• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    自由基誘導的水溶液中氟西汀的降解:脈沖輻解及穩(wěn)態(tài)輻照研究

    2017-05-12 06:58:02吉天翼劉艷成趙劍鋒王文鋒吳明紅
    物理化學學報 2017年4期
    關鍵詞:羥基自由基脈沖

    吉天翼 劉艷成 趙劍鋒,3 徐 剛 王文鋒,* 吳明紅,*

    自由基誘導的水溶液中氟西汀的降解:脈沖輻解及穩(wěn)態(tài)輻照研究

    吉天翼1,2劉艷成2趙劍鋒2,3徐 剛1王文鋒2,*吳明紅1,*

    (1上海大學環(huán)境與化學工程學院,上海200444;2中國科學院上海應用物理研究所,上海201800;3中國科學院大學,北京100049)

    本文運用脈沖輻解探究了不同自由基與藥物氟西汀(FLX)之間的反應。羥基自由基(·OH)與FLX反應生成苯環(huán)上的羥基加成物,而硫酸根陰離子自由基則通過單電子氧化FLX生成苯陽離子自由基,該中間產(chǎn)物再進一步與水反應生成苯環(huán)上的羥基加成物。本研究測定了三種自由基·OH,水合電子以及與 FLX反應的反應速率常數(shù)分別為:7.8×109,2.3×109和1.1×109mol·L-1·s-1。本文還運用電子束輻照技術探究了不同輻照條件下的FLX降解效果,結合HPLC和紫外可見光譜儀進行分析。在N2O和空氣飽和的兩種條件下,F(xiàn)LX溶液經(jīng)1.5 kGy輻照后降解效率均達到90%以上,而N2飽和條件下,加入0.1 mol·L-1的叔丁醇的FLX溶液經(jīng)1.5 kGy輻照后僅有43%分解。此外,酸性和中性條件下FLX的降解效率均大于堿性條件下的。結果闡明了飽和空氣的FLX溶液在中性條件下的降解效果最佳,且·OH誘導的反應比更有利于FLX的分解。本研究期望對于進一步探究FLX的降解反應提供有益的幫助。

    氟西??;脈沖輻解;羥基自由基;硫酸根陰離子自由基;降解

    Key Words: Fluoxetine;Pulse radiolysis;Hydroxyl radical;Sulfate radical anion;Degradation

    1 Introduction

    Recently,social and scientific concerns about the occurrence of pharmaceutical and personal care products(PPCPs)in the environmental water have increased1,2.Many drugs have been detected in environmental water due to the widespread use of pharmaceuticals and the insufficient removal processes in ordinary water and wastewater treatment3,4.Furthermore,concerns have also been raised about the potential impacts of their parent compounds and biologically active metabolites on environmental and human health5.Therefore,PPCPs have been recognized as environmental pollutants6.

    Fluoxetine(FLX)(N-methyl-3-(p-trifluoromethylphenoxy)-3-phenylpropylamine,shown in Fig.1),also named Prozac,is widely used for treating depression and other neurological or mental diseases.As a selective serotonin reuptake inhibitor(SSRI), fluoxetine(FLX)and its demethylated active metabolite norfluoxetine(NFLX)were proposed as being potentially dangerous to the environment in a list of 10 pharmaceuticals7.Since they undergo incomplete decomposition in the wastewater treatment process,FLX and NFLX have been detected with the concentration level of ng·L-1in surface waters of most of countries8-11. Hence,it implied that wastewater effluents are an important source of FLX and NFLX residue in the surface water12,13.Furthermore, it was reported that some freshwater fishes were toxic and the copulation and maturity of microorganisms were distributed after exposure to FLX14,15.Therefore,although FLX and its metabolites are present in the environment in very low concentrations,they may present a potential hazard to the environmental water as well as to human health.

    FLX shows the most absorbance in the range of UV spectrum, but its photodegradation is limited in environmental water,even under appropriate conditions of pH and temperature.Kwon and Armbrust16illustrated the low biological degradability of FLX in wastewater treatment plants,as it was not only stable during hydrolysis and photolysis but also resistant to micro-biodegradation.Nowadays,advanced oxidation processes(AOPs)are a rapid and high-efficiency technology that have been used successfully to remove multiple pollutants by forming strong oxidants such as hydroxyl radicals(·OH)to eliminate contaminants and mineralization.To improve this degradation efficiency,a study reported that using sonochemical treatment as a mean of pretreatment combined with biological treatment to remove FLX17. FLX was eliminated in an Ar-saturated solution after 60 min of sonication,and 15%was mineralized after 360 min of ultrasonic irradiation.Radiation technology is considered to be an advanced oxidation processes(AOP)technique,and the radicals formed by radiolysis of water can degrade pollutants18,19.Silva et al.20reported FLX eliminated completely by electron beam irradiation at a dose of more than 2.5 kGy,while TOC was removed only 22%even at a dose of 20 kGy.Garrido et al.21discovered that FLX was oxidized mainly through the oxidations of the secondary amine group and aromatic ring,which yielded a transient cation-radical and then conducted further reactions.

    Fig.1 Molecular structure of FLX

    In this paper,we studied that different intermediates of water radiolysis reacted with FLX by monitoring the growth/decay of transient intermediates by using pulse radiolysis.The rate constants of radical reactions with FLX were determined,and the yield of FLX decomposition was investigated in different conditions by electron beam irradiation.Finally,we compared the rate constants of different radical reactions with FLX and the degradation rates of FLX under different conditions to discern the optimal conditions for eliminating FLX.

    2 Materials and methods

    2.1 Materials

    Fluoxetine hydrochloride(FLX·HCl)was purchased from Tokyo Chemical Industry(>98%purity).Tert-butanol and K2S2O8were obtained from Sigma-Aldrich.NaOH and phosphate(used for preparation of buffers,pH=7.1)were purchased form J&K Chemical Ltd.All chemicals were analytical reagents and employed without further purification.Sample solutions were prepared using ultra-pure water,and experiments were carried out at ambient temperature.Solutions were bubbled with N2O or N2(high purity,99.999%)for at least 20 min.

    2.2 Pulse radiolysis and steady state radiolysis

    The nanosecond pulse radiolysis experiments were conducted using a 10 MeV linear electron accelerator with high-energy electron pulse duration of 8 ns,and the details were described elsewhere22,23.As a thiocyanate dosimeter,0.1 mol·L-1KSCN solution bubbled with N2O was used to measure the pulse dosimetry using G[(CNS)2·-]=5.8 and by taking ε480nm=7600 dm3· m-1·cm-122.The dose of each electron pulse was 10 Gy.A500 W xenon lamp was used as the source of analyzing light,and the electron pulse and the detecting beam passed vertically through a quartz cell with an optical path length of 10 mm.

    Main radicals generated by water radiolysis were shown in Eq. (1),in which the G-values(μmol·J-1)shown in brackets are the radiation chemical yields of radicals24-26.To study the hydroxyl radical(·OH)reaction,sample solutions were pre-saturated with N2O to convert the hydrated electron(e-aq)and hydrogen atom(·H) to·OH under pulse radiolysis,as shown in Eqs.(2)and(3)24,27,28. To research the reducing reactions oftert-butanol was used to scavenge·OH in the N2saturated solutions as shown in Eq.(4)27,29.

    H2O?·OH(0.28),·H(0.06),H3O+(0.27),H2(0.05),

    Electron beam irradiation was accomplished utilizing a GJ-2-II electron accelerator with a 1.8 MeV beam energy during the steady state radiolysis study.The experiments were irradiated with a dose range of 0.5-20 kGy and a dose rate of 0.045 kGy·s-1.

    2.3 Analytical procedures

    The UV-visible experiments were performed using a Hitachi U-3900 spectrophotometer with the detection wavelength in the range of 190-500 nm.The concentrations of FLX before and after irradiation were measured using an HPLC system(Agilent 1200 series)equipped with a reversed C18column(250 mm×4.6 mm); the detection wavelength of the VW monitor was set as 226 nm. The mobile phase was a mixture of acetonitrile(ACN)and 10 mmol·L-1potassium monophosphate(50:50)at an isocratic mode(1 mL·min-1)30.The injection volume of the auto-sampler was set to 10 μL.

    3 Results and discussion

    3.1 Pulse radiolysis

    3.1.1 Hydroxyl radical reactions

    The concentration of 0.5 mmol·L-1FLX in the N2O-saturated solution at pH=7.1 was studied by pulse radiolysis.As shown in Fig.2,the transient absorption spectrum for the reaction of·OH with FLX depicts a characteristic absorption at 340 nm.After 1 μs, it was quenched rapidly with time increased.Merga et al.31reported that the absorption peak in the range of 300-350 nm corresponded to the·OH adduct,which was generated by the·OH attack on the aromatic ring.According to a previous report,FLX degraded to produce the hydroxylated and O-dealkylated intermediates under indirect photodegradation32.It is possible that·OH reacted with FLX as shown in the following equation:

    Fig.2 Transient absorption spectra obtained from hydroxyl radical oxidation with 5×10-4mol·L-1FLX in N2O-saturated aqueous solutions(pH=7.1)

    The inset of Fig.2 shows the buildup rate constant(kobs)monitored at 340 nm,with various concentrations of FLX ranging from 0.02 to 1 mmol·L-1.Therefore,the rate constant was determined to be 7.8×109mol·L-1·s-1based on the linear trend of the pseudo-first-order transient rate constant.The value of the rate constant of·OH reaction with FLX is similar to those reported about·OH reaction with benzene32,demonstrating that the formation of the hydroxylcyclohexadienyl radical is the first step in the reaction of·OH with FLX24,33.This result also suggests that the majority of·OH added to the benzene ring,rather than reacting with alkylbenzene in the abstraction of the hydrogen atom.

    3.1.2 Hydrated electron reactions

    To investigate the reaction of FLX with hydrated electrons,the experiment was performed in an N2-saturated sample solution with the addition of 0.1 mol·L-1tert-butanol to scavenge·OH,where e-aqis main reactor partner.Astrong broad band at the peak of 690 nm was observed after electron pulse irradiation(as shown in Fig.3a).And the spectrum exhibits the decay ofat 690 nm with different time in the presence and absence of FLX solution.Thedecay ofwas faster with 0.5 mmol·L-1FLX solution than without the addition of FLX solution.After 1 μs,the characteristic absorption ofdecayed completely in the 0.5 mmol·L-1FLX solution.Hence,the hydrated electron decay appears to be accelerated in the presence of FLX.

    Fig.3 (a)Time-resolved absorption spectra obtained from thereaction with 5×10-4mol·L-1FLX in N-saturated solutions2containing 0.1 mol·L-1tert-butanol(pH=7.1);(b)plot of the observed decay rate constant(kobs)as monitored by the reaction ofwith different concentrations of FLX at 690 nm

    Fig.3b shows that the plot of decay rate constant for the reaction ofwith different concentrations of FLX was observed in the decay signal ofat 690 nm.The curve was fitted to a linear trend of the pseudo-first-order rate constant,the value of the reaction ofwith FLX was determined to be 2.3×109mol·L-1·s-1.The

    3.1.3 Sulfate radical anion

    aq,with a yield of G(SO4·-)=2.7 μmol·J-1(Eq.(6))35.Fig.4 depicts the time-resolved absorption spectra of the SO4·-reaction with FLX recorded at different time,which shows strong absorption peaks at 350 and 460 nm.The characteristic absorption ofwas reported to be at 460 nm in previous studies36.Compared to the absorption spectrum of transient intermediate in the absence of FLX at 1 μs, it has a new absorption peak at 350 nm in the 0.5 mmol·L-1FLX solution.The characteristic absorption ofdecayed rapidly with increasing time,while the absorbance of transient intermediate increased at 350 nm(shown in Eq.(7)).Theradicalinduced degradation of some benzene compounds formed the intermediates of hydroxylated adducts of the benzene ring18.In this study,we conjectured that the SO4·-attacked to the aromatic ring by single electron oxidation,forming benzene radical cation and then further reacted with H2O,forming·OH adduct37.The bimolecular rate constant of the SO4·-radical reaction with FLX was estimated with the range concentration from 0.06-0.22 mmol·L-1, based on the pseudo-first-order decay rate constant(inset of Fig.4).And the value is 1.1×109mol·L-1·s-1,as determined from the decay of SO4·-at 460 nm.

    Fig.4 Time-resolved absorption spectra obtained in the reaction of SO·4-with 5×10-4mol·L-1FLX in N2-saturated solutions containing 0.1 mol·L-1K2S2O8and 0.1 mol·L-1tert-butanol(pH=7.1)

    3.2 Steady state radiolysis

    The initial concentration of 0.29 mmol·L-1FLX in air,N2O or N2bubbled solutions were irradiated with different doses by the electron beam irradiation.In the N2O-saturated solution,·OH is the dominant oxidant to oxidizes pollutants.While e-aqis an important reducing agent in the N2-saturated solution containing 0.1 mol·L-1tert-butanol as the selected radical scavenger.In the presence of dissolved O2,and H·were both converted into O2·-/ HO2·(Eqs.(8,9)),therefore,·OH+O2·-/HO2·reactions occur in the aerated solution19.

    Fig.5 displays the·OH-induced degradation efficiency of FLX in the N2O-saturated solution at pH=7.At a dose of 1.5 kGy,the decomposition yield of FLX was approximately 90%;at an absorbed dose of 5 kGy,more than 99%FLX was consumed.With the increasing dose,the characteristic absorption of FLX decreased at 226 nm,indicating the decomposition of FLX in the aqueous solution(inset of Fig.5).Meanwhile,when the absorbed dose was increased,the absorption peak at 265 nm also increased. It was also observed that the peak at approximately 265 nm was slightly redshifted after irradiation,and this same phenomenon also was observed in the spectrum of the air-saturated solution (data not shown).The peak at 265 nm was denoted the formation of changed aromatic rings38.It was also illustrated the hydroxylated product formed by·OH attacked to the aromatic ring.

    To study reactions of individual radical with FLX,the atmo-

    Fig.5 Effect of various doses on the yield of decomposition of the initial concentration of 0.29 mmol·L-1FLX in the

    N2O-saturated solution as determined by the HPLC system and integrating the area under the chromatographic peaksphere condition was changed to produce reactive radical intermediates.And the above experiments suggested that SO4·-can oxide with FLX,so we also further explored the efficiency ofoxidation with FLX.From the Fig.6,the efficiency of the·OH-induced reaction was slightly higher than the·OH+O2·-/HO2· reaction in the N2O and air atmospheres,but both reactions were much higher than theandreactions in the N2atmosphere. After being irradiated with a dose of 1.5 kGy,the initial FLX molecules deceased by 95%and 93%in N2O and air bubbled

    solutions,respectively,in contrast with 43%reaction)and 73%reaction)reductions in the N2-saturated solution.FLX were decomposed completely with·OH and·OH+reactions at a dose of 5 kGy,and more than 90%FLX were decomposed withandreactions.It was reported that the mineralization of ibuprofen by

    radical is better than·OH at pH=7 since the yield of oxidizing radicals increased about 2.2 times in the presence of K2S2O818.However,as proved by our transient study,·OH reaction with FLX was observed to be faster than SO4·-.Meanwhile,as shown by the steady state results,·OH-induced degradation of FLX is more efficient thanradicalinduced degradation.This is probably due to two reasons listed

    adical could not fully or mostly react with FLX because of the competitive reaction between the selfdecay of radical andradical reaction with FLX.The other reason is that the addition reaction of·OH radical is more efficient than the single electron oxidation ofradical in the ring opening reaction of FLX.

    The effect of degradation efficiency of FLX at different pH values was also examined.Fig.7 displays the decomposition yield of FLX in air-saturated solutions at pH 4,7 and 11.At a dose of 2 kGy,FLX had decomposed by more than 95%at pH 4 and 7. The decompositions of FLX both under acidic condition and the neutral condition were better than alkaline condition at a low absorbed dose.Additionally,it has been reported that the degradation of FLX increased at a condition of acidic pH by sonochemical treatment,which has been interpreted to reflect the

    Fig.6 Dependence of the yield of FLX radiolytic decomposition on the·OH reaction(■)in the N2O-saturated solution,the

    ·OH+O2·-/HO2·reaction(▲)in the air-saturated solution,and the(●)and? Fig.7 Dose dependence of the decomposition yield of the initial concentration of 0.29 mmol·L-1FLX in the

    air-saturated solution(·OH+O2·-/HO2·reaction) dominance of the hydrophilic form of FLX17.The pKavalue of FLX is 10.0530.Therefore,the substance exists mainly in its neutral form at pH=11,which is more stable at the time of radical attacking. 4 Conclusions

    This study has shown the transient reactions of FLX with different radicals in pulse radiolysis,and the degradation efficiencies of FLX by electron beam irradiation under different conditions. The·OH radical,solvated electrons,and sulfate radical anions quickly reacted with FLX with the rate constants of 7.8×109, 2.3×109,and 1.1×109mol·L-1·s-1,respectively.The experiments illustrated that the degradation of FLX was occurred both by oxidative and reducing radicals,and the oxidative radicals tend to be more efficient for the decomposition of FLX.Based on the results obtained in this study,we thought that hydroxylated adduct was formed by hydroxyl radical attacking the aromatic ring directly.While it was found that SO4·-reaction preferentially formed a benzene radial cation by single electron oxidation,the intermediates were further transformed into the·OH adduct by reacting with H2O.

    For the steady study,over 90%FLX degraded with an absorbed dose of 1.5 kGy both in the presence of oxygen(·OH+O2·-/HO2· reaction)and in its absence(·OH reaction).In comparing different oxidants,it was observed that the degradation rates of FLX with·OH were higher than that with SO4·-radical.It is possible that the yield of SO4·-radical reacted with FLX was not as much as the yield of·OH,and·OH adduct was more efficient for the ring opening reaction of FLX.Therefore,radiolytic degradation is likely an effective way of eliminating FLX in aqueous solution. And it is also recommended that the radiolytic degradation of FLX molecule was performed by·OH-induced reaction at a neutral condition.

    Acknowledgment: The authors gratefully thank the Shanghai Institute of Applied Physics,Chinese Academy of Sciences and the University of Shanghai.References

    (1)Sui,Q.;Huang,J.;Deng,S.B.;Chen,W.W.;Yu,G.Environ.

    (2) Subedi,B.;Kannan,K.Environ.Sci.Technol.2014,48,6661.

    (20) Silva,V.H.O.;Batista,A.P.D.S.;Borrely,S.I.Environ.Sci. Pollut.R 2016,23,11927.doi:10.1007/s11356-016-6410-1

    (21) Garrido,E.M.;Garrido,J.;Calheiros,R.;Marques,M.P.M.; Borges,F.J.Phys.Chem.A 2009,113,9934.doi:10.1021/ jp904306b

    (22)Yao,S.D.;Sheng,S.G.;Cai,J.H.;Zhang,J.S.;Lin,N.Y. Radiat.Phys.Chem.1995,46,105.doi:10.1016/0969-806X(94) 00120-9

    (23) Liu,Y.C.;Zhang,P.;Li,H.X.;Tang,R.Z.;Cui,R.R.;Wang, W.F.J.Photochem.Photobiol.B 2013,118,58.doi:10.1016/j. jphotobiol.2012.11.002

    (24) Buxton,G.V.J.Phys.Chem.Ref.Data 1988,17,513.

    Radical-Induced Degradation of Fluoxetine in Aqueous Solution by Pulse and Steady-State Radiolysis Studies

    JI Tian-Yi1,2LIU Yan-Cheng2ZHAO Jian-Feng2,3XU Gang1WANG Wen-Feng2,*WU Ming-Hong1,*
    (1School of Environment and Chemical Engineering,Shanghai University,Shanghai 200444,P.R.China;2Shanghai Institute of Applied Physics,Chinese Academy of Sciences,Shanghai 201800,P.R.China;3University of Chinese Academy of Sciences,Beijing 100049,P.R.China)

    The reactions of the pharmaceutical fluoxetine(FLX)with different radicals were investigated by pulse radiolysis.The reaction of hydroxyl radical(·OH)with FLX formed hydroxylated adduct of the aromatic ring,while oxidation of FLX by sulfate radical anion(SO4·-)formed benzene radical cation that further reacted with H2O to yield the·OH adduct.The determined rate constants of·OH,hydrated electrons(e-aq),and SO4·-with FLX were 7.8×109,2.3×109,and 1.1×109mol·L-1·s-1,respectively.In the steady-state radiolysis study, the degradation of FLX in different radiolytic conditions by electron beam irradiation was detected by HPLC and UV-Vis spectra techniques.It was found that FLX concentration decreased by more than 90%in both N2O and air-saturated solutions after 1.5 kGy irradiation.In contrast,only 43%of FLX was decomposed in N2-saturated solution containing 0.1 mol·L-1tert-butanol.The degradation rates of FLX in acidic and neutral solutions were higher than those in alkaline solutions.Our results showed that the degradation of FLX is optimal in air-saturated neutral solution,and·OH-induced degradation is more efficient than SO4·-oxidation of FLX.The obtained kinetic data and optimal conditions give some hints to understand the degradation of FLX.

    O644

    Technol.2011,45,3341.

    10.1021/es200248d

    doi:10.3866/PKU.WHXB201701092

    Received:November 8,2016;Revised:January 9,2017;Published online:January 9,2017.

    *Corresponding authors.WANG Wen-Feng,Email:wangwenfeng@sinap.ac.cn.WU Ming-Hong,Email:mhwu@shu.edu.cn.國家自然科學基金(21173252,41430644,11675098)資助項目

    doi:10.1021/es501709a

    (3) Wawryniuk,M.;Pietrzak,A.;Nalecz-Jawecki,G.Ecotox.

    Environ.Safe 2015,115,144.doi:10.1016/j.ecoenv.2015.02.014 (4) Subedi,B.;Kannan,K.Sci.Total Environ.2015,514,273.

    doi:10.1016/j.scitotenv.2015.01.098

    (5) Kümmerer,K.J.Environ.Manage.2009,90,2354.

    doi:10.1016/j.jenvman.2009.01.023

    (6)Boxall,A.B.;Rudd,M.A.;Brooks,B.W.;Caldwell,D.J.;

    Choi,K.;Hickmann,S.;Innes,E.;Ostapyk,K.;Staveley,J.P.;

    Verslycke,T.Environ.Health Perspect.2012,120,1221.

    doi:10.1289/ehp.1104477

    (7)Santos,L.H.M.L.M.;Gros,M.;Rodriguez-Mozaz,S.;

    Delerue-Matos,C.;Pena,A.;Barcelo,D.;Montenegro,M.C.B.

    S.M.Sci.Total Environ.2013,461,302.doi:10.1016/j.

    scitotenv.2013.04.077

    (8)Kolpin,D.W.;Furlong,E.T.;Meyer,M.T.;Thurman,E.M.; Zaugg,S.D.;Barber,L.B.;Buxton,H.T.Environ.Sci.Technol. 2003,36,1202.doi:10.1021/es0202356

    (9) Metcalfe,C.D.;Miao,X.S.;Koenig,B.G.;Struger,J.Environ.

    Toxicol.Chem.2003,22,2881.doi:10.1897/02-627

    (10) Wu,M.H.;Xiang,J.J.;Que,C.J.;Chen,F.F.;Xu,G.

    Chemosphere 2015,138,486.doi:10.1016/j. chemosphere.2015.07.002

    (11)Ma,R.X.;Wang,B.;Lu,S.Y.;Zhang,Y.Z.;Yin,L.;Huang,J.; Deng,S.B.;Wang,Y.J.;Yu,G.Sci.Total Environ.2016,557, 268.doi:10.1016/j.scitotenv.2016.03.053

    (12) Ottmar,K.J.;Colosi,L.M.;Smith,J.A.B Environ.Contam.

    Tox.2010,84,507.doi:10.1007/s00128-010-9990-3

    (13) Cardoso,O.;Porcher,J.M.;Sanchez,W.Chemosphere 2014,

    115,20.doi:10.1016/j.chemosphere.2014.02.004

    (14) Schultz,M.M.;Painter,M.M.;Bartell,S.E.;Logue,A.;

    Furlong,E.T.;Werner,S.L.;Schoenfuss,H.L.Aquat.Toxicol. 2011,104,38.doi:10.1016/j.aquatox.2011.03.011

    (15) Mendez,N.;Barata,C.Ecotoxicology 2015,24,106.

    doi:10.1007/s10646-014-1362-z

    (16)Kwon,J.W.;Armbrust,K.L.Environ.Toxicol.Chem.2006,25, 2561.doi:10.1897/05-613r.1

    (17) Serna-Galvis,E.A.;Silva-Agredo,J.;Giraldo-Aguirre,A.L.; Torres-Palma,R.A.Sci.Total Environ.2015,524,354. doi:10.1016/j.scitotenv.2015.04.053

    (18) Paul,J.;Naik,D.B.;Bhardwaj,Y.K.;Varshney,L.Radiat. Phys.Chem.2014,100,38.doi:10.1016/j. radphyschem.2014.03.016

    (19) Kovacs,K.;Mile,V.;Csay,T.;Takacs,E.;Wojnarovits,L. Environ.Sci.Pollut.R 2014,21,12693.doi:10.1007/s11356-014-3197-9doi:10.1063/1.555805

    (25) Song,W.H.;Cooper,W.J.;Mezyk,S.P.;Greaves,J.;Peake,B. M.Environ.Sci.Technol.2008,42,1256.doi:10.1021/ es702245n

    (26)Wu,M.H.;Liu,N.;Xu,G.;Ma,J.;Tang,L.;Wang,L.;Fu,H. Y.Radiat.Phys.Chem.2011,80,420.doi:10.1016/j. radphyschem.2010.10.008

    (27) Czapski,G.;Peled,E.Isr.J.Chem.1968,6,421.doi:10.1002/ ijch.196800054

    (28) Spinks,J.W.T.;Woods,R.J.Introduction to Radiation Chemistry;Wiley:New York,1990.

    (29) Wolfenden,B.S.;Willson,R.L.J.Chem.Soc.Perkin Trans. 1982,2,805.doi:10.1039/P29820000805

    (30) Mendez-Arriaga,F.;Otsu,T.;Oyama,T.;Gimenez,J.;Esplugas, S.;Hidaka,H.;Serpone,N.Water.Res.2011,45,2782. doi:10.1016/j.watres.2011.02.030

    (31) Merga,G.;Rao,B.S.M.;Mohan,H.;Mittal,J.P.J.Phys. Chem.2002,98,9158.doi:10.1021/j100088a012

    (32)Lam,M.W.;Young,C.J.;Mabury,S.A.Environ.Sci.Tech. 2005,39,513.doi:10.1021/es0494757

    (33) Sehested,K.;Christensen,H.C.;Hart,E.J.;Corfitzen,H.J. Phys.Chem.-Us 1975,79,310.doi:10.1021/J100571a005

    (34)Neta,P.;Madhavan,V.;Zemel,H.;Fessenden,R.W. Chemischer Informationsdienst 1977,8,163.doi:10.1002/ chin.197714152

    (35) Hentz,R.R.;Farhataziz;Hansen,E.M.J.Chem.Phys.1972, 57,2959.doi:10.1063/1.1678690

    (36)Choure,S.C.;Bamatraf,M.M.M.;Rao,B.S.M.;Das,R.; Mohan,H.;Mittal,J.P.J.Phys.Chem.A 1997,101,9837. doi:10.1021/jp971986a

    (37)Shibin,N.B.;Sreekanth,R.;Aravind,U.K.;Mohammed,K.M. A.;Chandrashekhar,N.V.;Joseph,J.;Sarkar,S.K.;Naik,D.B.; Aravindakumar,C.T.J.Phys.Org.Chem.2014,27,478. doi:10.1002/poc.3285

    (38) Illes,E.;Takacs,E.;Dombi,A.;Gajda-Schrantz,K.;Racz,G.; Gonter,K.;Wojnarovits,L.Sci.Total Environ.2013,447,286. doi:10.1016/j.scitotenv.2013.01.007

    猜你喜歡
    羥基自由基脈沖
    他們使阿秒光脈沖成為可能
    脈沖離散Ginzburg-Landau方程組的統(tǒng)計解及其極限行為
    自由基損傷與魚類普發(fā)性肝病
    自由基損傷與巴沙魚黃肉癥
    陸克定:掌控污染物壽命的自由基
    科學中國人(2018年8期)2018-07-23 02:26:46
    羥基喜樹堿PEG-PHDCA納米粒的制備及表征
    中成藥(2018年2期)2018-05-09 07:20:05
    黃芩苷脈沖片的制備
    中成藥(2017年12期)2018-01-19 02:06:54
    N,N’-二(2-羥基苯)-2-羥基苯二胺的鐵(Ⅲ)配合物的合成和晶體結構
    TEMPO催化合成3α-羥基-7-酮-5β-膽烷酸的研究
    檞皮苷及其苷元清除自由基作用的研究
    久久精品久久久久久噜噜老黄| 啦啦啦视频在线资源免费观看| 久久av网站| 爱豆传媒免费全集在线观看| 在线天堂最新版资源| 又粗又硬又长又爽又黄的视频| av视频免费观看在线观看| 国产老妇伦熟女老妇高清| 欧美精品国产亚洲| 免费看不卡的av| 一级黄片播放器| 久久99热这里只频精品6学生| 久久久久精品久久久久真实原创| 母亲3免费完整高清在线观看 | 国产高清不卡午夜福利| 精品人妻一区二区三区麻豆| 中文精品一卡2卡3卡4更新| 亚洲激情五月婷婷啪啪| 夜夜骑夜夜射夜夜干| 一级片'在线观看视频| 精品一区二区免费观看| 永久免费av网站大全| 男人添女人高潮全过程视频| 国产亚洲一区二区精品| av国产精品久久久久影院| 日韩制服骚丝袜av| 国产熟女欧美一区二区| 天天影视国产精品| 下体分泌物呈黄色| 亚洲国产av影院在线观看| 大话2 男鬼变身卡| 亚洲三级黄色毛片| 久久人人爽人人片av| 亚洲婷婷狠狠爱综合网| 少妇的逼好多水| 男人操女人黄网站| 天堂中文最新版在线下载| 国产成人午夜福利电影在线观看| 如何舔出高潮| av国产精品久久久久影院| 女人精品久久久久毛片| 亚洲一区二区三区欧美精品| 晚上一个人看的免费电影| av国产久精品久网站免费入址| av又黄又爽大尺度在线免费看| 街头女战士在线观看网站| 亚洲欧美一区二区三区黑人 | 五月天丁香电影| 成人漫画全彩无遮挡| 国产极品粉嫩免费观看在线| 亚洲精品视频女| 久久国产精品大桥未久av| 亚洲在久久综合| 成年动漫av网址| 久久精品国产a三级三级三级| 99热这里只有是精品在线观看| 中文字幕av电影在线播放| 亚洲综合色惰| av播播在线观看一区| 岛国毛片在线播放| 欧美97在线视频| 国产精品国产三级国产专区5o| 国产成人免费无遮挡视频| 免费不卡的大黄色大毛片视频在线观看| 1024视频免费在线观看| 国产一区二区激情短视频 | 亚洲激情五月婷婷啪啪| 99国产综合亚洲精品| 亚洲中文av在线| 国产精品人妻久久久久久| 欧美老熟妇乱子伦牲交| 久久久久久久久久久免费av| 精品国产露脸久久av麻豆| 插逼视频在线观看| 国产免费现黄频在线看| 欧美日本中文国产一区发布| 国产一区二区三区综合在线观看 | 一本色道久久久久久精品综合| 国产成人91sexporn| 国产精品国产三级国产av玫瑰| 欧美精品国产亚洲| 久久影院123| 2018国产大陆天天弄谢| 国产精品免费大片| 精品一区在线观看国产| 亚洲一级一片aⅴ在线观看| √禁漫天堂资源中文www| 国产日韩一区二区三区精品不卡| 人妻少妇偷人精品九色| 乱码一卡2卡4卡精品| 亚洲精品美女久久av网站| 国产免费福利视频在线观看| 日韩精品有码人妻一区| 欧美少妇被猛烈插入视频| 国产高清国产精品国产三级| 黑人欧美特级aaaaaa片| 成年av动漫网址| 夫妻性生交免费视频一级片| √禁漫天堂资源中文www| 亚洲欧美日韩另类电影网站| 久久久久精品人妻al黑| 七月丁香在线播放| 一二三四在线观看免费中文在 | 久久精品国产自在天天线| 美女福利国产在线| 免费黄频网站在线观看国产| 最近最新中文字幕大全免费视频 | 捣出白浆h1v1| 少妇的丰满在线观看| 五月天丁香电影| 80岁老熟妇乱子伦牲交| 久久99蜜桃精品久久| 久久久久久久精品精品| 日韩制服丝袜自拍偷拍| 亚洲一码二码三码区别大吗| 两个人看的免费小视频| 国产亚洲精品第一综合不卡 | 国产69精品久久久久777片| 精品少妇黑人巨大在线播放| 桃花免费在线播放| 人妻系列 视频| 亚洲,欧美,日韩| 国产精品一国产av| 大香蕉97超碰在线| 欧美激情 高清一区二区三区| 日本与韩国留学比较| 91在线精品国自产拍蜜月| 欧美成人午夜免费资源| 日韩人妻精品一区2区三区| 亚洲内射少妇av| 91精品国产国语对白视频| 大香蕉97超碰在线| 18禁动态无遮挡网站| 国产又色又爽无遮挡免| 久久国产精品大桥未久av| 国产永久视频网站| 国产成人免费观看mmmm| 国产精品欧美亚洲77777| 美女内射精品一级片tv| 国产精品久久久久久久久免| 国产一区有黄有色的免费视频| 亚洲欧美色中文字幕在线| 深夜精品福利| 亚洲欧美精品自产自拍| 欧美日韩综合久久久久久| 国产成人精品无人区| 久久久久精品久久久久真实原创| 99热国产这里只有精品6| 啦啦啦在线观看免费高清www| 精品久久国产蜜桃| 久久97久久精品| 亚洲高清免费不卡视频| 我要看黄色一级片免费的| 狂野欧美激情性xxxx在线观看| 久久人人爽人人爽人人片va| 国产综合精华液| 9191精品国产免费久久| 在线观看www视频免费| 人妻 亚洲 视频| 91国产中文字幕| 美女内射精品一级片tv| a级片在线免费高清观看视频| 观看av在线不卡| 99九九在线精品视频| 久久国产精品男人的天堂亚洲 | 99久国产av精品国产电影| 久久毛片免费看一区二区三区| 大香蕉久久成人网| 又黄又粗又硬又大视频| 亚洲在久久综合| 最近最新中文字幕免费大全7| a 毛片基地| 十八禁网站网址无遮挡| 午夜久久久在线观看| 美女视频免费永久观看网站| 免费观看在线日韩| 精品少妇久久久久久888优播| 老女人水多毛片| a级毛片在线看网站| 精品少妇久久久久久888优播| 国产亚洲av片在线观看秒播厂| 男的添女的下面高潮视频| 青青草视频在线视频观看| 99久久人妻综合| 成人毛片a级毛片在线播放| 黑人高潮一二区| 91在线精品国自产拍蜜月| 久久99热6这里只有精品| 精品人妻一区二区三区麻豆| 午夜福利,免费看| 日韩熟女老妇一区二区性免费视频| 天天躁夜夜躁狠狠久久av| 99热国产这里只有精品6| 欧美精品国产亚洲| 黄色怎么调成土黄色| 99久国产av精品国产电影| 成年av动漫网址| 久久婷婷青草| 伦理电影大哥的女人| 欧美精品人与动牲交sv欧美| 婷婷色麻豆天堂久久| 2022亚洲国产成人精品| 一级,二级,三级黄色视频| 日韩av在线免费看完整版不卡| 黄片无遮挡物在线观看| 七月丁香在线播放| 日本猛色少妇xxxxx猛交久久| 亚洲高清免费不卡视频| 黄网站色视频无遮挡免费观看| 亚洲第一av免费看| 免费观看av网站的网址| 日韩不卡一区二区三区视频在线| av片东京热男人的天堂| 亚洲国产欧美在线一区| 国精品久久久久久国模美| 侵犯人妻中文字幕一二三四区| 少妇 在线观看| 婷婷成人精品国产| 少妇被粗大的猛进出69影院 | 视频在线观看一区二区三区| 日本色播在线视频| 美女国产视频在线观看| 丰满乱子伦码专区| av电影中文网址| 欧美成人午夜免费资源| 久久亚洲国产成人精品v| 伦理电影大哥的女人| 亚洲欧美精品自产自拍| 亚洲一码二码三码区别大吗| 日本vs欧美在线观看视频| 黄色怎么调成土黄色| www.熟女人妻精品国产 | 侵犯人妻中文字幕一二三四区| a级毛色黄片| 91成人精品电影| 久久久国产精品麻豆| 伊人亚洲综合成人网| 免费高清在线观看视频在线观看| 免费播放大片免费观看视频在线观看| 各种免费的搞黄视频| 青青草视频在线视频观看| 久久精品国产综合久久久 | 亚洲,欧美,日韩| 久久精品人人爽人人爽视色| 欧美日韩一区二区视频在线观看视频在线| 久久99精品国语久久久| av免费在线看不卡| 一边亲一边摸免费视频| 亚洲,一卡二卡三卡| 日韩免费高清中文字幕av| 三上悠亚av全集在线观看| 考比视频在线观看| 人体艺术视频欧美日本| 免费观看a级毛片全部| 久久久久人妻精品一区果冻| xxx大片免费视频| 国国产精品蜜臀av免费| √禁漫天堂资源中文www| 国产成人91sexporn| 国产高清国产精品国产三级| 美女内射精品一级片tv| 我要看黄色一级片免费的| 高清毛片免费看| 久久久久精品人妻al黑| 亚洲经典国产精华液单| 热99久久久久精品小说推荐| h视频一区二区三区| 欧美激情国产日韩精品一区| 黄色配什么色好看| 寂寞人妻少妇视频99o| 最黄视频免费看| 亚洲av福利一区| 王馨瑶露胸无遮挡在线观看| a级毛色黄片| 亚洲国产毛片av蜜桃av| 女人久久www免费人成看片| 亚洲av日韩在线播放| 少妇人妻久久综合中文| 欧美性感艳星| 高清欧美精品videossex| 国产一级毛片在线| 久久精品熟女亚洲av麻豆精品| 九草在线视频观看| 少妇高潮的动态图| 国产成人午夜福利电影在线观看| 亚洲伊人色综图| 国产色婷婷99| 色5月婷婷丁香| 日本午夜av视频| www.色视频.com| 天美传媒精品一区二区| 亚洲人与动物交配视频| 乱码一卡2卡4卡精品| 性高湖久久久久久久久免费观看| 如日韩欧美国产精品一区二区三区| √禁漫天堂资源中文www| 天堂8中文在线网| 国产日韩欧美视频二区| 亚洲精品一二三| 亚洲中文av在线| av在线观看视频网站免费| 夫妻午夜视频| 少妇人妻精品综合一区二区| 久久狼人影院| 精品熟女少妇av免费看| 日韩精品有码人妻一区| 亚洲国产精品一区三区| 啦啦啦视频在线资源免费观看| 水蜜桃什么品种好| 久久精品国产亚洲av天美| 成人午夜精彩视频在线观看| 99国产综合亚洲精品| av在线观看视频网站免费| 国产一区亚洲一区在线观看| 校园人妻丝袜中文字幕| av不卡在线播放| 国产欧美日韩一区二区三区在线| 人妻少妇偷人精品九色| 欧美丝袜亚洲另类| 巨乳人妻的诱惑在线观看| 岛国毛片在线播放| 这个男人来自地球电影免费观看 | 丝袜美足系列| 久久人人爽人人片av| av在线老鸭窝| 国产精品.久久久| freevideosex欧美| 亚洲成国产人片在线观看| 啦啦啦中文免费视频观看日本| 国产黄色视频一区二区在线观看| 新久久久久国产一级毛片| 亚洲成av片中文字幕在线观看 | 香蕉精品网在线| 日韩一区二区视频免费看| 国产有黄有色有爽视频| 69精品国产乱码久久久| 激情五月婷婷亚洲| 美女国产高潮福利片在线看| 欧美精品高潮呻吟av久久| 精品国产露脸久久av麻豆| 搡女人真爽免费视频火全软件| 午夜免费鲁丝| 999精品在线视频| 亚洲中文av在线| 国产熟女午夜一区二区三区| √禁漫天堂资源中文www| 女性被躁到高潮视频| 在线观看人妻少妇| 久久精品人人爽人人爽视色| 哪个播放器可以免费观看大片| 久久久精品94久久精品| 大香蕉97超碰在线| 日本91视频免费播放| 成人亚洲精品一区在线观看| 最黄视频免费看| 天美传媒精品一区二区| 三级国产精品片| 国产精品人妻久久久久久| 纵有疾风起免费观看全集完整版| 美女国产视频在线观看| 亚洲色图综合在线观看| 99热这里只有是精品在线观看| 日韩精品免费视频一区二区三区 | 日韩av在线免费看完整版不卡| 免费久久久久久久精品成人欧美视频 | 国产免费一级a男人的天堂| 亚洲综合色惰| 精品国产国语对白av| 老熟女久久久| 亚洲成色77777| 五月伊人婷婷丁香| 亚洲色图综合在线观看| 建设人人有责人人尽责人人享有的| 国产精品国产av在线观看| 国产永久视频网站| 国产欧美另类精品又又久久亚洲欧美| 午夜91福利影院| 国产亚洲精品第一综合不卡 | 成人漫画全彩无遮挡| 亚洲欧美日韩另类电影网站| 国产av一区二区精品久久| 丝袜人妻中文字幕| 久久午夜综合久久蜜桃| 韩国av在线不卡| 欧美老熟妇乱子伦牲交| 国产黄频视频在线观看| 美女xxoo啪啪120秒动态图| 人妻系列 视频| 亚洲国产精品999| 欧美日韩视频精品一区| 综合色丁香网| 飞空精品影院首页| 看免费成人av毛片| 精品国产乱码久久久久久小说| 一区二区三区四区激情视频| 久久久久久人人人人人| 免费看光身美女| 最黄视频免费看| 久久国产亚洲av麻豆专区| 久久久久久人人人人人| 伦理电影大哥的女人| 免费播放大片免费观看视频在线观看| 在线观看免费高清a一片| 男人舔女人的私密视频| videosex国产| 国产成人免费观看mmmm| 五月开心婷婷网| 亚洲天堂av无毛| 91在线精品国自产拍蜜月| 国产欧美日韩一区二区三区在线| 看十八女毛片水多多多| 菩萨蛮人人尽说江南好唐韦庄| 咕卡用的链子| 又黄又爽又刺激的免费视频.| 寂寞人妻少妇视频99o| 夫妻午夜视频| 麻豆乱淫一区二区| 十八禁网站网址无遮挡| 日韩精品有码人妻一区| 欧美日韩国产mv在线观看视频| 日韩制服丝袜自拍偷拍| 久久久久久久久久人人人人人人| 亚洲伊人久久精品综合| 欧美 亚洲 国产 日韩一| 国产色婷婷99| 亚洲av中文av极速乱| 欧美日韩视频高清一区二区三区二| 免费看av在线观看网站| 国产白丝娇喘喷水9色精品| 亚洲国产av影院在线观看| 婷婷色综合www| 80岁老熟妇乱子伦牲交| 黄片无遮挡物在线观看| 亚洲精品久久午夜乱码| 久久久久久人妻| 精品熟女少妇av免费看| 夫妻午夜视频| 另类精品久久| 免费av不卡在线播放| 自拍欧美九色日韩亚洲蝌蚪91| 欧美精品亚洲一区二区| kizo精华| 少妇人妻 视频| 人成视频在线观看免费观看| 天天躁夜夜躁狠狠久久av| 久久久久人妻精品一区果冻| 国产色爽女视频免费观看| 国产一区二区三区av在线| 少妇猛男粗大的猛烈进出视频| 蜜桃国产av成人99| 久久精品国产亚洲av涩爱| 婷婷色综合大香蕉| 精品卡一卡二卡四卡免费| 高清毛片免费看| 日本黄大片高清| 97在线视频观看| 久久久久久久大尺度免费视频| videosex国产| 菩萨蛮人人尽说江南好唐韦庄| 18禁在线无遮挡免费观看视频| 丝袜喷水一区| 欧美精品一区二区大全| 免费大片18禁| 内地一区二区视频在线| 一级毛片黄色毛片免费观看视频| 久久人人爽人人爽人人片va| 精品一区二区三区视频在线| 午夜影院在线不卡| 婷婷色麻豆天堂久久| 天堂8中文在线网| 亚洲图色成人| 制服丝袜香蕉在线| 搡老乐熟女国产| 狠狠精品人妻久久久久久综合| 女人久久www免费人成看片| 少妇人妻久久综合中文| 免费日韩欧美在线观看| 亚洲人成网站在线观看播放| 在线观看免费日韩欧美大片| 久久精品久久精品一区二区三区| 99久久人妻综合| 成年美女黄网站色视频大全免费| 国产欧美另类精品又又久久亚洲欧美| 侵犯人妻中文字幕一二三四区| 99re6热这里在线精品视频| 成人国产麻豆网| 色婷婷久久久亚洲欧美| 宅男免费午夜| 亚洲欧美成人综合另类久久久| 亚洲高清免费不卡视频| 成年动漫av网址| 日本色播在线视频| 高清欧美精品videossex| 午夜免费男女啪啪视频观看| 成人黄色视频免费在线看| 亚洲 欧美一区二区三区| 中文字幕制服av| 国产欧美亚洲国产| 精品午夜福利在线看| 久久久精品区二区三区| 美女脱内裤让男人舔精品视频| 亚洲内射少妇av| 丰满饥渴人妻一区二区三| 五月开心婷婷网| 国产亚洲欧美精品永久| 国产亚洲一区二区精品| 成人亚洲欧美一区二区av| 亚洲美女视频黄频| 在线 av 中文字幕| 久久久久精品人妻al黑| 一本—道久久a久久精品蜜桃钙片| 99热6这里只有精品| 黄色配什么色好看| 日韩大片免费观看网站| 久久久久精品性色| h视频一区二区三区| 婷婷色综合大香蕉| www日本在线高清视频| 久久鲁丝午夜福利片| 一边亲一边摸免费视频| 内地一区二区视频在线| 日韩一本色道免费dvd| 王馨瑶露胸无遮挡在线观看| 18禁国产床啪视频网站| 26uuu在线亚洲综合色| 一本久久精品| 久久av网站| 一本色道久久久久久精品综合| 亚洲欧美日韩另类电影网站| 成人免费观看视频高清| 夫妻午夜视频| 自线自在国产av| 国产永久视频网站| 91精品国产国语对白视频| 交换朋友夫妻互换小说| 9色porny在线观看| 男女无遮挡免费网站观看| 人人妻人人澡人人看| 熟女人妻精品中文字幕| 黄色一级大片看看| 夫妻午夜视频| 丁香六月天网| 亚洲熟女精品中文字幕| 欧美精品亚洲一区二区| 欧美日韩一区二区视频在线观看视频在线| 久久热在线av| 国产色婷婷99| 久久久久精品久久久久真实原创| 秋霞在线观看毛片| av.在线天堂| xxxhd国产人妻xxx| 亚洲人成网站在线观看播放| 少妇的丰满在线观看| 女人被躁到高潮嗷嗷叫费观| 久久久亚洲精品成人影院| 成人无遮挡网站| 免费看光身美女| 成人影院久久| 又黄又爽又刺激的免费视频.| 久久99蜜桃精品久久| 亚洲国产色片| 久久国产精品大桥未久av| xxxhd国产人妻xxx| 亚洲欧美成人精品一区二区| 啦啦啦在线观看免费高清www| 亚洲精品一区蜜桃| 男人操女人黄网站| 97精品久久久久久久久久精品| 免费观看在线日韩| 久久国产亚洲av麻豆专区| 高清视频免费观看一区二区| www.熟女人妻精品国产 | 天天操日日干夜夜撸| 我要看黄色一级片免费的| 成人亚洲精品一区在线观看| 日本av手机在线免费观看| 国产精品国产av在线观看| 大片电影免费在线观看免费| 免费黄频网站在线观看国产| 少妇人妻久久综合中文| 自线自在国产av| 成人黄色视频免费在线看| 日韩一区二区三区影片| 1024视频免费在线观看| 国产亚洲一区二区精品| 日韩人妻精品一区2区三区| av女优亚洲男人天堂| 天堂中文最新版在线下载| 久久精品国产综合久久久 | xxx大片免费视频| 久热这里只有精品99| 国产日韩一区二区三区精品不卡| 久久精品国产亚洲av涩爱| 国产成人a∨麻豆精品| 国产欧美亚洲国产| 91在线精品国自产拍蜜月| 伦精品一区二区三区| 久久热在线av| 午夜免费观看性视频| 亚洲av成人精品一二三区| 婷婷成人精品国产| 91午夜精品亚洲一区二区三区| 亚洲综合精品二区| 99视频精品全部免费 在线| 热re99久久国产66热| 大香蕉久久网| 少妇猛男粗大的猛烈进出视频| 九草在线视频观看| 国产av国产精品国产| 尾随美女入室| 亚洲国产欧美在线一区| 国产日韩欧美在线精品| av又黄又爽大尺度在线免费看| 国产精品久久久av美女十八| 亚洲av.av天堂|