类精品又又久久亚洲欧美| 国产探花极品一区二区| 美女国产高潮福利片在线看| 亚洲欧洲国产日韩| 91精品国产九色| 十分钟在线观看高清视频www| 伦精品一区二区三区| 日本爱情动作片www.在线观看| 人成视频在线观看免费观看| 久久人人爽人人片av| 18禁裸乳无遮挡动漫免费视频| 中文字幕久久专区| 热re99久久国产66热| 久久国产精品大桥未久av| 夜夜骑夜夜射夜夜干| 边亲边吃奶的免费视频| 亚洲欧美一区二区三区国产| 日韩精品有码人妻一区| 精品99又大又爽又粗少妇毛片| av一本久久久久| 秋霞伦理黄片| 精品久久久精品久久久| 一区在线观看完整版| 老熟女久久久| 欧美性感艳星| av有码第一页| 人妻系列 视频| 91国产中文字幕| 男女无遮挡免费网站观看| 色哟哟·www| 99视频精品全部免费 在线| 女性被躁到高潮视频| 搡女人真爽免费视频火全软件| 国产色爽女视频免费观看| 国精品久久久久久国模美| 亚洲av二区三区四区| 国产视频内射| 婷婷色综合大香蕉| 国产成人午夜福利电影在线观看| 观看美女的网站| 久久热精品热| 麻豆乱淫一区二区| 欧美精品国产亚洲| 一区二区日韩欧美中文字幕 | 热re99久久国产66热| 99精国产麻豆久久婷婷| 91精品国产九色| 日本vs欧美在线观看视频| 十八禁网站网址无遮挡| 精品国产国语对白av| 一区在线观看完整版| 国产日韩欧美亚洲二区| 亚洲欧美日韩卡通动漫| 夜夜看夜夜爽夜夜摸|