王博,秦海鵬,廖栩崢,胡世康,趙吉臣,何子豪,韓學(xué)明,陳兆明,孫成波
養(yǎng)殖密度對(duì)墨吉明對(duì)蝦腸道和生物絮團(tuán)菌群的影響
王博,秦海鵬,廖栩崢,胡世康,趙吉臣,何子豪,韓學(xué)明,陳兆明,孫成波*
(廣東海洋大學(xué)水產(chǎn)學(xué)院,廣東 湛江 524088)
運(yùn)用Miseq高通量測(cè)序技術(shù),分析高、中、低3種養(yǎng)殖密度(700、300、100尾/m3)下墨吉明對(duì)蝦腸道和其養(yǎng)殖系統(tǒng)中生物絮團(tuán)的菌群結(jié)構(gòu)。結(jié)果顯示:對(duì)蝦腸道菌群中,高密度組的豐富度和多樣性均最高,豐富度隨放養(yǎng)密度的增大而增加,而在生物絮團(tuán)菌群中,高密度組的豐富度最低;在門水平上,腸道和絮團(tuán)樣本菌群均以變形菌門(相對(duì)豐度49.25%~80.33%)、放線菌門、擬桿菌門、綠彎菌門為主,但豐度差異較大;在屬水平上,優(yōu)勢(shì)菌屬的組成和所占比例明顯不同,梭菌屬、、、、僅在腸道樣本中存在,僅在絮團(tuán)樣本中存在;腸道樣本中,中密度組弧菌屬的相對(duì)豐度最小,為5.23%,高密度組弧菌屬的相對(duì)豐度最大,為23.39%,絮團(tuán)樣本中,低密度組弧菌屬的相對(duì)豐度最大,為16.15%,中、高密度弧菌屬的相對(duì)豐度均較小,分別為5.51%和4.20%;隨養(yǎng)殖密度增大,腸道樣本中擬桿菌屬的相對(duì)豐度減小,分別為1.36%、0.41%、0.02%,而不同密度絮團(tuán)樣本擬桿菌屬的相對(duì)豐度差異不明顯??梢姡镄鯃F(tuán)養(yǎng)殖模式下,養(yǎng)殖密度對(duì)墨吉明對(duì)蝦的腸道和絮團(tuán)菌群的影響較大。
墨吉明對(duì)蝦;密度脅迫;生物絮團(tuán);腸道;菌群結(jié)構(gòu)
墨吉明對(duì)蝦()俗稱為大明蝦、黃蝦,為廣鹽性、暖水性種類,在南方沿海地區(qū)的捕撈和養(yǎng)殖業(yè)中具有十分重要的經(jīng)濟(jì)地位。
生物絮團(tuán)包括藻類、真菌、原生動(dòng)物、輪蟲和線蟲的聚集體,在生物絮團(tuán)培養(yǎng)系統(tǒng)中,化學(xué)自養(yǎng)和異養(yǎng)細(xì)菌參與生物絮團(tuán)的形成[1-3]。此外,微生物絮凝物也被用作動(dòng)物的食物,誘導(dǎo)蝦生長(zhǎng)性能的提高[4-5]。除了控制水質(zhì)和作為養(yǎng)殖生物的補(bǔ)充食物來(lái)源外,在生物絮凝系統(tǒng)中建立的細(xì)菌群落可通過(guò)競(jìng)爭(zhēng)食物和空間來(lái)抑制病原體的增殖[6]。然而,微生物群落也可能由致病菌和機(jī)會(huì)性細(xì)菌組成[7],而水生環(huán)境可影響微生物群的組成和豐度[8]。對(duì)于生物絮團(tuán)培養(yǎng)系統(tǒng)來(lái)說(shuō),了解絮凝過(guò)程中涉及的微生物機(jī)制,對(duì)控制病原微生物非常重要。
由于擁擠引起的應(yīng)激反應(yīng),高放養(yǎng)密度會(huì)影響蝦的生長(zhǎng)和存活[9],導(dǎo)致成活率低、產(chǎn)量低、水質(zhì)差和病原體暴發(fā)等[10-13]。放養(yǎng)密度的增加,意味著飼用的飼料增加[14],隨之而來(lái)的是培養(yǎng)水中顆粒有機(jī)物質(zhì)的增加,這將影響微生物的形成和聚集。對(duì)于采用生物絮團(tuán)培養(yǎng)系統(tǒng)的生產(chǎn)系統(tǒng),更有必要確定合適的養(yǎng)殖密度和系統(tǒng)的負(fù)載能力。
本研究中,以墨吉明對(duì)蝦為試驗(yàn)對(duì)象,研究不同養(yǎng)殖密度對(duì)生物絮團(tuán)養(yǎng)殖系統(tǒng)中墨吉明對(duì)蝦的腸道和絮團(tuán)菌群結(jié)構(gòu)的影響,現(xiàn)將結(jié)果報(bào)告如下。
供試對(duì)蝦為廣東海洋大學(xué)東海島海洋生物研究基地自行繁育的墨吉明對(duì)蝦。選取附肢完整、健康無(wú)損傷的活潑個(gè)體進(jìn)行試驗(yàn)。對(duì)蝦平均體長(zhǎng)(5.85±0.35) cm,體質(zhì)量(2.46±0.39) g。
試驗(yàn)前,將選好的墨吉明對(duì)蝦置于預(yù)先充氧的桶內(nèi)暫養(yǎng)7 d。生物絮團(tuán)為筆者自行構(gòu)建的以當(dāng)?shù)厮w中菌群為主的硝化型生物絮團(tuán)。試驗(yàn)前,將絮團(tuán)水體用孔徑48 μm的濾網(wǎng)濾水濃縮,然后按試驗(yàn)要求添加到試驗(yàn)桶中。供試海水從海區(qū)抽取,通過(guò)沉淀、砂濾、消毒處理后使用,保持水溫(29.4±0.71) ℃,溶解氧質(zhì)量濃度大于5 mg/L,鹽度28.5±0.26,水體持續(xù)均勻充氣。試驗(yàn)在容積0.3 m3的養(yǎng)殖桶進(jìn)行,每桶設(shè)置氣石2個(gè)。
試驗(yàn)設(shè)低(A)、中(B)、高(C)3個(gè)養(yǎng)殖密度梯度,分別為100、300、700尾/m2。每個(gè)密度梯度重復(fù)3次。每個(gè)養(yǎng)殖桶中的實(shí)際水體為270 L,生物絮團(tuán)的添加量為20 mg/L。投喂人工配合飼料,每天定時(shí)投喂4次。試驗(yàn)期間不添加有機(jī)碳源、不換水。試驗(yàn)周期30 d。
第30天喂食后,分別于每個(gè)養(yǎng)殖桶隨機(jī)選擇5只蝦,用無(wú)菌水和75%乙醇洗滌蝦的體表,解剖后將蝦腸分離,置于1.5 mL離心管中,于-80 ℃冰箱保存,備用。用0.45 μm膜濾器收集生物絮團(tuán)樣品,于-80 ℃冰箱保存,備用。低、中、高密度的對(duì)蝦腸道樣本分別編號(hào)為SIA、SIB和SIC,生物絮團(tuán)樣本分別編號(hào)為FA、FB和FC。
采用E.Z.N.A. ?土壤試劑盒(OMEGA,US),按說(shuō)明書提取蝦腸腔內(nèi)容物和絮團(tuán)的總細(xì)菌DNA。用NanoDrop分光光度計(jì)(Thermo Fisher Scientific)測(cè)量DNA產(chǎn)量。通過(guò)擴(kuò)增細(xì)菌16S rDNA基因,評(píng)估DNA質(zhì)量(GeneAmp PCR System 9700)。
采用引物組341F(CCTAYGGGRBGCASCAG)和806R(GGACTACNNGGGTATCTAAT),PCR擴(kuò)增16S rDNA的V3-V4區(qū)域[15]。反向引物含有每個(gè)樣品獨(dú)有的6 bp錯(cuò)誤校正條形碼。由Novaseq(廣州)在Illumina Miseq平臺(tái)上進(jìn)行高通量測(cè)序。
對(duì)獲得的原始數(shù)據(jù)進(jìn)行分析和質(zhì)量過(guò)濾,剩余的高質(zhì)量數(shù)據(jù)用于后續(xù)分析。使用UCLUST (v1.2.22q)將相似性大于97%的序列聚類為同一個(gè)操作分類單位(OTUs)[16]。運(yùn)用Mothur確定每個(gè)文庫(kù)的分類豐富度估計(jì)值和群落多樣性(v.1.37.6,http://www.mothur.org/)[17]?;贠TU豐度矩陣估計(jì)每個(gè)群落的物種豐富度。利用α多樣性指數(shù)(Chao1、ACE、Shannon和Simpson)評(píng)估社區(qū)多樣性?;贠TU標(biāo)準(zhǔn)化數(shù)據(jù),運(yùn)用QIIME(v1.9.1)進(jìn)行α和β細(xì)菌多樣性的后續(xù)分析。運(yùn)用R script (http://www.r- project.org/)和ggplot2(ggplot2.org)進(jìn)行維恩圖和相對(duì)豐度分析。利用線性判別分析(LDA)效應(yīng)大小確定樣本組之間差異相對(duì)較大的微生物類群。
運(yùn)用Excel 2010整理數(shù)據(jù);運(yùn)用SPSS 17.0對(duì)數(shù)據(jù)作單因素方差分析(ANOVA)。
從表1可知,3個(gè)養(yǎng)殖密度的18個(gè)樣品共產(chǎn)生686 521條序列。腸道樣品中,SIC中OTUs最多。絮團(tuán)樣本中,F(xiàn)B中OTUs最多。
表1 墨吉明對(duì)蝦的腸道及其養(yǎng)殖系統(tǒng)中的生物絮團(tuán)樣本的可操作分類單元數(shù)
維恩圖分析結(jié)果表明:3個(gè)密度組對(duì)蝦腸道樣品共有的OTUs有333個(gè)(占1.8%),SIA獨(dú)有的OTUs有4 909個(gè)(占27.0%),SIB獨(dú)有的OTUs有4 605個(gè)(占25.3%),SIC獨(dú)有的OTUs有6 555個(gè)(占36.1%);3個(gè)密度組生物絮團(tuán)樣品共有的OTUs有1 536個(gè)(占11.5%),F(xiàn)A獨(dú)有的OTU有4 841個(gè)(占36.3%),F(xiàn)B獨(dú)有的OTUs有2 553個(gè)(占19.1%),F(xiàn)C獨(dú)有的OTUs有2 496個(gè)(占18.7%)。
從表2可知,隨養(yǎng)殖密度的增大,墨吉明對(duì)蝦腸道菌群的豐富度Chao 1和Ace指數(shù)與多樣性Shannon指數(shù)均逐漸增加,而多樣性Simpson指數(shù)呈先減后增的趨勢(shì),SIC的4個(gè)指數(shù)均為最高;生物絮團(tuán)菌群中,F(xiàn)C的豐富度Chao 1和Ace指數(shù)均最小,F(xiàn)B的多樣性Shannon和Simpson指數(shù)最大。
表2 墨吉明對(duì)蝦的腸道及其養(yǎng)殖系統(tǒng)中生物絮團(tuán)的菌群豐富度和多樣性指數(shù)
墨吉明對(duì)蝦腸道和絮團(tuán)樣品之間的菌群結(jié)構(gòu)相似,組成比例上存在一定的差異,共檢測(cè)出43個(gè)細(xì)菌門。從表3可知,菌群主要由13個(gè)細(xì)菌門組成,其中,變形菌門的相對(duì)豐度最高,為49.25%~80.33%,放線菌門和擬桿菌門的相對(duì)豐度較高;隨養(yǎng)殖密度增大,腸道樣本變形菌門的相對(duì)豐度增加,而絮團(tuán)樣本中變形菌門的相對(duì)豐度減??;隨養(yǎng)殖密度增大,腸道樣本放線菌門的相對(duì)豐度先減后增,絮團(tuán)樣本放線菌門的相對(duì)豐度減小,腸道和絮團(tuán)樣本中均是低密度組的相對(duì)豐度最大;腸道樣本中綠彎菌門、酸桿菌門和擬桿菌門的相對(duì)豐度均是低密度組的最大,而絮團(tuán)樣本中這3個(gè)門的相對(duì)豐度均是高密度組的最大;腸道和絮團(tuán)樣本硝化螺旋菌門的相對(duì)豐度都隨養(yǎng)殖密度增大而增加。
表3 墨吉明對(duì)蝦的腸道及其養(yǎng)殖系統(tǒng)中生物絮團(tuán)的優(yōu)勢(shì)細(xì)菌門及其相對(duì)豐度
樣本相對(duì)豐度/% 衣原體芽單胞菌門硝化螺旋菌門泉古菌門螺旋體藍(lán)藻門浮霉菌門 SIA——0.25——0.4— SIB——0.870.01—3.120.16 SIC—0.351.203.020.030.530.05 FA0.010.571.613.080.041.650.24 FB0.051.002.283.890.082.540.47 FC0.011.122.777.230.281.240.44
屬水平上,墨吉明對(duì)蝦腸道和絮團(tuán)樣本中共檢測(cè)出193個(gè)細(xì)菌屬。從表4可知,菌群主要由CandidatusAquiluna、擬桿菌屬()、大腸埃希菌屬()、梭菌屬()、鏈球菌屬()、、弧菌屬()、、發(fā)光菌屬()、、、、等細(xì)菌屬組成,除SIB外,其他樣本中均是弧菌屬的相對(duì)豐度最高;腸道和絮團(tuán)樣本中,優(yōu)勢(shì)菌屬的組成和所占比例明顯不同,梭菌屬、、、、只在腸道樣本中存在,只在絮團(tuán)樣本中存在;隨養(yǎng)殖密度增大,腸道樣本擬桿菌屬的相對(duì)豐度減小,絮團(tuán)樣本擬桿菌屬的相對(duì)豐度差異不明顯;腸道樣本中,中密度組的弧菌屬的相對(duì)豐度最小,高密度組的最大,而絮團(tuán)樣本弧菌屬的相對(duì)豐度以低密度組的較大,中、高密度組的較小,且兩者差異不明顯;腸道和絮團(tuán)樣本發(fā)光桿菌屬的相對(duì)豐度的變化趨勢(shì)相反,腸道樣本中、高密度組的發(fā)光桿菌屬的相對(duì)豐度較高,而絮團(tuán)樣本中、高密度組的較低。
表4 墨吉明對(duì)蝦的腸道及其養(yǎng)殖系統(tǒng)中生物絮團(tuán)的優(yōu)勢(shì)細(xì)菌屬及其相對(duì)豐度
樣本相對(duì)豐度/% Faecalibacterium發(fā)光菌屬CoccinimonasRhodovulumBlautiaRuegeria SIA0.01 1.34—2.87—0.27 SIB3.7235.95——0.014.85 SIC0.0210.65——0.981.60 FA— 2.170.02——3.23 FB— 0.690.02——3.56 FC— 0.440.49——2.26
如表5所示,腸道樣本中,SIA、SIB、SIC的Lefse的LDA評(píng)分顯示均為1,與SIA相比,SIB、SIC中各有1個(gè)分類群顯著增加和1個(gè)分類群顯著減少(<0.05);絮團(tuán)樣本中,F(xiàn)A、FB、FC的Lefse的LDA評(píng)分顯示分別為1、5、5,與FA相比,F(xiàn)B、FC中各有5個(gè)分類群顯著增加和1個(gè)分類群顯著減少(<0.05)。如圖1所示,Lefse的分支圖分別聚集在SIA、SIB、SIC、FA、FB、FC組中的分類群為2、2、4、7、13、17個(gè)。
表5 墨吉明對(duì)蝦的腸道及其養(yǎng)殖系統(tǒng)中生物絮團(tuán)樣本的微生物群落相對(duì)豐度的群間變異(LDA值)
表中僅展示了LDA值大于4的物種。
圖1 墨吉明對(duì)蝦的腸道及其養(yǎng)殖系統(tǒng)中生物絮團(tuán)樣本微生物群落相對(duì)豐度的群間變異(Cladogram)
在生物絮團(tuán)養(yǎng)殖系統(tǒng)中,以細(xì)菌為主的微生物群落具有特殊作用。本研究中,通過(guò)高通量測(cè)序,從不同養(yǎng)殖密度組的對(duì)蝦腸道和其養(yǎng)殖系統(tǒng)中的生物絮團(tuán)樣本中共檢測(cè)出43個(gè)細(xì)菌門193個(gè)細(xì)菌屬。對(duì)蝦腸道菌群結(jié)構(gòu)與養(yǎng)殖環(huán)境微生物菌群結(jié)構(gòu)密切相關(guān),環(huán)境因素決定了微生物群落的結(jié)構(gòu)和功能[18]。研究表明,微生物群落的演替受碳氮比[19]、化學(xué)需氧量[20]、鹽度脅迫[21-22]的影響。本研究中,墨吉明對(duì)蝦腸道菌群中,高密度組的豐富度和多樣性均最高,且豐富度隨放養(yǎng)密度的增大而增加;生物絮團(tuán)菌群中,以高密度組的豐富度最低。這可能是由于放養(yǎng)密度的增加,飼喂量隨之增加,水體中的代謝產(chǎn)物增多,從而導(dǎo)致了生物絮團(tuán)培養(yǎng)系統(tǒng)的水體中與微生物形成和聚集有關(guān)的顆粒狀有機(jī)物的增加。此外,生物絮團(tuán)可作為對(duì)蝦額外的食物來(lái)源[4-5],是一種益生菌,對(duì)水質(zhì)和水生動(dòng)物的健康有益[23-24],進(jìn)而影響到對(duì)蝦腸道菌群的豐度。
腸道微生物菌群結(jié)構(gòu)和功能對(duì)蝦宿主的生理、免疫、代謝和健康起重要作用[25-28],腸道細(xì)菌群落的細(xì)微變化還會(huì)對(duì)宿主表型產(chǎn)生影響[29-30]。不同的環(huán)境因素,如養(yǎng)殖種類、水質(zhì)、飲食和種群密度的差異都會(huì)影響腸道菌群的多樣性[31-34]。裴鵬兵等[35]研究發(fā)現(xiàn),凡納濱對(duì)蝦腸道菌群結(jié)構(gòu)及多樣性與添加和不添加生物進(jìn)水柵有著密切關(guān)系。本研究中,對(duì)蝦腸道和絮團(tuán)樣本的細(xì)菌群落結(jié)構(gòu)在不同處理之間存在差異,但變形菌門的相對(duì)豐度均為最高。從南美白對(duì)蝦和其他水生動(dòng)物中也發(fā)現(xiàn)了變形菌[36-38]。變形菌和擬桿菌對(duì)有機(jī)物降解至關(guān)重要,它們通常是活性污泥系統(tǒng)和生物絮團(tuán)養(yǎng)殖系統(tǒng)中的優(yōu)勢(shì)細(xì)菌門[39-40]。本研究中,絮團(tuán)樣本變形菌門和擬桿菌門的占比也較高。硝化螺旋菌[41]和泉古菌[42]對(duì)水體中氨氮的轉(zhuǎn)化起到非常重要的作用。本研究中,對(duì)蝦腸道和絮團(tuán)樣本中的硝化螺旋菌門和泉古菌門在不同密度組呈現(xiàn)出相同的變化趨勢(shì),可能是絮團(tuán)菌群間接影響對(duì)蝦腸道菌群所致;對(duì)蝦腸道和絮團(tuán)樣本中變形菌門、酸桿菌門和擬桿菌門在不同密度組呈現(xiàn)出相反的變化趨勢(shì)??梢?,不能單純的以環(huán)境中菌群相對(duì)豐度的高低去判定對(duì)蝦腸道菌群的相對(duì)豐度,對(duì)于這種變化還需要進(jìn)一步深入研究。有研究[43-44]表明,弧菌屬是對(duì)蝦腸道內(nèi)的優(yōu)勢(shì)菌屬,不同的養(yǎng)殖模式、對(duì)蝦品種和養(yǎng)殖環(huán)境下均有弧菌屬存在。本研究中,弧菌屬為對(duì)蝦腸道和絮團(tuán)內(nèi)的優(yōu)勢(shì)菌屬,中密度組樣本中弧菌屬的相對(duì)豐度較小,表明適當(dāng)增加養(yǎng)殖密度可以減小對(duì)蝦腸道中弧菌的相對(duì)豐度。發(fā)光桿菌屬在海水養(yǎng)殖中廣泛存在,參與有機(jī)物的降解[45-46],且其代謝產(chǎn)物有一定的抗菌活性[47],可能參與養(yǎng)殖生物的有機(jī)物消化和病原防御過(guò)程。本研究中,腸道樣本與絮團(tuán)樣本的發(fā)光桿菌屬相對(duì)豐度的變化趨勢(shì)相反。低密度組腸道發(fā)光桿菌屬的相對(duì)豐度可能與絮團(tuán)樣本中發(fā)光桿菌屬的廣泛存在有關(guān),而中、高密度組對(duì)蝦腸道高豐度的發(fā)光桿菌可能是機(jī)體適應(yīng)性抵抗環(huán)境壓力的表現(xiàn)。
[1] DE SCHRYVER P,CRAB R,DEFOIRDT T,et al.The basics of bio-flocs technology:the added value for aquaculture[J].Aquaculture,2008,277(3/4):125-137.
[2] AVNIMELECH Y.Carbon/nitrogen ratio as a control element in aquaculture systems[J].Aquaculture,1999,176(3/4):227-235.
[3] EMERENCIANO M G C,MARTíNEZ-CóRDOVA L R, MARTíNEZ-PORCHAS M,et al.Biofloc technology (BFT):a tool for water quality management in aquaculture [M]//HLANGANANI T.Water Quality.London:InTech,2017:91-109.
[4] BURFORD M A,THOMPSON P J,MCINTOSH R P,et al.The contribution of flocculated material to shrimp () nutrition in a high-intensity,zero- exchange system[J].Aquaculture,2004,232 (1/2/3/4):525-537.
[5] KIM M S,MIN E,KIM J H,et al.Growth performance and immunological and antioxidant status of Chinese shrimp,reared in bio-floc culture system using probiotics[J].Fish & Shellfish Immunology,2015,47(1):141-146.
[6] CRAB R,LAMBERT A,DEFOIRDT T,et al.The application of bioflocs technology to protect brine shrimp() from pathogenic[J].Journal of Applied Microbiology,2010,109(5):1643-1649.
[7] SCHULZE A D,ALABI A O,TATTERSALL SHELDRAKE A R,et al.Bacterial diversity in a marine hatchery:balance between pathogenic and potentially probiotic bacterial strains[J].Aquaculture,2006,256(1/2/3/4):50-73.
[8] WONG S,RAWLS J F.Intestinal microbiota compositionin fishes is influenced by host ecology and environment[J]. Molecular Ecology,2012,21(13):3100-3102.
[9] MENA-HERRERA A,GUTIERREZ-CORONA C,LINAN-CABELLO M,et al.Effects of stocking densities on growth of the Pacific white shrimp() in earthen ponds[J].Israeli Journal of Aquaculture-Bamidgeh,2006,58(3):205-213.
[10] LIN Y C,CHEN J C,CHEN Y Y,et al.Crowding of white shrimpdepresses their immunity to and resistance againstand white spot syndrome virus[J].Fish & Shellfish Immunology,2015,45(1):104-111.
[11] 李玉全,王仁杰,姜令緒.密度脅迫對(duì)日本囊對(duì)蝦生長(zhǎng)和水環(huán)境的影響[J].海洋科學(xué),2013,37(10):53-57. LI Y Q,WANG R J,JIANG L X.Effects of density-stress on water quality and growth of[J]. Marine Sciences,2013,37(10):53-57.
[12] SHAKIR C,LIPTON A P,MANILAL A,et al. Effect of stocking density on the survival rate and growth performance in[J].Journal of Basic & Applied Sciences,2014,10:231-238.
[13] LI Y Q,LI J,WANG Q Y.The effects of dissolved oxygen concentration and stocking density on growth and non-specific immunity factors in Chinese shrimp,[J].Aquaculture,2006,256(12/3/4):608-616.
[14] KRUMMENAUER D,PEIXOTO S,CAVALLI R O,et al.Superintensive culture of white shrimp,,in a biofloc technology system in southern Brazil at different stocking densities[J].Journal of the World Aquaculture Society,2011,42(5):726-733.
[15] QIN J J,LI R Q,RAES J,et al.A human gut microbial gene catalogue established by metagenomic sequencing[J]. Nature,2010,464:59-65.
[16] EDGAR R C,HAAS B J,CLEMENTE J C,et al. UCHIME improves sensitivity and speed of chimera detection[J].Bioinformatics,2011,27(16):2194-2200.
[17] SCHLOSS P D,WESTCOTT S L,RYABIN T,et al. Introducing mothur:open-source,platform-independent,community-supported software for describing and comparing microbial communities[J].Applied and Environmental Microbiology,2009,75(23):7537-7541.
[18] ALLISON S D,MARTINY J B H.Resistance,resilience,and redundancy in microbial communities[J]. Proceedings of the National Academy of Sciences (PNAS),2008,105(Supplement 1):11512-11519.
[19] PANIGRAHI A,SARANYA C,SUNDARAM M,et al.Carbon:Nitrogen(C:N) ratio level variation influences microbial community of the system and growth as well as immunity of shrimp() in biofloc based culture system[J].Fish & Shellfish Immunology,2018,81:329-337.
[20] ZHANG D M,WANG X,XIONG J B,et al. Bacterioplankton assemblages as biological indicators of shrimp health status[J].Ecological Indicators,2014,38:218-224.
[21] YANG J,MA L A,JIANG H C,et al.Salinity shapes microbial diversity and community structure in surface sediments of the Qinghai-Tibetan Lakes[J].Scientific Reports,2016,6:25078.
[22] KIRCHMAN D L,COTTREL M T,DITULLIO G R. Shaping of bacterial community composition and diversity by phytoplankton and salinity in the Delaware Estuary,USA[J].Aquatic Microbial Ecology,2017,78(2):93-106.
[23] MORIARTY D J W.The role of microorganisms in aquaculture ponds[J].Aquaculture,1997,151(1/2/3/4):333-349.
[24] MCINTOSH R P.Changing paradigms in shrimp farming:III.pond design and operation considerations[J]. Global Aquaculture Alliance,2000(2):42-45.
[25] MARTIN F P J,WANG Y L,SPRENGER N,et al. Top-down systems biology integration of conditional prebiotic modulated transgenomic interactions in a humanized microbiome mouse model[J].Molecular Systems Biology,2008,4:205.
[26] YAP I K S,LI J V,SARIC J,et al.Metabonomic and microbiological analysis of the dynamic effect of vancomycin-induced gut microbiota modification in the mouse[J].Journal of Proteome Research,2008,7(9):3718-3728.
[27] RAMAKRISHNA B S.Role of the gut microbiota in human nutrition and metabolism[J].Journal of Gastro- enterology and Hepatology,2013,28:9-17.
[28] XIONG J B,DAI W F,ZHU J Y,et al.The underlying ecological processes of gut microbiota among cohabitating retarded,overgrown and normal shrimp[J]. Microbial Ecology,2017,73(4):988-999.
[29] HOLMES E,NICHOLSON J.Variation in gut microbiota strongly influences individual rodent phenotypes[J]. Toxicological Sciences,2005,87(1):1-2.
[30] ROHDE C M,WELLS D F,ROBOSKY L C,et al. Metabonomic evaluation of Schaedler altered microflora rats[J].Chemical Research in Toxicology,2007,20(10):1388-1392.
[31] WU S G,WANG G T,ANGERT E R,et al. Composition,diversity,and origin of the bacterial community in grass carp intestine[J].PLoS One,2012,7(2):e30440.
[32] KIM D H,KIM D Y.Microbial diversity in the intestine of olive flounder()[J]. Aquaculture,2013,414/415:103-108.
[33] RAMíREZ C,ROMERO J.Fine flounder() microbiome showed important differences between wild and reared specimens[J].Frontiers in Microbiology,2017,8:271.
[34] 王元,周俊芳,韋信賢,等.海水和淡水養(yǎng)殖凡納濱對(duì)蝦腸道和鰓的菌群結(jié)構(gòu)分析[J].湖南農(nóng)業(yè)大學(xué)學(xué)報(bào)(自然科學(xué)版),2018,44(2):198-203. WANG Y,ZHOU J F,WEI X X,et al.Microbial community structure analysis of intestine and gill ofin seawater and freshwater[J]. Journal of Hunan Agricultural University(Natural Sciences),2018,44(2):198-203.
[35] 裴鵬兵,吳潔瓊,梁宏豪,等.生物凈水柵對(duì)凡納濱對(duì)蝦腸道菌群組成的影響[J].水產(chǎn)科學(xué),2018,37(3):301-308. PEI P B,WU J Q,LIANG H H,et al.Effects of biological water purification grid on intestinal flora composition of Pacific white leg shrimp[J].Fisheries Science,2018,37(3):301-308.
[36] RUNGRASSAMEE W,KLANCHUI A,MAIBUN- KAEW S,et al.Characterization of intestinal bacteria in wild and domesticated adult black tiger shrimp()[J].PLoS One,2014,9(3):e91853.
[37] SUO Y T,LI E C,LI T Y,et al.Response of gut health and microbiota to sulfide exposure in pacific white shrimp[J].Fish & Shellfish Immunology,2017,63:87-96.
[38] ZENG S Z,HUANG Z J,HOU D W,et al.Composition,diversity and function of intestinal microbiota in Pacific white shrimp() at different culture stages[J].PeerJ,2017,5:e3986.
[39] HU M,WANG X H,WEN X H,et al.Microbial community structures in different wastewater treatment plants as revealed by 454-pyrosequencing analysis[J]. Bioresource Technology,2012,117:72-79.
[40] ZHAO P,HUANG J,WANG X H,et al.The application of bioflocs technology in high-intensive,zero exchange farming systems of[J]. Aqua- culture,2012,354/355:97-106.
[41] SLIEKERS A O,DERWORT N,GOMEZ J L C,et al. Completely autotrophic nitrogen removal over nitrite in one single reactor[J].Water Research,2002,36(10):2475-2482.
[42] CHOUARI R,GUERMAZI S,SGHIR A.Co-occurence of Crenarchaeota,Thermoplasmata and methanogens in anaerobic sludge digesters[J].World Journal of Microbiology & Biotechnology,2015,31(5):805-812.
[43] 李玉宏,柴鵬程,胡修貴,等.應(yīng)用RFLP和DGGE技術(shù)分析工廠化養(yǎng)殖凡納濱對(duì)蝦腸道微生物群落特征[J].漁業(yè)科學(xué)進(jìn)展,2014,35(2):83-89. LI Y H,CHAI P C,HU X G,et al.Analysis of intestinal microecology ofin industrial aquaculture by RFLP and DGGE techniques[J].Progress in Fishery Sciences,2014,35(2):83-89.
[44] WANG X H,LI H R,ZHANG X H,et al.Microbial flora in the digestive tract of adult penaeid shrimp()[J].Journal of Ocean University of Qingdao,2000,30(3):493-498.
[45] 薛超波,王國(guó)良,金珊.灘涂貝類養(yǎng)殖環(huán)境中細(xì)菌生態(tài)分布的初步研究[J].中國(guó)衛(wèi)生檢驗(yàn)雜志,2005,15(10):1191-1193. XUE C B,WANG G L,JIN S.The preliminary study on the bacteria ecological distribution in the culture environment of marine interdial shellfish[J].Chinese Journal of Health Laboratory Technology,2005,15(10):1191-1193.
[46] 莫照蘭,王祥紅,于勇,等.蝦池有機(jī)污染物降解細(xì)菌的篩選[J].水產(chǎn)學(xué)報(bào),2000,24(4):334-338. MO Z L,WANG X H,YU Y,et al.Selection of organic-pollutants-degrading bacteria in shrimp ponds[J]. Journal of Fisheries of China,2000,24(4):334-338.
[47] 鄭立,林偉,嚴(yán)小軍,等.海洋細(xì)菌抗菌和細(xì)胞毒活性的初步研究[J].應(yīng)用生態(tài)學(xué)報(bào),2004,15(9):1633-1636. ZHENG L,LIN W,YAN X J,et al.A primary study on antimicrobial and cytotoxic activity of marine bacteria[J]. Chinese Journal of Applied Ecology,2004,15(9):1633-1636.
Effects of stocking density on bacterial community characterization of biofloc and intestine of
WANG Bo, QIN Haipeng, LIAO Xuzheng, HU Shikang, ZHAO Jichen, HE Zihao, HAN Xueming, CHEN Zhaoming, SUN Chengbo*
(Department of Fisheries, Guangdong Ocean University, Zhanjiang, Guangdong 524088, China)
Using the high-throughput sequencing technology of Miseq, the microbial structure of the intestine and water biofloc ofat high, medium and low aquaculture densities(700/m3, 300/m3, 100/m3) were analyzed. The results showed that among the shrimp intestinal flora, the high-density group had the highest abundance and diversity, and the abundance increased over the increase of stocking density, while among the biofloc flora, the high-density group had the lowest abundance. The intestinal and biofloc flora samples were mainly composed of Proteobacteria(relative abundant 49.25%~80.33%), Actinobacteria, Bacteroides and Chloroflexi at phylum level, but the abundance was different. At genus level, the composition and proportion of dominant bacteria were significantly different.,,,, andonly exist in intestinal samples, andonly exist in biofloc samples. The relative abundance ofwas relatively large,abundance of intestinal sample was the smallest(5.23%) in medium density group and the largest(23.39%) in high density group; the low-density group of biofloc samples was the largest(16.15%), and the medium and high-density samples were both smaller, the abundance was 5.51% and 4.20%, respectively. The abundance ofin the intestinal samples decreased with the increase of stocking density, and the abundance was 1.36%, 0.41%, 0.02%, respectively. The abundance difference ofin different culture density biofloc samples was not significant. It can be seen that under the bioflocculation mode, the density of culture had a greater influence on bacterial community characterization of biofloc and intestine of.
; stocking density; biofloc; intestine; bacterial community
S968.22;S917.1
A
1007-1032(2020)05-0608-08
王博,秦海鵬,廖栩崢,胡世康,趙吉臣,何子豪,韓學(xué)明,陳兆明,孫成波.養(yǎng)殖密度對(duì)墨吉明對(duì)蝦腸道和生物絮團(tuán)菌群的影響[J].湖南農(nóng)業(yè)大學(xué)學(xué)報(bào)(自然科學(xué)版),2020,46(5):608-615.
WANG B, QIN H P, LIAO X Z, HU S K, ZHAO J C, HE Z H, HAN X M, CHEN Z M, SUN C B. Effects of stocking density on bacterial community characterization of biofloc and intestine of[J]. Journal of Hunan Agricultural University(Natural Sciences), 2020, 46(5): 608-615.
http://xb.hunau.edu.cn
2019-10-17
2019-12-18
2019年度“沖一流”廣東省財(cái)政專項(xiàng)資金項(xiàng)目(231419025);防城港市科技計(jì)劃項(xiàng)目(防科AD19008017)
王博(1993—),男,甘肅渭源人,碩士研究生,主要從事甲殼類動(dòng)物遺傳育種與增養(yǎng)殖研究,845358136@qq.com;*通信作者,孫成波,教授,主要從事甲殼類動(dòng)物遺傳育種與增養(yǎng)殖研究,scb248@126.com
責(zé)任編輯:鄒慧玲
英文編輯:柳正