• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Orthogonal analysis of the influencing factors of gas-solid two-phase jet particles

    2020-11-02 13:34:56SONGXinhuaLIUZhenfengLIXiaojieYANHonghao
    實驗流體力學 2020年5期
    關(guān)鍵詞:數(shù)量儀器顆粒

    SONG Xinhua, LIU Zhenfeng, LI Xiaojie, YAN Honghao

    (State Key Laboratory of structural analysis for industrial equipment, Dalian University of Technology, Dalian Liaoning 116024, China)

    Abstract:Since the gas-solid two-phase particle injection technology is widely used, it is of great engineering significance to study its influencing factors.Firstly, to inverstigate two factors, pre-ssure and mass, experiments are arranged by the orthogonal experimental design principle.Then, based on the CFD-DEM (Computational Fluid Dynamics / Discrete Element Method) model, the FLUENT software is used for numerical simulation, and the results are analyzed by range analysis and variance analysis.Finally, a set of jet experiments is designed to obtain the particle injection trajectory, and the photographs are processed by color histogram.The following conclusions are drawn: the influence of pressure is greater than that of mass by range analysis and variance analysis, and the mean value is the smallest when the pressure is 0.3 MPa and the mass is 2 g.When the pressure is 0.3 MPa and the mass is 2 g, the injection effect is optimized, and the shooting effect is the best, which is consistent with the results of numerical simulation.

    Keywords:gas-solid two-phase;orthogonal analysis;CFD-DEM;numerical simulation;color histogram

    0 Introduction

    Gas-solid two-phase particle injection is widely used in agriculture, industry and engineering.Dintwa et al.[1〗described a simulation model of a spinning disc fertilizer spreader, developed for incorporation into an automatic control system, and obtained the movement track and distribution characteristics of fertilizer throwing.Villette et al.[2]defined a mathe-matical model of fertilizer particle motion on a spinning disc, and the study results in an analytical solution for a concave disc equipped with pitched straight vanes.Lei et al.[3]designed a screw combined centralized fertilizer-feeding device for granular fertilizer and determined the key structural parameters of inclined spiral hole.Najjar et al.[4]developed a flexible simulation framework, in which multiphase flow computations are performed that include three-way coupling among phases (mixture-droplet-smoke), conservative coupling approach, and full heat release for the burning mechanisms.Liu and Xing[5]used Euler-Lagrangian method to simulate the gas-solid two-phase flow field in the thrust vector nozzle of solid rocket motor, and studied the effect of solid particles on the thrust vector performance of the nozzle.Xie et al.[6]obtained the structural design formula of pneumatic conveying gas-solid ejector by using the hydrodynamics and empirical formulas of gas-solid two-phase flow, and studied the influence of structure and parameters on the performance of gas-solid ejector.In the primary air passage of a new type of once-through burner of a coal-fired boiler, Huang used a three-dimensional particle dynamic analyzer (3D-PDA) to measure the gas-particle two-phase flow.The gas-solid two-phase velocity distri-bution, turbulent kinetic energy distribution, particle diameter and particle concentration distribution were obtained in the primary air passage[7].Li et al.[8]characterized the effect of oxidation temperatures on the microstructure and micro hardness of Ni/Al2O3composite coatings, as-cold-sprayed and vacuum heat-treated.Hua et al.used discrete phase model and spray rate model to simulate the release and flow process of fire extinguishing agent particles, and analyzed the movement characteristics of ultra-fine particle fire extinguishing agent with particle size of 1~12 μm under obstacles.And the reference valueR(t) and evaluationAwere introduced to quantitatively evaluate the movement characteristics of 1~12 μm ultrafine particle fire extinguishers[9].Li et al.[10]proposed a hybrid (deterministic/stochastic) fundamental model for the major physico-chemical processes involved in an industrial HVOF thermal spray process (Diamond Jet hybrid gun, Sulzer Metco, Westbury, NY, USA).Zhang et al.simu-lated the gas-solid ejector based on the particle trajectory model.The ejection performance was analyzed by using the number of particles ejected from the ejector, the number of remaining particles and the trajectory of particles.It is found that the inlet diameter of the contraction nozzle in the gas-solid ejector has a certain influence on the injection performance[11].Wang et al.[12]used FLUENT software to simulate the hydrodynamic characteristics of gas-solid two-phase flow in a boiling bed of titanium slag spouted bed, and analyzed the flow characteristics and zoning characteristics of gas-solid two-phase flow under different blowing speeds.Wang et al.used a three-component particle-dynamics anemometer to measure the characteristics of two-phase gas-particle flows in a primary air nozzle using a gas/particle two-phase test facility.The jet trajectory of primary air velocities, Reynolds stress and particle concentration profiles were obtained.Based on this, the advantages and disadvantages of increasing the offset angle were analyzed to optimize performance[13].Wang et al.[14]had presented a measurement method to obtain the solid phase particle size and the concentration of gas-solid two-phase flow, based on optical principle and image processing, and an experimental system was built.

    With the development of gas-solid two-phase particle injection technology, it is of great value to study the factors affecting particle injection.Many scholars have studied particle injection factors such as nozzle exit velocity, nozzle distance, nozzle size, injection angle[15-17].However, the factors of the injection pressure and particle quality are not studied.Therefore, based on previous research, this paper combines numerical simulation with orthogonal design theory, and analyzes the influence of spray pressure and particle quality on gas-solid two-phase particle injection.Moreover, it is proved by experiments that this method provides a theoretical reference for the practical application of injection technology.

    1 Fundamental theory

    1.1 Orthogonal experimental design principle

    Orthogonal experimental design is a multi-factor and multi-level design method.According to the orthogonality, some representative points are selected from the comprehensive experiment to carry out the experiment.These points have the advantages of uniform dispersion, neatness and comparability[18-20].In this paper, there are two factors, the injection pressure and the particle mass, and each factor has four levels.The specified parameters of orthogonal table used is listed in Table 1.

    Table 1 Specified parameters表1 具體參數(shù)的選取

    1.2 CFD-DEM model

    The CFD-DEM model uses the averaged Navier-Stokes equation to describe the motion of the gas phase, and uses Newton’s Second Law to describe the motion of the particle phase[21].The governing equation for the CFD-DEM model is[22]:

    The equation of motion of the particles:

    (1)

    Where,mais the particle quality,rais the particle position,Vais the particle volume,pis the pressure,βis the interphase drag coefficient,εgis the gas phase concentration,ugis the gas phase macro speed,vsis the speed of a single particle,gis the acceleration of gravity,Fcont,ais the contact force from the particles collision.Fvdw,ais van der Waals force,Tais the moment,Iais the moment of inertia,Ωais the rotational acceleration, andωais the rotational speed.

    The collision force between two particles is given by,

    Fab,n=-knδnnab-ηnvab,n

    δn=(Ra+Rb)-|rb-ra|

    (2)

    Where,Fab,nis the normal contact force when the particles collide,knis the direction stiffness coefficient,δnis the shape variable when the particles collide,nabis the normal unit vector,ηnis the normal damping coefficient,vab,nis the normal relative speed,RaandRbrepresent the particle radii of the particle a and b, respectively.raandrbare the positions of the particle a and b, respectively.

    The mass conservation equation and the momentum conservation equation for the gas phase are as follows,

    -εgp-Sp+·(εgτg)

    (3)

    Where,ρgis the gas phase density andτgis the gas phase stress.

    The gas-solid phase drag force is given by,

    (4)

    VCis the volume of the calculation grid, and the phase drag coefficientβis given by,

    (5)

    The ideal gas state equation is as follow,

    (6)

    Where,dpis the particle diameter,Mgis the molar mass of the gas,Ris the molar gas constant, andTgis the gas phase temperature.

    The gas phase stress constitutive relationship is as follow,

    (7)

    Where,μgis the shear viscosity of the gas phase, andIrepresents an identity matrix.

    2 Numerical simulation

    2.1 Fluid calculation model

    In this study, the average diameter of granules used in numerical simulation and experiment is 10.67 μm, spherical starch-like granules.When the pressure is 0.2~0.5 MPa, according to the Bernoulli equation[23], the energy conservation equation of one-dimensional defined flow under isentropic conditions is[24-25]:

    (8)

    The isentropic equation is:

    p=Aργ

    (9)

    According to Eq.(8) and Eq.(9), the jet velocity is:

    (10)

    For air,γ=1.4[24],ρ0=1.185 kg/m3[26],p0=0.1 MPa.Whenp=0.2 MPa, the substitution formula (10) calculatesv0.2=359.7 m/s.Similarly, we can getv0.3=466.7 m/s,v0.4=535.7 m/s,v0.5=587.3 m/s.In addition, the diameter of the air compressor outlet piped1=0.008 m, and the diameter of the nozzled2=0.05 m.v′0.2≈v0.2×(d1/d2)2≈9.2 m/s, and the effective injection velocitiesv′ are 9.2, 11.9, 13.7 and 15.0 m/s, respectively.Since the flow rate is less than 0.6 to 0.8 times of the speed of sound, the air can be regarded as an incompressible fluid during the simulation[27], and the reference atmospheric pressure is one atmosphere.The FLUENT is used to calculate the transient jet flow field under each pressure, and the CFD-DEM coupling method is used for the simulation calculation.

    In actual engineering, the air viscosity at room temperatureυ=15.06×10-6m2/s[28], and the equivalent diameterD=0.05 m.The Reynolds number is calculated:Re=vD/υ>4000, so the realizablek-εturbulence model equation is used[29].The kinetic energykand the turbulent dissipation transport equation are shown in Eq.(11):

    (11)

    2.2 Mesh and boundary conditions of model

    2.2.1Meshgeneration

    The trajectory of the particle jet into the box is studied.In order to facilitate the calculation, the model is calculated and analyzed by a two- dimensional model.The schematic diagram of the model is shown in Fig.1(a).The geometric model has two parts, the upper part is a rectangle of 1.0 m, and the lower part of the nozzle has a diameter of 0.05 m and a length of 0.1 m.

    Fig.1 Schematic diagram of the model

    In view of the uncomplicated characteristics of the particle injection model, a common grid structure is divided by the commonly used quadrilateral mesh, the mesh is divided by the workbench mesh, and the FLUENT software is imported for simulation calculation.The grid case is as follows: cell is 1268, face is 2611, and node is 1344.Fig.1(b) is a schematic diagram of the mesh division.

    2.2.2Boundaryconditions

    Each boundary condition is set according to the conditions of the sprayed particles.The initialization method selects “Standard Initialization” and selects “All-Zones”.The inlet boundary of the particle is set to “Velocity-Inlet”, and the boundary of the other face is set to “Wall”.The solid wall is no slip condition, the top wall is set to “Trap”, and the other walls are set to “Reflect”.

    2.3 Analysis and discussion of simulation results

    Particles were put into a rectangular frame with a diameter of 0.05 m and a length of 0.1 m.The simulation experiments were carried out according to the parameters in Table 1.The calculation steps were 500 and the particles were tracked.The simulation calculates the percentage of particle loss in each experiment, that is to say, the ratio of the number of tracked particles to the total number of tracked particles is the amount of particle loss in the simulation process.The data of the 16 computational simulations are shown in Table 2, and the percentage of loss is shown in Fig.2.

    Table 2 Tracking the number of particles trapping and the total number of particles (500 steps)表2 追蹤顆粒逃逸的數(shù)量和追蹤總顆粒數(shù)量(500步)

    Fig.2 Particle loss in orthogonal experiments

    By performing the range analysis of the 16 experiments, the mean value of pressure and mass was the smallest when the pressure was 0.3 MPa and the mass was 2 g.The range of the pressure and the mass are 20.1% and 12.4%, respectively, indicating that the magnitude of the pressure has the greatest impact.Then the variance analysis was performed on the two factors of the pressure and the mass, as shown in Table 3.TheFratios of the pressure and the mass obtained from the variance analysis table were 1.431 and 0.569, respectively, indicating that the influence of pressure was greater.

    Table 3 Variance analysis of pressure and quality impact 表3 壓強和質(zhì)量影響方差分析表

    3 Experimental verification

    3.1 Experimental device diagram

    This experiment mainly observes the flow trajectory of particles under different injection pressures (The dimensions of main instruments in the experiment are shown in Fig.1).The experimental diagram is shown in Fig.3, where A is a compressed air mercury, B is a gas storage chamber, C is a pulse valve, and D is an imaging system, E is where the particles are stored.Using the pulse valve C to eject particles at E.And the instruments used in this experiment are shown in Table 4.

    Table 4 Experimental measurement instrument list表4 實驗測量儀器清單

    Fig.3 Schematic diagram of injection experiment

    3.2 Analysis of experimental results

    Through the above numerical simulation calcu-lation and experimental orthogonal analysis, the results are obtained.When the pressure is 0.3 MPa and the mass is 2 g, the loss optimization is achieved.The experimental parameters were taken as the above results, and the spray experiment was carried out with the designed particle ejection device, and then the image was taken by the imaging system.

    Finally, the image color histogram processing was performed on the captured image[30-31], and the ejection trajectory diagram is shown in the left of Fig.4.Select the captured particle ejection images to perform image color histogram processing.Considering that the RGB color space does not conform to the human perception of color, the HSV space is visually sensed to quantify the HSV space and then its histogram is calculated to reduce the amount of calculation.The color space is converted from RGB to HSV by the rgb2hsv function in MATLAB.The HSV grayscale image obtained by processing the image is shown in the right of Fig.4.

    From Fig.2, we can see that Exp.1, Exp.6 and Exp.8 are the three groups with the lowest particle loss, which are 12.46%, 9.76% and 8.88% respectively.However, the optimal combination obtained by variance analysis is Exp.6.Then the injection experiment was taken on the spot when the pressure was 0.3 MPa and the mass was 2 g.At this time, the whole process of particle injection from the beginning to the top of the box could be captured, so the shooting effect was considered to be the best.The results are in agreement with those obtained by orthogonal experimental simulation, as shown in Fig.4.

    Fig.4 Numerical simulations of the sprayed particles and the trajectory of the shot (P=0.3 MPa, m=2 g)

    4 Conclusion

    The two factors, the pressure and the mass, which affect the gas-solid two-phase jet particles were studied and analyzed.The 16 simulation experiments were arranged based on the principle of orthogonal experimental design.Then, based on CFD-DEM model, FLUENT was used for numerical simulation, and the simulation results were analyzed by orthogonal test.Finally, a set of gas-solid injection device was designed to carry out the injection experiment, and the color histogram of the image was processed.The following conclusions are drawn:

    The range of the pressure and the mass is 20.1% and 12.4%, respectively.TheFratios of pressure and mass are 1.431 and 0.569, respectively.Both methods show that the effect of pressure is greater than that of mass, and the mean value is the smallest when the pressure is 0.3 MPa and the mass is 2 g.

    The image of the particle injection trajectory captured by the injection experiment was processed by color histogram and compared with the trajectory obtained by numerical simulation.The results show that when the pressure is 0.3 MPa and the mass is 2 g, the injection effect is optimized, and the shooting effect is the best.

    Acknowledgements:This project was financially supported by the National Natural Science Foundation of China (11672068, 11672067).

    猜你喜歡
    數(shù)量儀器顆粒
    《現(xiàn)代儀器與醫(yī)療》2022年征訂回執(zhí)
    《現(xiàn)代儀器與醫(yī)療》2022年征訂回執(zhí)
    Efficacy and safety of Mianyi granules (免疫Ⅱ顆粒) for reversal of immune nonresponse following antiretroviral therapy of human immunodeficiency virus-1:a randomized,double-blind,multi-center,placebo-controlled trial
    要讓顆粒都歸倉
    心聲歌刊(2019年1期)2019-05-09 03:21:32
    統(tǒng)一數(shù)量再比較
    我國古代的天文儀器
    疏風定喘顆粒輔料的篩選
    中成藥(2017年4期)2017-05-17 06:09:29
    頭發(fā)的數(shù)量
    我國博物館數(shù)量達4510家
    連花清瘟顆粒治療喉瘖30例
    中文在线观看免费www的网站| 99久久九九国产精品国产免费| 国产一区二区亚洲精品在线观看| 婷婷六月久久综合丁香| www.色视频.com| 精品一区二区免费观看| 久久婷婷人人爽人人干人人爱| 国产一区二区在线观看日韩| 人人妻人人澡欧美一区二区| av.在线天堂| 久久久久久九九精品二区国产| 一进一出好大好爽视频| 成人无遮挡网站| 色av中文字幕| 国产毛片a区久久久久| 亚洲欧美日韩无卡精品| 久久久久性生活片| 91在线观看av| 久久人人精品亚洲av| 狂野欧美激情性xxxx在线观看| 亚洲国产色片| 直男gayav资源| 不卡视频在线观看欧美| 欧美又色又爽又黄视频| 一个人免费在线观看电影| 免费在线观看成人毛片| 在线播放无遮挡| 高清午夜精品一区二区三区 | 色哟哟哟哟哟哟| 国内揄拍国产精品人妻在线| 亚洲婷婷狠狠爱综合网| 亚洲人成网站在线播| 久久鲁丝午夜福利片| 免费看a级黄色片| 久久久久久久午夜电影| 97超级碰碰碰精品色视频在线观看| 精品久久久久久久人妻蜜臀av| 色哟哟哟哟哟哟| 亚洲精品色激情综合| 亚洲精品影视一区二区三区av| 久久草成人影院| 91狼人影院| 午夜福利在线在线| 我要搜黄色片| 桃色一区二区三区在线观看| 亚洲欧美日韩东京热| 亚洲成人精品中文字幕电影| 校园人妻丝袜中文字幕| 精品久久久久久成人av| 中国美白少妇内射xxxbb| 97碰自拍视频| 午夜亚洲福利在线播放| 国产91av在线免费观看| 国产白丝娇喘喷水9色精品| 精品久久久久久久久亚洲| 一个人免费在线观看电影| 欧美中文日本在线观看视频| 国产探花极品一区二区| 午夜a级毛片| 一区二区三区四区激情视频 | 国产精品乱码一区二三区的特点| 日韩精品有码人妻一区| 女人十人毛片免费观看3o分钟| 成年女人毛片免费观看观看9| 国产精品不卡视频一区二区| 欧美又色又爽又黄视频| 超碰av人人做人人爽久久| 一级黄片播放器| 99精品在免费线老司机午夜| 寂寞人妻少妇视频99o| 五月玫瑰六月丁香| 久久久色成人| 小蜜桃在线观看免费完整版高清| 亚洲自拍偷在线| 在线观看美女被高潮喷水网站| 麻豆av噜噜一区二区三区| 中国美白少妇内射xxxbb| 午夜影院日韩av| 欧美一区二区亚洲| 久99久视频精品免费| 成人一区二区视频在线观看| 中文字幕av成人在线电影| 久久久久久国产a免费观看| 精品人妻熟女av久视频| 91狼人影院| 搡老岳熟女国产| 国产黄色小视频在线观看| 成年女人毛片免费观看观看9| 黄色配什么色好看| 国内揄拍国产精品人妻在线| 日韩高清综合在线| 精品久久久噜噜| 国产精品一区二区性色av| 长腿黑丝高跟| 好男人在线观看高清免费视频| 99精品在免费线老司机午夜| 亚洲精品在线观看二区| 一级毛片久久久久久久久女| 久久久久久久久久久丰满| 高清午夜精品一区二区三区 | 简卡轻食公司| 成人永久免费在线观看视频| 无遮挡黄片免费观看| 亚洲av第一区精品v没综合| 欧美成人免费av一区二区三区| 白带黄色成豆腐渣| 久久人人爽人人爽人人片va| 亚洲一区高清亚洲精品| 白带黄色成豆腐渣| 欧美日韩精品成人综合77777| av视频在线观看入口| 亚洲av不卡在线观看| 白带黄色成豆腐渣| 国产精品三级大全| 国产精品伦人一区二区| 三级经典国产精品| 女生性感内裤真人,穿戴方法视频| 国产麻豆成人av免费视频| 国产亚洲精品av在线| 亚洲自拍偷在线| 日韩av在线大香蕉| 联通29元200g的流量卡| 欧美日韩在线观看h| 亚洲av熟女| 别揉我奶头 嗯啊视频| 中文亚洲av片在线观看爽| 丰满人妻一区二区三区视频av| 国产亚洲精品久久久com| av专区在线播放| av天堂在线播放| 国产黄色小视频在线观看| 亚洲图色成人| 国产爱豆传媒在线观看| 亚洲av熟女| 乱码一卡2卡4卡精品| 国产精品亚洲一级av第二区| 91久久精品国产一区二区三区| 日本黄色片子视频| 欧美潮喷喷水| 国产精品乱码一区二三区的特点| 欧美xxxx性猛交bbbb| 桃色一区二区三区在线观看| 成熟少妇高潮喷水视频| 在线免费观看不下载黄p国产| 国产精品伦人一区二区| 天堂网av新在线| 亚洲色图av天堂| 在线免费观看不下载黄p国产| 九九爱精品视频在线观看| 可以在线观看毛片的网站| 人妻夜夜爽99麻豆av| 亚洲av.av天堂| 99久久无色码亚洲精品果冻| 亚洲成a人片在线一区二区| 99精品在免费线老司机午夜| 不卡一级毛片| 色吧在线观看| 一区二区三区免费毛片| 色av中文字幕| 日本熟妇午夜| 亚洲成人久久性| 久久久成人免费电影| 国产一区二区三区在线臀色熟女| 亚洲av免费高清在线观看| 日本撒尿小便嘘嘘汇集6| 一卡2卡三卡四卡精品乱码亚洲| 看黄色毛片网站| 三级男女做爰猛烈吃奶摸视频| 日韩人妻高清精品专区| 免费高清视频大片| 亚洲欧美清纯卡通| 国产视频内射| 国产精品野战在线观看| 中国美白少妇内射xxxbb| 国产精品1区2区在线观看.| 国产三级在线视频| 亚洲无线在线观看| 国产淫片久久久久久久久| 天堂影院成人在线观看| 国产精品国产高清国产av| 人人妻,人人澡人人爽秒播| 国产精品免费一区二区三区在线| 免费人成视频x8x8入口观看| 国产单亲对白刺激| 国产精品人妻久久久久久| 国产高清视频在线播放一区| 99在线人妻在线中文字幕| 国产片特级美女逼逼视频| 尾随美女入室| 一进一出好大好爽视频| 一级黄片播放器| 波野结衣二区三区在线| 我要看日韩黄色一级片| 亚洲av成人精品一区久久| 亚洲美女黄片视频| 别揉我奶头~嗯~啊~动态视频| 国内精品久久久久精免费| 欧美最新免费一区二区三区| 欧美+亚洲+日韩+国产| 美女免费视频网站| 国产成人福利小说| 亚洲精品456在线播放app| 国产精品久久久久久久电影| 成人午夜高清在线视频| 小蜜桃在线观看免费完整版高清| 丰满人妻一区二区三区视频av| 国产精品一二三区在线看| 亚洲av二区三区四区| 亚洲精品粉嫩美女一区| 日韩欧美国产在线观看| 午夜影院日韩av| 午夜福利视频1000在线观看| 色综合色国产| 噜噜噜噜噜久久久久久91| 日本三级黄在线观看| 91久久精品电影网| 亚洲精品久久国产高清桃花| 人妻制服诱惑在线中文字幕| 日本精品一区二区三区蜜桃| 国内久久婷婷六月综合欲色啪| 国产乱人视频| 亚洲四区av| 少妇熟女aⅴ在线视频| 国产男人的电影天堂91| 直男gayav资源| 婷婷精品国产亚洲av在线| 国产精品久久视频播放| 精品久久久久久久人妻蜜臀av| 1000部很黄的大片| 国产成人91sexporn| 国产精品女同一区二区软件| 毛片女人毛片| 精品日产1卡2卡| av在线亚洲专区| 国语自产精品视频在线第100页| 色吧在线观看| 精品久久久久久成人av| 亚洲国产精品sss在线观看| 给我免费播放毛片高清在线观看| .国产精品久久| 欧美性猛交╳xxx乱大交人| 久久久久久久亚洲中文字幕| 一a级毛片在线观看| 成人性生交大片免费视频hd| 在线天堂最新版资源| 国产精品女同一区二区软件| 亚洲人成网站在线观看播放| 国产精品av视频在线免费观看| 国产麻豆成人av免费视频| 国产精品亚洲一级av第二区| 久久韩国三级中文字幕| 国产精品人妻久久久久久| 99热只有精品国产| 国产av一区在线观看免费| 村上凉子中文字幕在线| 别揉我奶头~嗯~啊~动态视频| 一个人看的www免费观看视频| 亚洲无线在线观看| 成人欧美大片| 99热只有精品国产| 中文字幕人妻熟人妻熟丝袜美| 最好的美女福利视频网| 乱系列少妇在线播放| 婷婷精品国产亚洲av| 露出奶头的视频| 国产aⅴ精品一区二区三区波| 久久国产乱子免费精品| 最新在线观看一区二区三区| 国产乱人视频| 国产精品一区www在线观看| 人人妻人人澡人人爽人人夜夜 | 99热全是精品| 插逼视频在线观看| 一个人观看的视频www高清免费观看| 精品久久久久久久人妻蜜臀av| 久久中文看片网| 国产精品久久久久久久久免| 免费看a级黄色片| 在线免费十八禁| 人人妻人人澡人人爽人人夜夜 | 精品久久久久久久久久免费视频| 日韩精品有码人妻一区| 桃色一区二区三区在线观看| 欧美又色又爽又黄视频| 1024手机看黄色片| 欧美三级亚洲精品| 亚洲高清免费不卡视频| 日韩,欧美,国产一区二区三区 | 精品午夜福利在线看| 亚洲久久久久久中文字幕| 免费人成视频x8x8入口观看| 日韩精品中文字幕看吧| 最近中文字幕高清免费大全6| 国产伦精品一区二区三区四那| 日日撸夜夜添| 精品久久久久久成人av| 色噜噜av男人的天堂激情| 久久99热6这里只有精品| ponron亚洲| 嫩草影院入口| 看十八女毛片水多多多| 久久6这里有精品| 色5月婷婷丁香| 成人特级av手机在线观看| 男女那种视频在线观看| 99热只有精品国产| 日本一本二区三区精品| 日韩三级伦理在线观看| 又爽又黄无遮挡网站| 亚洲电影在线观看av| 波多野结衣高清作品| 国产亚洲av嫩草精品影院| 18+在线观看网站| 18禁黄网站禁片免费观看直播| 亚洲欧美日韩卡通动漫| 亚洲美女搞黄在线观看 | 成人无遮挡网站| 日韩大尺度精品在线看网址| 亚洲精品日韩在线中文字幕 | 18禁裸乳无遮挡免费网站照片| 看片在线看免费视频| 国产 一区精品| 男人的好看免费观看在线视频| 人人妻人人看人人澡| 久久国产乱子免费精品| 午夜老司机福利剧场| 国产精品野战在线观看| 日韩中字成人| av女优亚洲男人天堂| 欧美激情国产日韩精品一区| 97超视频在线观看视频| 久久精品国产亚洲av天美| 黄片wwwwww| 欧美3d第一页| 日韩欧美精品v在线| 三级毛片av免费| 欧美三级亚洲精品| 亚洲欧美日韩高清专用| 亚洲国产高清在线一区二区三| 欧美xxxx黑人xx丫x性爽| 久久鲁丝午夜福利片| 日韩成人av中文字幕在线观看 | 夜夜爽天天搞| 三级经典国产精品| 国模一区二区三区四区视频| 国产熟女欧美一区二区| 一本一本综合久久| 欧美一区二区精品小视频在线| 麻豆国产av国片精品| 亚洲一区二区三区色噜噜| 亚洲四区av| 亚洲第一区二区三区不卡| 男插女下体视频免费在线播放| 精品不卡国产一区二区三区| 最后的刺客免费高清国语| 国产白丝娇喘喷水9色精品| 观看美女的网站| 亚洲丝袜综合中文字幕| 日本色播在线视频| 夜夜爽天天搞| 一本精品99久久精品77| 亚洲专区国产一区二区| 亚洲自拍偷在线| 欧美在线一区亚洲| 色5月婷婷丁香| 18禁在线播放成人免费| 欧美+日韩+精品| 少妇裸体淫交视频免费看高清| 免费av观看视频| 亚洲精品国产成人久久av| 日日摸夜夜添夜夜添小说| 国产精品一区二区三区四区久久| 人妻丰满熟妇av一区二区三区| 十八禁网站免费在线| 久久久精品大字幕| 女生性感内裤真人,穿戴方法视频| 可以在线观看毛片的网站| 精品久久国产蜜桃| 久久久欧美国产精品| 久久久精品欧美日韩精品| 亚洲欧美成人精品一区二区| 偷拍熟女少妇极品色| 久久久久久久久久成人| 一夜夜www| 久久久久国产网址| 美女内射精品一级片tv| 免费观看在线日韩| 久99久视频精品免费| 麻豆久久精品国产亚洲av| 亚洲国产精品成人久久小说 | 女生性感内裤真人,穿戴方法视频| 天堂av国产一区二区熟女人妻| 亚洲国产欧美人成| 日韩在线高清观看一区二区三区| 观看美女的网站| 搡老熟女国产l中国老女人| 国产男人的电影天堂91| 特大巨黑吊av在线直播| 日本-黄色视频高清免费观看| 亚洲内射少妇av| 国产美女午夜福利| 日本熟妇午夜| 黑人高潮一二区| 精品日产1卡2卡| 日韩中字成人| 亚洲人成网站在线播| 国产蜜桃级精品一区二区三区| 一本精品99久久精品77| 床上黄色一级片| 人人妻人人看人人澡| 深爱激情五月婷婷| 亚洲国产精品合色在线| 99riav亚洲国产免费| 国产午夜福利久久久久久| 亚洲国产精品成人久久小说 | 露出奶头的视频| 国产成人一区二区在线| 免费搜索国产男女视频| 国产亚洲精品久久久久久毛片| 春色校园在线视频观看| 日韩一本色道免费dvd| 亚洲成a人片在线一区二区| 搡老岳熟女国产| 亚洲图色成人| 国产亚洲91精品色在线| 国产亚洲精品av在线| 嫩草影院新地址| 婷婷亚洲欧美| 给我免费播放毛片高清在线观看| 日韩av不卡免费在线播放| 久久99热6这里只有精品| 精华霜和精华液先用哪个| 亚洲不卡免费看| 丰满的人妻完整版| 黄色欧美视频在线观看| 综合色av麻豆| 国产精品国产高清国产av| 日韩欧美精品免费久久| 久久精品91蜜桃| 国产淫片久久久久久久久| 久久欧美精品欧美久久欧美| 老司机福利观看| 精品一区二区免费观看| 免费人成在线观看视频色| 一级毛片电影观看 | 国产单亲对白刺激| 亚洲综合色惰| 国产伦精品一区二区三区四那| 18禁在线播放成人免费| 国产精品1区2区在线观看.| 亚洲四区av| 日本黄色视频三级网站网址| 亚洲aⅴ乱码一区二区在线播放| 在线国产一区二区在线| 日日撸夜夜添| 久久人人爽人人片av| 插逼视频在线观看| 日韩强制内射视频| 国产色婷婷99| 18+在线观看网站| 俺也久久电影网| 日本熟妇午夜| 中国国产av一级| 国产伦精品一区二区三区四那| 免费不卡的大黄色大毛片视频在线观看 | 亚洲高清免费不卡视频| 两个人的视频大全免费| 最新在线观看一区二区三区| 日韩欧美一区二区三区在线观看| 日韩大尺度精品在线看网址| 超碰av人人做人人爽久久| 国产精品1区2区在线观看.| 老司机影院成人| 婷婷精品国产亚洲av在线| 欧美另类亚洲清纯唯美| 在线免费观看的www视频| 免费一级毛片在线播放高清视频| 一个人免费在线观看电影| 欧美日韩综合久久久久久| 别揉我奶头~嗯~啊~动态视频| 日本与韩国留学比较| 日本在线视频免费播放| 精品久久国产蜜桃| 又黄又爽又免费观看的视频| 99riav亚洲国产免费| 男女啪啪激烈高潮av片| 如何舔出高潮| 国产精品一区二区三区四区久久| 亚洲性久久影院| 性插视频无遮挡在线免费观看| 麻豆久久精品国产亚洲av| 日本黄色片子视频| 一进一出好大好爽视频| 亚洲人成网站在线观看播放| 久久韩国三级中文字幕| 国产精品综合久久久久久久免费| 国产单亲对白刺激| 亚洲av免费在线观看| 人人妻人人看人人澡| 一个人观看的视频www高清免费观看| 寂寞人妻少妇视频99o| 在线免费观看不下载黄p国产| 亚洲精品亚洲一区二区| 最近的中文字幕免费完整| 国产女主播在线喷水免费视频网站 | 日本五十路高清| 99久国产av精品国产电影| 国产精品国产高清国产av| 最近中文字幕高清免费大全6| 日韩一区二区视频免费看| 深夜精品福利| 日本一本二区三区精品| 免费高清视频大片| 亚洲在线自拍视频| 国产成人91sexporn| 国产久久久一区二区三区| 最新中文字幕久久久久| 中文字幕免费在线视频6| 久久精品久久久久久噜噜老黄 | 天堂√8在线中文| 日韩一区二区视频免费看| 久久久精品94久久精品| 免费av观看视频| 欧美一区二区亚洲| 两性午夜刺激爽爽歪歪视频在线观看| 少妇裸体淫交视频免费看高清| 精品少妇黑人巨大在线播放 | 日韩av不卡免费在线播放| 国产黄色视频一区二区在线观看 | 亚洲一区高清亚洲精品| 精品人妻偷拍中文字幕| 在现免费观看毛片| 12—13女人毛片做爰片一| 国产成人aa在线观看| www日本黄色视频网| 免费观看精品视频网站| 日日摸夜夜添夜夜爱| 91久久精品电影网| 成年av动漫网址| 少妇的逼好多水| 国产毛片a区久久久久| 国产精品一区www在线观看| 久久精品久久久久久噜噜老黄 | av在线老鸭窝| 一级毛片久久久久久久久女| 精品一区二区三区视频在线观看免费| 最新在线观看一区二区三区| 深夜精品福利| 人妻制服诱惑在线中文字幕| 国产真实乱freesex| 成人国产麻豆网| 赤兔流量卡办理| av卡一久久| 欧美又色又爽又黄视频| 国产 一区 欧美 日韩| 久久综合国产亚洲精品| 寂寞人妻少妇视频99o| 精品日产1卡2卡| 男女边吃奶边做爰视频| 在线观看66精品国产| 国产日本99.免费观看| 国产精品,欧美在线| 中国美白少妇内射xxxbb| 国产亚洲av嫩草精品影院| 搡老岳熟女国产| 美女被艹到高潮喷水动态| 嫩草影院入口| 人人妻人人澡欧美一区二区| 亚洲在线自拍视频| 69av精品久久久久久| 97碰自拍视频| 丝袜喷水一区| 午夜亚洲福利在线播放| 国产精品综合久久久久久久免费| 久久精品国产亚洲av天美| 我要看日韩黄色一级片| 国产午夜福利久久久久久| 成人亚洲精品av一区二区| 欧美性猛交黑人性爽| 中文亚洲av片在线观看爽| 中出人妻视频一区二区| 成年女人永久免费观看视频| 国产精品1区2区在线观看.| 久久99热6这里只有精品| 波多野结衣高清作品| 白带黄色成豆腐渣| aaaaa片日本免费| 亚洲18禁久久av| 色综合色国产| 在线看三级毛片| 国产精品一区二区三区四区久久| 欧美不卡视频在线免费观看| 免费在线观看成人毛片| 天堂动漫精品| 亚洲av二区三区四区| 麻豆av噜噜一区二区三区| 久久人人爽人人爽人人片va| 波野结衣二区三区在线| 欧美3d第一页| 成年女人永久免费观看视频| 熟女电影av网| 成熟少妇高潮喷水视频| 久久久精品欧美日韩精品| 寂寞人妻少妇视频99o| 内地一区二区视频在线| 99九九线精品视频在线观看视频| av在线蜜桃| 尤物成人国产欧美一区二区三区| 天美传媒精品一区二区| 中文字幕av成人在线电影| av在线老鸭窝| 久久韩国三级中文字幕| 久久人人精品亚洲av| 99久久精品一区二区三区| 午夜福利视频1000在线观看|