• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Dispersion of ventricular repolarization: Temporal and spatial

    2020-10-31 05:29:16
    World Journal of Cardiology 2020年9期

    Abstract

    Key Words: Temporal; Spatial; Global and local dispersion of repolarization; Action potential duration; Tpeak-Tend interval; Tpeak-Tend dispersion; T-vector;Arrhythmogenesis

    INTRODUCTION

    Repolarization process is cardinally different from depolarization. During depolarization, the elementary (cellular) electric field generators responsible for QRS complex formation are concentrated in narrow (approximately 0.8-1 mm) regions of space that separates the excited myocardium (cells with peak action potential) from unexcited one (cells with resting potential)[1]. In contrast, during repolarization the elementary electric generators are dispersed in almost the entire volume of the ventricles, with small gradients in membrane potential between the neighbouring cells. All ventricular cells, the repolarization of which is not yet completed, contribute to cardiac electric field generation.

    T-wave is a result of repolarization heterogeneity (RH) – non-simultaneous end-ofrepolarization in different ventricular layers and regions. This heterogeneity arises from: (1) Different activation times; and (2) Different action potential duration (APD)of ventricular cells, due to the heterogeneous distribution of repolarizing currents[2].The global RH in the heart ventricles is defined by the areas of the earliest and the latest repolarization – the difference in end-of-repolarization times in these areas and in their location (temporal and spatial heterogeneity, correspondingly).

    In normal heart, physiological heterogeneities in structure, electrical and mechanical activity are crucial for normal, efficient excitation and pumping[3]. Due to multiple reasons (impaired function of outward K+ currents in cardiac myocytes, which may be caused by genetic defects or result from various acquired pathophysiological conditions, including electrical remodelling in cardiac disease, ion channel modulation by clinically used pharmacological agents, and systemic electrolyte disorders seen in heart failure, such as hypokalaemia), the level of RH could increase[4].

    Exceeding the physiologically reasonable level of RH could lead to the development of life-threatening ventricular arrhythmias[4-6]. In this regard, an accurate and comprehensive evaluation of RH on the basis of electrocardiogram (ECG) is of importance. This review focuses on various aspects of RH (temporal and spatial,global and local) – their electophysiological basis, ECG reflection and clinical significance.

    ELECTROPHYSIOLOGICAL BASIS FOR RH

    The reason for different action potential morphology and different sensitivity of myocardial cells to the action of pharmacological agents, temperature, frequency of stimulation,etc. is the heterogenous distribution of repolarizing ion currents throughout the heart ventricles. There are differences in repolarizing currents across ventricular walls[7,8], between the left and the right ventricles, between the apex and the base of the ventricles, and between anterior and posterior ventricular surface[9,10].

    In transmural plane,in vitrostudies revealed three types of cells: Epicardial (with the shortest APD), endocardial and M-cells with the longest APD, belonging to the deep layers of the myocardium (Figure 1)[7,8]. In interventricular septum, M-cells were less pronounced than in the free walls of the ventricles[11]. In epicardial and M-cells, the morphology of phase 1 is characterized by a prominent transient outward current(Ito)-mediated notch responsible for the ‘spike and dome’ morphology[8]. M cells are distinguished from the other cell types in that they display a smaller slowly activating delayed rectifier current (IKs), but a larger late sodium current (late INa) and sodiumcalcium exchange current (INa-Ca). These ionic distinctions underlie the longer APD and steeper APD-rate relationship of the M-cells, which is more pronounced in the presence of antiarrhythmic agents with class III actions[8].

    Figure1 Transmembrane action potential and pseudo electrocardiogram recordings from a canine arterially perfused ventricular wedge preparation reveal the cellular basis for the T wave.

    In vivoexperiments did not confirm the existence of M-cells and a substantial transmural APD gradient[12-14]. This fact can be explained, firstly, by electrotonic interaction in myocardiumin vivo, which partially eliminates intrinsic differences in the electrophysiological properties of the cells across ventricular wall[15,16]. Secondly, Mcells can be functionally detected at a low frequency of stimulation, while at physiological frequencies, transmural electrophysiological differences between the cells are significantly reduced[17,18]. It should also be noted that APD recordedin vivois always significantly less than those recordedin vitro[14].

    At the same time,in vivoas well asin vitrostudies confirm the existence of apicobasal, anteroposterior and left-to-right differences in repolarizing ion currents[12,19-22]. Apico-basal differences were found in the expression of those channel proteins which are involved in mediation of the transient outward K(+) current and the slow delayed rectifier K(+) current: Expression of Kv1.4, KChIP2, KvLQT1 and MinK was significantly higher in apical than in basal myocardium in both canine and human hearts[19]. Prominent differences in the magnitude of the I(to) 1-mediated action potential notch were found in cells isolated from the right and the left canine ventricular epicardium; the influence of this current, although small, is more important in the left ventricle[20-22].

    APD GRADIENTS IN THE HEART VENTRICLES

    Transmural gradient

    Transmural APD gradient is mostly pronounced in isolated myocardial cells and wedge preparations extracted from different ventricular regions – left ventricle[23-25],right ventricle[26], interventricular septum[27,28]; it is resulted from APD differences between epi- and M-cells (in vitro), and between epi- and endo cells (in vivo). The magnitude of transmural APD gradient recordedin vitroreached 100 ms and more[24],and it depended on the wall thickness (the largest transmural APD gradient was recorded in the interventricular septum, the smallest one - in the right ventricle[28,29])and location (transmural APD gradient was different at the apex and at the base of the ventricles[23]).

    The transmural APD gradient is even attributed a key role in T-wave formation and it is assumed as “the symbol of repolarization dispersion"[30,31]. Although, this is true only for a ventricular wedge preparation (Figure 1), but in the whole heart dispersion of repolarization (DOR) and T-wave are resulted from several gradients[32-34].In vivoexperiments did not reveal a substantial transmural APD gradient in the heart ventricles[12-14].

    Apicobasal gradient

    Apicobasal gradient was detected in almost all animal and humans studies. However,its direction was found to be different in various species and sometimes controversial.APD recorded at the apex were longer than those recorded at the base of the ventricles in human[35-37], rabbit[38,39], dog[12,13], and pig[40]. In other studies, the apical APD were shorter than the basal ones in rabbit[41], pig[42], guinea pig[43], rats[44,45], and chicken[46]. The controversial direction of apicobasal APD gradient in the same species can be explained by the high sensitivity of repolarization to temperature conditions, which could vary in different studies. In some cases, apicobasal gradient was dominating and responsible for cardiac electric field formation[47,48].

    Left-to-right gradient

    Along with the transmural and apicobasal gradients, the left-to-right gradient was revealed in human and several animal species. APD in the right ventricle were longer than in the left ventricle in human[49], rabbit[50], pig[40]and guinea pig[51]. The opposite interventricular gradient was recorded in dog[52,53]and rat[44,45].

    Anterior-posterior gradient

    APD measured on the anterior surface of the heart ventricles were shorter than posterior APD in human[37], dog[54,55], and rabbit[56].

    EFFECT OF ACTIVATION SEQUENCE ON REPOLARIZATION

    Activation sequence affects RH in two ways. First, it contributes to repolarization sequence, because end of repolarization time of myocardial cell is a sum of activation time and APD, and repolarization gradients are combinations of activation and APD gradients. Second, activation sequence can directly effect on APD magnitude,especially at heart stimulation. APD were longer in the center of stimulation, and decreased towards the periphery[57]. The transfer of stimulus from endo- to epicardium prolonged epicardial APD and shortened endocardial APD, and, correspondingly,changed the transmural repolarization gradient[16,58,59]. The reversed activation sequence mostly affected APD of M cells[58]. Thus, earlier activation was associated with longer APD. Nevertheless, the relationship between early activation and longer APD is ambiguous: In rabbit hearts, repolarization sequence in general corresponded to those of depolarization,i.e., the shorter APD were associated with the earlier activation times[60].

    REPOLARIZATION GRADIENTS IN THE HEART VENTRICLES

    Repolarization gradients in the heart ventricles responsible for T-wave genesis are formed as a result of superimposed gradients of activation times and APD.Nevertheless, the magnitudes of APD gradients usually exceed the magnitudes of activation gradients, therefore APD gradients determine the sequence of repolarization to a greater extent, and changes in repolarization occur almost always because of APD changes.

    The analysis of contribution of different parts of the canine heart ventricles to dispersion in repolarization times showed that transmural gradient contributed only 13% to the total DOR, while apicobasal, interventricular, and anterior-posterior gradients contributed the remaining 87%[54]. Simulation studies support that transmural, apicobasal, interventricular and anteroposterior repolarization gradients are all essential to T-wave genesis[32-34].

    FACTORS MODULATING RH

    Repolarization is rather sensitive than depolarization to the changes in external and internal conditions such as fluctuations in temperature, concentration of various ions,heart rate, electrical remodeling associated with various pathologies. Inhomogeneous changes in action potentials’ morphology modify and amplify the temporal and/or spatial heterogeneity of repolarization. Exceeding the physiologically based level of RH can lead to the development of life-threatening ventricular arrhythmias[5,6]. In this regard, the analysis of both temporal and spatial RH parameters is of importance.

    In experimental diabetes mellitus, there were substantial changes in spatial but not in temporal repolarization gradients. In mice, there were increased apicobasal and leftto-right gradients[61]; in rabbit, apicobasal gradient was decreased but a large anteroposteral gradient arised[62-64].

    At electrical heart stimulation, the location of stimulus effected on APD and,correspondingly, on repolarization gradients: APD were longer in the center of stimulation, and decreased towards the periphery[57,59,65].

    In Tako-Tsubo cardiomyopathy, the ischemic-like Wellens’ ECG pattern coincides and quantitatively correlates with apicobasal gradient of myocardial edema as evidenced by using cardiovascular magnetic resonance imaging[66]; dynamic negative T-waves and QTc prolongation are likely to reflect the edema-induced transient inhomogeneity and an increased RH between apical and basal left ventricular regions.An increase in apicobasal repolarization gradient on endo- and epicardium was also found in patients with cardiomyopathy and ventricular arrhythmia vulnerability[67]. In Brugada syndrome, APD shortening in the right ventricle strengthens the left-to-right repolarization gradient and spatial RH[68].

    In hypertrophic cardiomyopathy, ECG analysis allowed to reveal the mechanism of cardiomyopathy: Ionic remodelling and action potential prolongation in hypertrophied apical and septal areas (T-wave inversion with normal QRS complex),or abnormal Purkinje-myocardial coupling causing abnormal QRS morphology in leads V4-V6[69].

    In hypothermia, which is used for protection of myocardium from hypoxic injury,APD of all myocardial cells, including conducting system and pacemakers, prolong nonuniformly as a result of an increase in repolarizing currents[70,71]; the nonuniform APD prolongation leads to the increase in both temporal and spatial RH[5,72,73].Epicardial APD prolong to the larger extent than endocardial ones, resulting in the inversion of transmural repolarization gradient at hypothermia[30]. Apicobasal, left-toright and anteroposteral repolarization gradients were inversed at hypothermia,too[73]. Earlier, T-wave inversion at hypothermia was associated with the inversion of transmural[30]or apicobasal[73]repolarization gradients. The recentin silicostudies demonstrated that transmural repolarization gradient do not play a crucial role in the cardiac electric field inversion under hypothermia, and the inversion of epicardial repolarization gradients (apicobasal, anterior-posterior and interventricular) causes Twave inversion regardless of transmural gradient direction[74].

    In hypoxia/ischemia, APD shortening is associated with electrolyte imbalance in conditions of oxygen supply termination/limitation[75], and increase in extracellular potassium concentration[76]. Hyperkalemia leads to sodium channels’ inactivation and slower conduction velocity[77], as well as to shorter repolarization, since it enhances potassium currents[77,78]. In addition, APD shortening at hypoxia may be associated with the release of catecholamines, which enhance the calcium-dependent chlorine current ICl (Ca) and activate the cAMP-dependent chlorine current ICl (cAMP)[79].In vitrostudies showed that subepicardial layers were more sensible to ischemia than subebdocardial ones[80,81], althoughin vivothere were no transmural differences in response to ischemia[82]. At ischemia, a significant increase in left-to-right repolarization gradient was observed[83]. In general, ischemia enhanced both temporal and spatial RH[84].

    DOR: TEMPORAL AND SPATIAL, ITS ECG-REFLECTION AND CLINICAL SIGNIFICANCE

    Temporal aspect

    The quantitative temporal measure of RH is DOR – the time difference between the earliest and the latest end of repolarization in the heart ventricles. A number of experimental studies demonstrated that an increased DOR promotes arrhythmogenic substrate formation[4-6]. Table 1 summarizing ECG-indices with their ability to evaluate the degree and the nature of ventricular RH and the degree of arrhythmic risk.

    The most “traditional”, but perhaps the least accurate index of DOR is QT interval dispersion. Because of the low reproducibility of clinical data, almost two decades ago it was concluded that QT dispersion gives a poor assessment of DOR[85,86]. Fromtheoretical viewpoint, QT dispersion reflects local differences in the latest (T-wave end), but not the earliest repolarization; thus, it reflects DOR only partially.

    Table1 Physiological meaning and cut-off values of electrocardiogram -indices of ventricular repolarization

    The more accurate index of DOR is Tpeak-Tend interval - a useful arrhythmic risk stratification tool in a wide variety of pathologies[87-89]. It was proven both experimentally and in silico that Tpeak-Tend directly reflects DOR magnitude[56,90-92].Although, a serious problem in using Tpeak-Tend for diagnostics is the discrepancy between the cut-off values resulting from different T-end determining method(baseline or tangent) as well as different number of ECG leads involved in calculations.In some studies, Tpeak-Tend was not a predictor of arrhythmia[93,94]; however, this does not decease its clinical significance, but suggests that mechanisms of triggering arrhythmias are not necessarily associated with increased DOR, and the search for new arrhythmogenic indices should be continued. The alternative relative assessments of DOR magnitude are T-wave amplitude, width, area and symmetry[95-99](Table 1).

    Spatial aspect

    Traditionally, the term DOR is associated with temporal RH. However, since the regions of early and late repolarization differ both in time and location, DOR is a vectorial parameter, directed from point A (the region of the earliest end of repolarization) to point B (the region of the latest end of repolarization) (Figure 2). The spatial characteristic of RH is T-vector of vectorcardiogram – a three-dimensional total electric vector of ventricular repolarization, which can be calculated on the basis of standard ECG set[100].

    Figure2 Realistic activation sequence, action potential duration distribution and end-of-repolarization sequence in the rabbit heart ventricles’ model, simulated from intramural and epicardial measurements[56].

    T-vector amplitude is not directly equal to DOR: The first is calculated in mV, and the second in ms. However, from physical viewpoint, T-vector amplitude must be proportional to DOR magnitude, and the relationship between T-vector components(Tx, Ty and Tz) must reflect the proportion between ventricular repolarization gradients in corresponding directions.

    T-vector direction reflects the general sequence of repolarization, but in the opposite way: T-vector is oriented from the regions of late repolarization towards the regions of early repolarization (Figure 2). Substantial changes in T-vector direction, even if DOR magnitude is within normal range (e.g., experimental Diabetes Mellitus[61-64]), indicate a large-scale electrical heart remodeling.

    T-vector provides important information in addition to “scalar” DOR value[101]: The amplitudes of cardiac potentials’ peaks and the time of their occurrence on ECG depend on lead location, while vectorcardiogram provides objective, “weighted”values; Ventricular gradient (three-dimensional QRS-T integral) reflects the distribution of the action potentials’ morphology in the heart ventricles[102]; ST-vector reflects the presence and peculiarities of ischemia; A distorted, twisted T-loop (the trajectory of T-vector projections on anatomical planes during ventricular repolarization) indicates pathological repolarization, while normal T-loop has a correct smoothed shape[103-105].

    Besides T-vector direction itself, the angle between T-vector and QRS-vector (QRS-T angle) is highly informative regarding spatial RH[106,107]. In healthy people,repolarization is practically opposite to depolarization, and QRS-T angle is relatively small (≤ 105°)[101,108]. An increased QRS-T angle (≥ 135°) indicates the changes in repolarization sequence, and, correspondingly, the changes in repolarization gradients resulted from electrophysiological disturbances in ventricular myocardium – the altered distribution if ion channels and action potentials’ durations[105,109]. An increased QRS-T angle was shown to be the most reliable predictor of the risk of life-threatening arrhythmias and death from heart disease compared with other ECG parameters[105,109-111].

    LOCAL DOR VS GLOBAL DOR

    DOR magnitude along with T-vector reflects the total (global) temporal and spatial repolarization pattern in the heart ventricles, but do not reflect the local electrophysiological heterogeneities. At the same time, increase in local RH may be more relevant for arrhythmia development than increase in global DOR: The regions with the greatest local repolarization time differences often serve as sources for ectopic beats and Torsade de pointes[111-113].

    The same condition (e.g., myocardial ischemia) can lead to the increase in both local and global DOR, and in such a case the global and local repolarization changes are hardly distinguishable, and specific novel markers for local DOR magnitude are need.Dispersion of Tpeak-Tend interval (the difference between the earliest Tpeak and the latest Tend among 12 standard leads) was proposed as a possible specific marker for the local DOR[114,115]. Besides, mathematical simulations showed that local increase in DOR can be expressed in increased lead-toa€‘lead differences in Tpeak and Tend instants between adjacent anatomically ordered standard leads [aVL, I, aVR(-), II, aVF,III, and V1-V6], even if global DOR, Tpeak-Tend interval and Tpeak-Tend dispersion are within a normal range[116].

    OTHER REPOLARIZATION PARAMETERS

    In some cases, indices characterizing duration and morphology of action potentials(QT, JTpeak and JTend intervals)[117-120], as well as electrical instability of ventricular myocardium at cellular level (macrovolt and microvolt T-wave alternans, beat-to-beat T-vector variability)[121,122]may be of clinical importance (Table 1).

    CONCLUSION

    Both temporal (the time difference between the earliest and the latest end of repolarization in the whole ventricles, and the local differences in end of repolarization times) and spatial (the general direction of ventricular repolarization sequence and the relative magnitudes of repolarization gradients) heterogeneity of ventricular repolarization are of clinical importance. The complex use of different ECG indices(Tpeak-Tend interval and its dispersion, T-vector and T-loop parameters, QRS-T angle,etc.) provides information about temporal and spatial, global and local characteristics of ventricular repolarization for better heart state assessment.

    久久热在线av| 日本三级黄在线观看| www.熟女人妻精品国产| 女人爽到高潮嗷嗷叫在线视频| 亚洲一区二区三区色噜噜| 亚洲国产精品999在线| 国产精品二区激情视频| 男女视频在线观看网站免费 | 淫妇啪啪啪对白视频| 国产伦在线观看视频一区| 黄色 视频免费看| 日韩欧美一区视频在线观看| 90打野战视频偷拍视频| 久久香蕉激情| 国产精品电影一区二区三区| 国产99白浆流出| 精品国产一区二区三区四区第35| 51午夜福利影视在线观看| 国产成人av教育| 午夜免费鲁丝| 亚洲中文字幕一区二区三区有码在线看 | 女人被狂操c到高潮| 精品久久久久久久人妻蜜臀av| 亚洲中文字幕日韩| 国内揄拍国产精品人妻在线 | 50天的宝宝边吃奶边哭怎么回事| 国产一区二区三区视频了| 他把我摸到了高潮在线观看| 嫁个100分男人电影在线观看| 国产精品久久电影中文字幕| 亚洲专区国产一区二区| 久久婷婷人人爽人人干人人爱| 日本免费a在线| 精品无人区乱码1区二区| 窝窝影院91人妻| 国产一区二区三区视频了| 18禁国产床啪视频网站| 日韩高清综合在线| 伦理电影免费视频| 少妇 在线观看| 日韩精品免费视频一区二区三区| 日本 欧美在线| 欧美日韩亚洲国产一区二区在线观看| 亚洲色图av天堂| 国产在线观看jvid| 日本a在线网址| 亚洲一区高清亚洲精品| 搡老熟女国产l中国老女人| 91字幕亚洲| 天堂√8在线中文| 在线观看免费日韩欧美大片| 欧美最黄视频在线播放免费| 欧美日韩黄片免| 日韩欧美三级三区| 男人的好看免费观看在线视频 | av免费在线观看网站| 一级a爱片免费观看的视频| 一个人免费在线观看的高清视频| 国产97色在线日韩免费| 一本综合久久免费| 精品久久久久久,| 国产一区二区激情短视频| 男人的好看免费观看在线视频 | 国产日本99.免费观看| 国产v大片淫在线免费观看| 欧美中文综合在线视频| 淫妇啪啪啪对白视频| 波多野结衣巨乳人妻| 中文资源天堂在线| 欧美精品亚洲一区二区| 亚洲国产欧美日韩在线播放| 国产又色又爽无遮挡免费看| 国产三级黄色录像| 免费搜索国产男女视频| 中文字幕最新亚洲高清| 精品国产国语对白av| 日韩精品中文字幕看吧| 亚洲国产欧美日韩在线播放| 黄色女人牲交| 亚洲九九香蕉| 久久久久国产一级毛片高清牌| 欧美国产精品va在线观看不卡| 国产精品久久久av美女十八| 日韩高清综合在线| 观看免费一级毛片| 亚洲一区二区三区色噜噜| 在线天堂中文资源库| 欧美日韩福利视频一区二区| 老司机深夜福利视频在线观看| 久久国产乱子伦精品免费另类| 国产伦人伦偷精品视频| 日韩欧美在线二视频| 在线观看66精品国产| 国产不卡一卡二| 日本 欧美在线| 最新美女视频免费是黄的| 在线观看66精品国产| 国产精品,欧美在线| 成人手机av| 国产高清videossex| 黄网站色视频无遮挡免费观看| 亚洲男人天堂网一区| 最近在线观看免费完整版| 日日摸夜夜添夜夜添小说| 自线自在国产av| 亚洲性夜色夜夜综合| 亚洲人成伊人成综合网2020| 午夜激情av网站| 国产私拍福利视频在线观看| 午夜激情福利司机影院| 亚洲自偷自拍图片 自拍| 久久狼人影院| 精品欧美国产一区二区三| 成人一区二区视频在线观看| 亚洲国产毛片av蜜桃av| 久久精品91无色码中文字幕| 久久 成人 亚洲| 日本五十路高清| 日本a在线网址| 欧美国产日韩亚洲一区| 999精品在线视频| 国产三级黄色录像| 久久久久国产一级毛片高清牌| 国语自产精品视频在线第100页| 午夜免费观看网址| 国产极品粉嫩免费观看在线| 少妇熟女aⅴ在线视频| 久久精品夜夜夜夜夜久久蜜豆 | 热99re8久久精品国产| 国产精品亚洲美女久久久| 午夜福利欧美成人| 久久性视频一级片| netflix在线观看网站| 国产三级在线视频| 国产精品久久视频播放| 日日摸夜夜添夜夜添小说| 久久久国产欧美日韩av| 99国产精品一区二区蜜桃av| 久久青草综合色| 精品人妻1区二区| 久久精品国产亚洲av高清一级| 国产av一区在线观看免费| 老汉色∧v一级毛片| 亚洲人成77777在线视频| 老司机午夜福利在线观看视频| 欧美精品亚洲一区二区| 国产黄a三级三级三级人| 国产视频内射| 黄网站色视频无遮挡免费观看| 女生性感内裤真人,穿戴方法视频| 久久久久久亚洲精品国产蜜桃av| 亚洲熟女毛片儿| 国产精品九九99| 欧美中文日本在线观看视频| 侵犯人妻中文字幕一二三四区| 精品乱码久久久久久99久播| 狂野欧美激情性xxxx| 侵犯人妻中文字幕一二三四区| 变态另类丝袜制服| 精品久久蜜臀av无| 久久精品91蜜桃| 亚洲av电影在线进入| 色综合欧美亚洲国产小说| 麻豆成人av在线观看| 国产精品,欧美在线| 一进一出抽搐动态| 午夜激情av网站| 哪里可以看免费的av片| 精品久久蜜臀av无| 亚洲国产欧美日韩在线播放| 啪啪无遮挡十八禁网站| 脱女人内裤的视频| 午夜福利欧美成人| 别揉我奶头~嗯~啊~动态视频| 一本综合久久免费| 久久久久久久久久黄片| 国产97色在线日韩免费| 欧美日韩精品网址| 亚洲中文av在线| 亚洲av电影不卡..在线观看| 999久久久国产精品视频| 黄频高清免费视频| 免费观看精品视频网站| 啦啦啦免费观看视频1| 国产精华一区二区三区| 无限看片的www在线观看| 国产私拍福利视频在线观看| 成年女人毛片免费观看观看9| 黑人巨大精品欧美一区二区mp4| 久久久水蜜桃国产精品网| 十分钟在线观看高清视频www| 国产精品免费视频内射| 91成年电影在线观看| 法律面前人人平等表现在哪些方面| 黄色 视频免费看| 一夜夜www| 精品第一国产精品| www日本黄色视频网| 一本一本综合久久| 欧美国产精品va在线观看不卡| 亚洲精品色激情综合| 99久久精品国产亚洲精品| 国产精品免费视频内射| 久久中文字幕人妻熟女| 欧美久久黑人一区二区| 日韩成人在线观看一区二区三区| 国产熟女午夜一区二区三区| 少妇 在线观看| or卡值多少钱| 50天的宝宝边吃奶边哭怎么回事| 日本 av在线| 欧美日韩福利视频一区二区| 亚洲三区欧美一区| 精品免费久久久久久久清纯| 麻豆一二三区av精品| 国产高清激情床上av| 欧美日韩一级在线毛片| 亚洲一区中文字幕在线| 色综合站精品国产| 精品久久久久久成人av| 午夜视频精品福利| 久久精品国产亚洲av高清一级| 日本在线视频免费播放| 99国产极品粉嫩在线观看| 中国美女看黄片| 午夜日韩欧美国产| 他把我摸到了高潮在线观看| 两人在一起打扑克的视频| 国产亚洲精品久久久久久毛片| 极品教师在线免费播放| 午夜久久久久精精品| 午夜免费成人在线视频| 男人操女人黄网站| 久久久久国产精品人妻aⅴ院| 国产午夜精品久久久久久| 精品久久久久久成人av| 国产野战对白在线观看| 国产精华一区二区三区| 午夜激情av网站| 亚洲狠狠婷婷综合久久图片| 中文字幕久久专区| 欧美午夜高清在线| 精品日产1卡2卡| 午夜视频精品福利| 一本久久中文字幕| 手机成人av网站| a级毛片a级免费在线| 一本精品99久久精品77| av欧美777| 无人区码免费观看不卡| 一区二区三区激情视频| 色播亚洲综合网| 9191精品国产免费久久| 99在线人妻在线中文字幕| 美女扒开内裤让男人捅视频| 久久国产乱子伦精品免费另类| 欧美色视频一区免费| 曰老女人黄片| 日日干狠狠操夜夜爽| 免费一级毛片在线播放高清视频| 欧美黑人欧美精品刺激| 色尼玛亚洲综合影院| 日本五十路高清| 1024手机看黄色片| 侵犯人妻中文字幕一二三四区| 日韩欧美免费精品| 精品高清国产在线一区| 天堂动漫精品| 九色国产91popny在线| 午夜福利欧美成人| 性欧美人与动物交配| 午夜福利高清视频| 俺也久久电影网| 757午夜福利合集在线观看| 欧美日韩中文字幕国产精品一区二区三区| 精品国产乱子伦一区二区三区| 一区福利在线观看| 免费看日本二区| 18禁观看日本| a在线观看视频网站| 亚洲最大成人中文| 欧美日韩亚洲综合一区二区三区_| 国内精品久久久久精免费| 欧美黑人精品巨大| 色av中文字幕| 亚洲国产毛片av蜜桃av| 国产97色在线日韩免费| 精品人妻1区二区| 麻豆成人午夜福利视频| 不卡一级毛片| 俺也久久电影网| 亚洲一区中文字幕在线| 搡老妇女老女人老熟妇| 在线观看舔阴道视频| 亚洲精品粉嫩美女一区| 一级毛片女人18水好多| 欧美激情 高清一区二区三区| 91麻豆av在线| 搡老岳熟女国产| 99热6这里只有精品| 亚洲电影在线观看av| 亚洲国产欧美一区二区综合| 色老头精品视频在线观看| 成在线人永久免费视频| 9191精品国产免费久久| a级毛片a级免费在线| 国产99久久九九免费精品| 久久精品国产清高在天天线| 国产片内射在线| 精品国产一区二区三区四区第35| 精品日产1卡2卡| 久久久国产欧美日韩av| 十分钟在线观看高清视频www| 大型黄色视频在线免费观看| av福利片在线| 成人av一区二区三区在线看| 麻豆国产av国片精品| 午夜两性在线视频| 桃红色精品国产亚洲av| 亚洲 欧美 日韩 在线 免费| 亚洲精华国产精华精| 色老头精品视频在线观看| 少妇裸体淫交视频免费看高清 | 手机成人av网站| 日本免费a在线| 黑人操中国人逼视频| 久久久久久久午夜电影| 脱女人内裤的视频| 国产一区二区在线av高清观看| 国产精品一区二区免费欧美| 国产av一区二区精品久久| 一进一出抽搐动态| 12—13女人毛片做爰片一| 久久久久九九精品影院| 亚洲人成网站在线播放欧美日韩| 老鸭窝网址在线观看| 韩国av一区二区三区四区| 波多野结衣高清作品| 老司机福利观看| www.自偷自拍.com| 国产色视频综合| 国产精品国产高清国产av| 日韩欧美免费精品| 亚洲国产日韩欧美精品在线观看 | 国产色视频综合| 曰老女人黄片| 俄罗斯特黄特色一大片| 亚洲av成人一区二区三| 色综合亚洲欧美另类图片| 欧美中文日本在线观看视频| 2021天堂中文幕一二区在线观 | 久久欧美精品欧美久久欧美| 丝袜人妻中文字幕| 久久国产精品影院| 精品免费久久久久久久清纯| 中文资源天堂在线| 午夜福利免费观看在线| 夜夜躁狠狠躁天天躁| 黄色女人牲交| 日本三级黄在线观看| 在线视频色国产色| 欧美色欧美亚洲另类二区| 成人av一区二区三区在线看| 久久午夜亚洲精品久久| 亚洲成人免费电影在线观看| 丝袜人妻中文字幕| 女同久久另类99精品国产91| 人成视频在线观看免费观看| 免费在线观看视频国产中文字幕亚洲| 亚洲狠狠婷婷综合久久图片| 亚洲精品av麻豆狂野| 久久中文看片网| 欧洲精品卡2卡3卡4卡5卡区| 午夜免费成人在线视频| 亚洲欧美激情综合另类| 婷婷精品国产亚洲av在线| 国产熟女午夜一区二区三区| 老汉色∧v一级毛片| 午夜免费激情av| 婷婷精品国产亚洲av| 国产高清有码在线观看视频 | 日韩欧美国产在线观看| 国产私拍福利视频在线观看| 日韩欧美国产在线观看| 午夜免费观看网址| 国产久久久一区二区三区| 一级a爱片免费观看的视频| 女警被强在线播放| 亚洲全国av大片| 99riav亚洲国产免费| 亚洲色图av天堂| 亚洲精品中文字幕一二三四区| 好看av亚洲va欧美ⅴa在| 露出奶头的视频| 精品国内亚洲2022精品成人| 波多野结衣高清作品| 天堂影院成人在线观看| 久久99热这里只有精品18| 日本在线视频免费播放| 国产成年人精品一区二区| 黄色a级毛片大全视频| 宅男免费午夜| 两个人看的免费小视频| 亚洲男人天堂网一区| 制服人妻中文乱码| 久久天堂一区二区三区四区| 亚洲一区高清亚洲精品| www.自偷自拍.com| 国内精品久久久久久久电影| 成人av一区二区三区在线看| 操出白浆在线播放| 日本免费一区二区三区高清不卡| 午夜精品久久久久久毛片777| 亚洲中文字幕一区二区三区有码在线看 | 日韩欧美在线二视频| 亚洲国产看品久久| 亚洲欧美精品综合久久99| 亚洲第一av免费看| 熟女少妇亚洲综合色aaa.| 精品国产一区二区三区四区第35| 欧美另类亚洲清纯唯美| av在线播放免费不卡| 欧美成人免费av一区二区三区| 男女午夜视频在线观看| 少妇的丰满在线观看| 无遮挡黄片免费观看| 欧美中文日本在线观看视频| 巨乳人妻的诱惑在线观看| 欧美一级毛片孕妇| 国产又色又爽无遮挡免费看| 99久久综合精品五月天人人| 久久精品aⅴ一区二区三区四区| 一卡2卡三卡四卡精品乱码亚洲| 国产真人三级小视频在线观看| 欧美一级毛片孕妇| 久久精品夜夜夜夜夜久久蜜豆 | 亚洲 欧美一区二区三区| or卡值多少钱| 日韩精品中文字幕看吧| 青草久久国产| 久久精品人妻少妇| 精品欧美一区二区三区在线| 宅男免费午夜| 男男h啪啪无遮挡| 国产黄色小视频在线观看| 免费无遮挡裸体视频| 大香蕉久久成人网| 亚洲av成人不卡在线观看播放网| 99久久综合精品五月天人人| 国产精品免费一区二区三区在线| 成人精品一区二区免费| 满18在线观看网站| 久久精品91蜜桃| 三级毛片av免费| 91成人精品电影| 特大巨黑吊av在线直播 | 丁香六月欧美| 一夜夜www| 黑人巨大精品欧美一区二区mp4| 久9热在线精品视频| 国产男靠女视频免费网站| 国产精品免费一区二区三区在线| 日韩大尺度精品在线看网址| 亚洲九九香蕉| 又紧又爽又黄一区二区| 国产av又大| av中文乱码字幕在线| 欧美日韩亚洲国产一区二区在线观看| 国产91精品成人一区二区三区| 最近最新中文字幕大全电影3 | 91麻豆av在线| 美女高潮喷水抽搐中文字幕| 国产成人精品久久二区二区免费| 人成视频在线观看免费观看| 老汉色∧v一级毛片| 国产视频内射| 丰满的人妻完整版| 国产激情欧美一区二区| 国产伦人伦偷精品视频| 成人特级黄色片久久久久久久| 99久久国产精品久久久| 午夜a级毛片| 50天的宝宝边吃奶边哭怎么回事| 极品教师在线免费播放| 少妇 在线观看| 久99久视频精品免费| 精品久久久久久,| 亚洲欧洲精品一区二区精品久久久| 国产av不卡久久| 国产熟女xx| 精品久久久久久久末码| 日韩免费av在线播放| 精品欧美一区二区三区在线| 久久中文看片网| 色综合婷婷激情| 亚洲七黄色美女视频| 日本黄色视频三级网站网址| 亚洲成a人片在线一区二区| 久久精品aⅴ一区二区三区四区| 人妻丰满熟妇av一区二区三区| 嫩草影院精品99| 亚洲欧美精品综合一区二区三区| 国产真实乱freesex| 搡老岳熟女国产| 黑人欧美特级aaaaaa片| 香蕉丝袜av| 女同久久另类99精品国产91| 很黄的视频免费| 两个人免费观看高清视频| 一级毛片女人18水好多| 国产高清有码在线观看视频 | 最好的美女福利视频网| 亚洲国产精品久久男人天堂| 久久精品影院6| 无限看片的www在线观看| 俺也久久电影网| 精品人妻1区二区| 久久久久精品国产欧美久久久| 女性生殖器流出的白浆| 国产精品98久久久久久宅男小说| 久99久视频精品免费| 国产一区在线观看成人免费| 夜夜躁狠狠躁天天躁| 国产黄色小视频在线观看| 精品国产亚洲在线| 女人被狂操c到高潮| 99热只有精品国产| 亚洲自偷自拍图片 自拍| 青草久久国产| 亚洲国产毛片av蜜桃av| 国内精品久久久久精免费| 一夜夜www| 欧美亚洲日本最大视频资源| 91麻豆av在线| 19禁男女啪啪无遮挡网站| 757午夜福利合集在线观看| 欧美色视频一区免费| 国产真人三级小视频在线观看| 日韩大尺度精品在线看网址| 国产成人精品久久二区二区91| 12—13女人毛片做爰片一| 国产亚洲欧美精品永久| av有码第一页| 久热爱精品视频在线9| 午夜老司机福利片| 午夜免费观看网址| 香蕉久久夜色| 99riav亚洲国产免费| 国产亚洲精品第一综合不卡| xxx96com| 18禁美女被吸乳视频| 妹子高潮喷水视频| 精品午夜福利视频在线观看一区| 亚洲国产欧洲综合997久久, | 久久九九热精品免费| 日本五十路高清| 亚洲欧洲精品一区二区精品久久久| 嫩草影院精品99| 亚洲国产高清在线一区二区三 | 男人舔奶头视频| 正在播放国产对白刺激| 亚洲九九香蕉| 在线观看www视频免费| 三级毛片av免费| 啦啦啦免费观看视频1| 中文字幕最新亚洲高清| 99在线人妻在线中文字幕| 韩国av一区二区三区四区| 久久国产乱子伦精品免费另类| 青草久久国产| 一卡2卡三卡四卡精品乱码亚洲| 久久久久久久久久黄片| 99久久国产精品久久久| 国产精品久久久av美女十八| 国内久久婷婷六月综合欲色啪| 老汉色av国产亚洲站长工具| 久久久久久久久中文| 丝袜美腿诱惑在线| 女同久久另类99精品国产91| 1024手机看黄色片| 人人妻人人澡欧美一区二区| 欧美日韩亚洲国产一区二区在线观看| 在线永久观看黄色视频| 国产久久久一区二区三区| 十八禁网站免费在线| 日韩大尺度精品在线看网址| 哪里可以看免费的av片| av电影中文网址| 69av精品久久久久久| 日本黄色视频三级网站网址| 成年人黄色毛片网站| 妹子高潮喷水视频| 国产视频内射| 久久精品国产清高在天天线| 免费一级毛片在线播放高清视频| 久久精品国产亚洲av高清一级| 精品国产亚洲在线| 97超级碰碰碰精品色视频在线观看| 亚洲av成人不卡在线观看播放网| 欧美中文日本在线观看视频| 亚洲精品久久成人aⅴ小说| 男女那种视频在线观看| 亚洲av日韩精品久久久久久密| 精品电影一区二区在线| 天天添夜夜摸| 日韩国内少妇激情av| 欧美zozozo另类| 丝袜在线中文字幕| 成人国语在线视频| 少妇被粗大的猛进出69影院| 亚洲在线自拍视频| 天天添夜夜摸| 亚洲精品一卡2卡三卡4卡5卡| 好男人在线观看高清免费视频 | 久久精品91无色码中文字幕|