• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Zero-Sequence Current Suppression Strategy for Open-End Winding Permanent Magnet Synchronous Motor Based on Model Predictive Control

    2020-10-27 08:15:06LIUHuashan劉華山LIJie李杰YAOFei姚飛
    關(guān)鍵詞:李杰華山

    LIUHuashan(劉華山)1,2,LIJie(李杰)1,YAOFei(姚飛)1,2*

    1 College of Information Science and Technology, Donghua University, Shanghai 201620, China2 Engineering Research Center of Digitized Textile & Apparel Technology, Ministry of Education, Shanghai 201620, China

    Abstract: Compared with the traditional three-phase star connection winding, the open-end winding permanent magnet synchronous motor (OW-PMSM) system with a common direct current(DC) bus has a zero-sequence circuit, which makes the common-mode voltage and the back electromotive force (EMF) harmonic generated by the inverters produce the zero-sequence current in the zero-sequence circuit, and the zero-sequence current has great influence on the operation efficiency and stability of the motor control system. A zero-sequence current suppression strategy is presented based on model predictive current control for OW-PMSM. Through the mathematical model of OW-PMSM to establish the predictive model and the zero-sequence circuit model, the common-mode voltage under different voltage vector combinations is fully considered during vector selection and action time calculation. Then zero-sequence loop constraints are established, so as to suppress the zero-sequence current. In the end, the control strategy proposed in this paper is verified by simulation experiments.

    Key words: open-end winding permanent magnet synchronous motor (OW-PMSM); zero-sequence current; harmonic; model predictive current control; common-mode voltage

    Introduction

    A permanent magnet synchronous motor (PMSM) has the advantages of high power density, flexible control and reliable operation, which is widely used in electric power related fields, such as electric vehicle and aerospace[1]. The open-end winding PMSM (OW-PMSM) means that the neutral point of the traditional three-phase star connection winding is opened, and adopts two inverters on both ends of winding. According to the direct current(DC) bus connection style, the OW-PMSM system can be divided into common DC bus topology and isolated DC bus topology[2-3], as shown in Fig. 1. Compared with the PMSM with star connection winding, the PMSM with open-end winding can provide higher power and effectively improve the utilization ratio of a DC bus[4].

    In recent years, scholars in Zhejiang University and Harbin Institute of Technology continue to study the topology structures and the control strategy of the OW-PMSM. Most of the control strategies for the OW-PMSM are the migration and the improvement of traditional PMSM control strategies, such as direct torque control (DTC)[5-6]and field-oriented control (FOC)[7-8]. As a new control strategy, model predictive control (MPC) was gradually applied in the field of power electronic control. Compared with DTC and FOC, MPC is simple in calculation and parameter configuration, and fast in dynamic response[9]. MPC is divided into finite control sets-MPC (FCS-MPC) and continuous control sets-MPC (CCS-MPC)[10-15]. The FCS-MPC does not need a modulator and is widely used because of fully using the limited number of space voltage vectors.

    (a) Common DC bus topology

    (b) Isolated DC bus topology

    The system of OW-PMSM with a common DC bus has no neutral points because two buses are connected in parallel. So the system has a zero-sequence loop, and the zero-sequence current is generated under the action of common-mode voltage and the back electromotive force(EMF) harmonic. The presence of the zero-sequence current leads to additional energy loss and heating, and the zero-sequence current will cause torque ripple, which adversely affects the system operating efficiency and stability[16]. Therefore, suppressing the zero-sequence current in OW-PMSM system is one of the important research contents. In order to suppress the zero-sequence current, Somasekharetal.[17-18]used the strategy with an additional auxiliary switch to eliminate the common-mode voltage to inhibit the action of the zero-sequence current. But it is more complicated when the additional auxiliary switch is adopted, and it is adverse to the flexibility and stability of the control system. In Ref. [19], during the process of space vector modulation, only the voltage vectors which do not generate common-mode voltage are selected, so as to suppress the effect of the zero-sequence current. However, there is a serious shortage of DC bus voltage utilization. Nianetal.[20]designed zero-sequence current closed-loop regulation. The proportional resonant (PR) regulator is used to compensate the common-mode voltage on the resistance inductance, so as to achieve the purpose of suppressing the zero-sequence current by compensating the common-mode voltage and the back EMF harmonic. But this closed loop control strategy of the zero-sequence loop is complex in designing, difficult in parameter configuration, large in computation and so on.

    In order to suppress the zero-sequence current in the common DC bus OW-PMSM system, this article analyzes the zero-sequence circuit through building a mathematical model of the OW-PMSM, and designs an improved model predictive current control strategy with fully using the advantages of multi-objective constraints of MPC. Then, the zero-sequence current can be suppressed by controlling zero-sequence voltage and back EMF harmonic reasonably. At last, the simulation experiments are done to prove the effectiveness of the proposed control algorithm.

    1 Mathematical Model of OW-PMSM with Common DC Bus

    In order to analyze the topological characteristics of the OW-PMSM system and suppress the zero-sequence current, it is necessary to establish a mathematical model containing zero-sequence components of the OW-PMSM system. Figure 1(a) shows the topology structure of the OW-PMSM system with a common DC bus. Under the assumption that the motor winding and the magnetic circuit are symmetric, and hysteresis loss and eddy current loss are ignored, the mathematical model of the OW-PMSM system in the three-phase static coordinate system can be obtained as

    (1)

    where,umandim(m=a,b,c) are phase voltages and phase currents ofa,bandcphases, respectively;Ris the winding resistance;LandMrepresent the self-inductance and mutual inductance of winding, respectively;Sx(x=a1,a2,b1,b2,c1,c2) represents the switching function of the inverter 1 and the inverter 2, and satisfies:

    (2)

    Generally, the mathematical model of PMSM in the three-phase static coordinate system is complicated for our control system design. In order to simplify the control system design and make our control more convenient and flexible, the mathematical model in the three-phase static coordinate system needs to be converted to the two-phase rotating coordinate system. Thus, the mathematical model of the OW-PMSM system can be obtained as

    (3)

    where,ux,ixandLx(x=d,q, 0) represent thed-axis,q-axis and 0-axis components of voltage, current and inductance in the rotating coordinate system, respectively;θrepresents the electric angle;ωrepresents the electric angular velocity;ψrepresents the flux chain.

    According to Eq. (3), the equivalent circuit of the zero-sequence loop of the OW-PMSM system with the common DC bus can be obtained, as shown in Fig. 2. In Fig. 2,u01andu02are the common-mode voltages generated by the inverter 1 and the inverter 2, respectively; 3ωψ3fsin(3θ) is the harmonic amplitude of the third inverse EMF.

    Fig. 2 Equivalent circuit of zero-sequence loop

    As for the OW-PMSM system, due to the effect of the zero-sequence current, the electromagnetic torque will generate harmonic pulsation, and its torqueTecan be expressed as

    (4)

    where,ea,ebandecrepresent three opposite electromotive forces in the three-phase static coordinate system;ed,eqande0representd-axis,q-axis and 0-axis components in thedq0 rotation coordinate system;ωrrepresents mechanical angular velocity;Cabc-dq0denotes theabc-dq0 coordinate transformation matrix.

    Substituting Eq. (3) into Eq. (4), a simplified mathematical model can be obtained:

    wherepnrepresents the pole log of the motor. It can be seen from Eq. (6) that the electromagnetic torque contains six harmonic components, which is not conducive to the stable operation of the system.

    2 Zero-Sequence Current Suppression Based on MPC

    2.1 Zero common-mode voltage suppression strategy based on MPC

    Zero common-mode voltage model predictive current control (ZCV-MPCC) means that the resultant voltage vector does not contain zero-sequence components during the model predictive current control. The common-mode voltage at the machine end of the OW-PMSM system can be expressed as

    u0=u01-u02.

    (7)

    That is, the zero-sequence component of the phase voltage of the motor depends on the zero-sequence component of the output voltage of the two inverters.

    By analyzing the common-mode voltage generated when each voltage vector acts (shown in Table 1), it can be seen that the common-mode voltage is 0 when the vector vertex is located on the middle hexagon (HJLNQS) (shown in Fig. 3). In order to control the magnitude of the zero-sequence voltage component in a zero-sequence loop, only non-zero voltage vectors and zero vectors which do not generate common-mode voltage can be selected. The control block diagram is shown in Fig. 4, where PI means proportion integration regulator.

    Fig. 3 Voltage vector of OW-PMSM

    Table 1 Common-mode voltage generated by different voltage vectors

    Fig. 4 Block diagram of ZCV-MPCC system for OW-PMSM

    The mathematical model of OW-PMSM in thedq0 rotating coordinate system is discretized, and the predictive model can be obtained as

    (8)

    where,ix(k+1) andix(k)(x=d,q) represent thedq0-axis currents at the next moment and the current moment, respectively;ux(k+1) andux(k)(x=d,q) represent thedq-axis components under the action of different voltage vectors at the next moment and the current moment, respectively.

    Then, the value function can be designed as

    Ji=[id(k+1)-id(k)]2+[iq(k+1)-iq(k)]2,

    (9)

    Therefore, the value function can be approximated as

    (10)

    Different voltage vectors can get different value functionsJi.By comparing different value functions, the voltage vector that makes the value function minimum is obtained, and the voltage vector is applied to the next period of time, so that the predicted current can always track the given value of the current and achieve the purpose of fast and accurate control.

    2.2 Expected common-mode voltage suppression strategy based on MPC

    In the zero-sequence loop of the OW-PMSM system, the zero-sequence component is obvious not only the common-mode voltage output by the inverters, but also the back EMF harmonic generated by the motor, especially the third harmonic. In ZCV-MPCC, the influence of the common-mode voltage generated by the inverters on the zero-sequence current is considered. The control strategy is simple and flexible. The expected common-mode voltage model predictive current control(ECV-MPCC) takes the influence of the third harmonic of back EMF harmonics into account.

    According to the OW-PMSM zero-sequence equivalent circuit, the magnitude of zero-sequence current depends on the common-mode voltage and the third harmonic of the back EMF generated by the inverters. Effectively reducing the circuit voltage of the zero-sequence circuit can reduce the zero-sequence current correspondingly. Therefore, the ECV-MPCC aims to select an appropriate voltage vector through model predictive control to make the expected common-mode voltage output of the inverters interact with the third harmonic of the back EMF, so as to reduce the zero-sequence loop voltage and suppress the zero-sequence current. The control system block diagram is shown in Fig. 5.

    Fig. 5 Block diagram of ECV-MPCC system for OW-PMSM

    According to the equivalent circuit of the zero-sequence circuit, if the circuit voltage of the zero-sequence circuit is zero, the zero-sequence current will not be generated. Therefore, the condition of the circuit voltage is zero:

    u01-u02+3ωψ3fsin(3θ)=0.

    (11)

    Therefore, the zero-sequence loop voltage is zero, and the zero-sequence current generated is also zero when the magnitude of the common-mode voltage generated by the inverters is the same as the magnitude of the third harmonic of the back EMF. Obviously, it is necessary to select the appropriate voltage vector and the action time to synthesize the voltage vector, and generate the desired common-mode voltage vector to match the third harmonic of the back EMF.

    The vector action time calculation adopts thedq0-axis current dead-beat tracking. That is, it is considered that the current values at the two consecutive sampling points are equal, which is equal to the given value of thedq0-axis current.

    (12)

    where,sdmandsqm(m=0,i,j) are thedq0-axis slopes ofu0,udanduq;sxi,sxjandsx0represent the slopes of the voltage vectors which are selected;ti,tjandt0are the acting time of voltage vectors, and the acting time satisfies:

    Ts=ti+tj+t0.

    (13)

    Combined with the mathematical model of the OW-PMSM system in thedq0 rotating coordinate system, the slope can be calculated as

    (14)

    (15)

    (16)

    By substituting the formulas (14)-(16) into the dead-beat model, the acting time can be calculated as

    (17)

    (18)

    t0=Ts-ti-tj.

    (19)

    The expected resultant voltage vectors in six sectors can be obtained by calculating and selecting the voltage vectors in six sectors and their acting time.

    Vn=viti+vjtj+vztz,

    (20)

    whereVnrepresents the expected voltage vector synthesized in each sector,n=1, 2, …, 6.

    The voltage component of synthetic voltage vectors atdq-axis can be calculated, and the predictive current at next sampling time can be obtained by bringing the voltage component of synthetic voltage vectors atdq-axis into the prediction model. Then, the value function is given to evaluate and select the optimal synthetic voltage vector. Therefore, the value function is redesigned by adding zero-sequence current constraint:

    (21)

    Since the vector action time is given in advance and evaluated in the value function, the corresponding optimal acting voltage vector and its action time can be obtained through the rolling optimization of the value function. At the same time, zero-sequence current weight is added in the value function evaluation process, and the constraint of zero-sequence current is fully considered, so that the obtained optimal voltage vector and its action time can well meet the requirements of zero-sequence current suppression.

    3 Simulation

    In order to validate the proposed zero-sequence current suppression strategy based on MPC, simulation experiments are carried out using the Matlab/Simulink platform. Under the control strategy proposed in this paper, the three-phase current waveform and the total harmonic distortion (THD), zero-sequence circuit current and common-mode voltage waveform, zero-sequence current and common-mode voltage comparison, and the electromagnetic torque waveform are obtained. The simulation results are shown in Figs. 6-9, respectively.

    (a) Before zero-sequence current suppression

    (b) ZCV-MPCC

    (c) ECV-MPCC

    Figure 6 presents the three-phase output current waveform and the current THD (ITHD) under three different control strategies when the speed is 750 r/min. As can be seen from Fig. 6, the output current waveform can be improved to a certain extent, and the quality of current is improved when the ZCV-MPCC is used. The current distortion is significantly improved and THD is significantly reduced when using the ECV-MPCC, which fully proves the effectiveness of the ECV-MPCC.

    Figure 7 presents the zero-sequence current waveform and common-mode voltage under three different control strategies when the speed is 750 r/min. In this paper the zero-sequence current under different voltage vectors and action times is measured as an index to measure the suppression strength of zero-sequence current. It can be seen from Fig. 7 that the current of the zero-sequence loop decreases obviously after the zero-sequence current control strategy is adopted, and the common-mode voltage is compatible with the control strategy adopted. The common-mode voltage of the OW-PMSM system using ZCV-MPCC is zero. The common-mode voltage using ECV-MPCC is adapted to the back EMF harmonic, and generates the certain common-mode voltage to interact with it in different sampling times, which plays a role in suppressing the zero-sequence current.

    (a) Before zero-sequence current suppression

    (b) ZCV-MPCC

    (c) ECV-MPCC

    Figure 8 presents the change trend of zero-sequence current amplitude and THD. It can be seen that the control of the zero-sequence current is more effective as the model predictive current control design deepens. The above trends fully demonstrate the effectiveness and the superiority of the new model predictive current control strategy.

    (a) Amplifude of zero-sequence current

    (b) THD of three-phase current

    Figure 9 shows the torque waves of OW-PMSM in different working conditions, and the torque response changes when the load is suddenly added or reduced. By comparison, it can be seen that the torque ripple is obviously reduced after the adoption of the new control strategy, and the torque has a good response speed when the load changes, which fully demonstrates the effectiveness and good dynamic response of the control strategy proposed in this paper.

    (a) Electromagnetic torque before zero-sequence current suppression

    (b) Electromagnetic torque of ECV-MPCC

    4 Conclusions

    As a new topological structure, OW-PMSM can provide a higher utilization ratio of the DC bus, the three-phase current is independent, so the control is more flexible. Therefore, it has a good research and application prospect. In this paper, the problem of the zero-sequence current of the OW-PMSM system with a common DC bus was studied, and a new predict current control measurement was proposed. Compared with using the voltage vector that does not generate the common-mode voltage to suppress the zero-sequence current, the new model predictive current control algorithm can improve the utilization rate of the DC bus. The new model predictive current control can effectively suppress the generation of the zero-sequence current, reduce the torque ripple, and improve the operation stability of the OW-PMSM system. Compared with the traditional vector control used in the OW-PMSM system, the new model predictive current control has better dynamic response.

    猜你喜歡
    李杰華山
    Adaptive Neural Network Control for Euler-Lagrangian Systems with Uncertainties
    A spintronic memristive circuit on the optimized RBF-MLP neural network
    Effect of megapore particles packing on dielectric barrier discharge, O3 generation and benzene degradation
    詠華山
    人民海軍首次海戰(zhàn)
    源流(2021年11期)2021-03-25 10:32:07
    小胖熊半夜歷險(xiǎn)記
    隨王履登華山
    崢嶸歲月:毛澤東在東華山
    文史春秋(2020年1期)2020-03-16 13:13:32
    ?。楱#镅酲耍颞Γ?多duō 多duo
    The gas jet behavior in submerged Laval nozzle flow *
    制服丝袜香蕉在线| 日韩一区二区视频免费看| 最后的刺客免费高清国语| 一区二区av电影网| 亚洲av成人精品一区久久| 美女福利国产在线| av又黄又爽大尺度在线免费看| a级毛片在线看网站| av黄色大香蕉| 成人影院久久| 欧美少妇被猛烈插入视频| 成人毛片60女人毛片免费| 亚洲在久久综合| 黄色欧美视频在线观看| 在现免费观看毛片| 在线观看国产h片| 国产熟女午夜一区二区三区 | 18禁动态无遮挡网站| 亚洲婷婷狠狠爱综合网| 一区二区av电影网| tube8黄色片| 免费看日本二区| 国产av国产精品国产| 桃花免费在线播放| 久久热精品热| 亚洲中文av在线| 青春草视频在线免费观看| 免费黄网站久久成人精品| 美女cb高潮喷水在线观看| 中文精品一卡2卡3卡4更新| 寂寞人妻少妇视频99o| 精品一区二区三卡| 青春草国产在线视频| 男男h啪啪无遮挡| 精品久久国产蜜桃| 国产熟女午夜一区二区三区 | 国产午夜精品一二区理论片| 91精品国产九色| 免费观看的影片在线观看| 久久久久人妻精品一区果冻| 99久久精品热视频| 日韩av在线免费看完整版不卡| 五月开心婷婷网| 丁香六月天网| 美女视频免费永久观看网站| 性色avwww在线观看| 国产欧美日韩综合在线一区二区 | av免费观看日本| 免费人妻精品一区二区三区视频| 成人亚洲欧美一区二区av| 青春草视频在线免费观看| 狠狠精品人妻久久久久久综合| 国产美女午夜福利| 欧美精品国产亚洲| 久久99一区二区三区| 蜜桃在线观看..| 日本欧美视频一区| 黑人巨大精品欧美一区二区蜜桃 | 伊人久久精品亚洲午夜| 久久久久久人妻| 亚洲欧美一区二区三区国产| 亚洲va在线va天堂va国产| 免费观看无遮挡的男女| 色吧在线观看| 午夜日本视频在线| 人人妻人人澡人人爽人人夜夜| 91精品一卡2卡3卡4卡| 一级毛片aaaaaa免费看小| 男人添女人高潮全过程视频| 久久精品国产鲁丝片午夜精品| 亚洲精品成人av观看孕妇| 精品少妇久久久久久888优播| 国产高清国产精品国产三级| 国产一区亚洲一区在线观看| 七月丁香在线播放| 精品酒店卫生间| av专区在线播放| 观看免费一级毛片| 中文字幕免费在线视频6| 色视频www国产| 亚洲国产精品成人久久小说| 国产精品熟女久久久久浪| 9色porny在线观看| 九色成人免费人妻av| 久久久亚洲精品成人影院| 女人久久www免费人成看片| 国产又色又爽无遮挡免| 亚洲精品一区蜜桃| 国产精品久久久久久精品古装| 亚洲国产色片| 亚洲av成人精品一二三区| 色网站视频免费| 一个人免费看片子| 亚洲av不卡在线观看| 三级国产精品片| 女性被躁到高潮视频| 午夜91福利影院| 热re99久久国产66热| 久久人人爽av亚洲精品天堂| 一本色道久久久久久精品综合| 18禁裸乳无遮挡动漫免费视频| 制服丝袜香蕉在线| 欧美日本中文国产一区发布| 国产欧美日韩精品一区二区| 大又大粗又爽又黄少妇毛片口| 美女中出高潮动态图| 久久久久久久久久久免费av| 国产乱人偷精品视频| 久久精品国产鲁丝片午夜精品| 嘟嘟电影网在线观看| 51国产日韩欧美| 2021少妇久久久久久久久久久| 狂野欧美激情性xxxx在线观看| 日韩av免费高清视频| 国产男女内射视频| 精华霜和精华液先用哪个| 自拍偷自拍亚洲精品老妇| 边亲边吃奶的免费视频| 一级,二级,三级黄色视频| 亚洲成人av在线免费| av福利片在线观看| 国产又色又爽无遮挡免| tube8黄色片| 丁香六月天网| 97在线人人人人妻| 超碰97精品在线观看| 精品人妻熟女av久视频| 国产亚洲精品久久久com| 成人影院久久| 国产亚洲91精品色在线| 99热网站在线观看| 69精品国产乱码久久久| 22中文网久久字幕| 欧美日韩一区二区视频在线观看视频在线| 黄色一级大片看看| 国产伦理片在线播放av一区| 欧美老熟妇乱子伦牲交| 国产精品人妻久久久久久| 日韩成人伦理影院| 国产欧美日韩精品一区二区| 男人添女人高潮全过程视频| 香蕉精品网在线| a 毛片基地| 精品人妻熟女av久视频| 简卡轻食公司| 最近2019中文字幕mv第一页| 午夜激情福利司机影院| 久久人人爽人人片av| 18禁动态无遮挡网站| 如何舔出高潮| 国产亚洲av片在线观看秒播厂| 97精品久久久久久久久久精品| 美女国产高潮福利片在线看| 亚洲自偷自拍图片 自拍| 欧美日韩av久久| 国产日韩欧美视频二区| 精品卡一卡二卡四卡免费| 国产免费视频播放在线视频| 久久精品国产综合久久久| 老司机影院成人| 久久精品国产综合久久久| 在线观看免费高清a一片| 99久久99久久久精品蜜桃| 黑人猛操日本美女一级片| 欧美中文综合在线视频| 91麻豆av在线| 一级毛片电影观看| 久久久久久久精品精品| 熟女少妇亚洲综合色aaa.| 法律面前人人平等表现在哪些方面 | 91成年电影在线观看| 人人妻人人澡人人爽人人夜夜| 亚洲一码二码三码区别大吗| 久久性视频一级片| 亚洲一区二区三区欧美精品| 欧美亚洲 丝袜 人妻 在线| 国产黄色免费在线视频| 美女大奶头黄色视频| 国产成人精品久久二区二区91| 亚洲av欧美aⅴ国产| a级毛片在线看网站| 天天添夜夜摸| www.av在线官网国产| 久久精品人人爽人人爽视色| 亚洲精品美女久久av网站| 午夜福利乱码中文字幕| 两个人免费观看高清视频| 免费在线观看完整版高清| 久久久久精品人妻al黑| 国产成人精品在线电影| 免费观看av网站的网址| cao死你这个sao货| 国产精品偷伦视频观看了| 满18在线观看网站| 啪啪无遮挡十八禁网站| 国产一区二区三区在线臀色熟女 | 欧美在线黄色| 久久精品国产亚洲av香蕉五月 | av天堂久久9| 91大片在线观看| 成人18禁高潮啪啪吃奶动态图| 淫妇啪啪啪对白视频 | 蜜桃国产av成人99| 悠悠久久av| 999久久久精品免费观看国产| 99国产极品粉嫩在线观看| 精品人妻在线不人妻| 亚洲精品粉嫩美女一区| 亚洲精品粉嫩美女一区| 国产欧美亚洲国产| 纵有疾风起免费观看全集完整版| 国产欧美日韩一区二区三区在线| 新久久久久国产一级毛片| 欧美黑人欧美精品刺激| 高清黄色对白视频在线免费看| 制服诱惑二区| 亚洲色图 男人天堂 中文字幕| av片东京热男人的天堂| 高清在线国产一区| 日韩免费高清中文字幕av| 美女国产高潮福利片在线看| 国产无遮挡羞羞视频在线观看| 日本91视频免费播放| 欧美变态另类bdsm刘玥| 亚洲,欧美精品.| av有码第一页| 老鸭窝网址在线观看| 亚洲人成电影观看| 国产一区二区在线观看av| 久久久久精品国产欧美久久久 | 亚洲av电影在线观看一区二区三区| 欧美少妇被猛烈插入视频| 成人18禁高潮啪啪吃奶动态图| 又黄又粗又硬又大视频| 日韩免费高清中文字幕av| 老熟妇乱子伦视频在线观看 | 国产一区有黄有色的免费视频| h视频一区二区三区| 日韩三级视频一区二区三区| 狠狠狠狠99中文字幕| 如日韩欧美国产精品一区二区三区| 国产区一区二久久| 自拍欧美九色日韩亚洲蝌蚪91| 午夜久久久在线观看| 久久99热这里只频精品6学生| 一区二区三区乱码不卡18| 亚洲精品成人av观看孕妇| 日韩制服丝袜自拍偷拍| 美女中出高潮动态图| 日本黄色日本黄色录像| 国产有黄有色有爽视频| 欧美亚洲 丝袜 人妻 在线| 性少妇av在线| 成人影院久久| 搡老熟女国产l中国老女人| 亚洲欧美日韩另类电影网站| 亚洲精品一区蜜桃| 久久久欧美国产精品| 久久国产精品大桥未久av| 精品一区二区三区四区五区乱码| 黄色怎么调成土黄色| 啦啦啦啦在线视频资源| 亚洲伊人色综图| 国产又色又爽无遮挡免| 国产av精品麻豆| 欧美亚洲 丝袜 人妻 在线| 成人国产av品久久久| 香蕉丝袜av| 国产成人影院久久av| 日韩中文字幕视频在线看片| 免费一级毛片在线播放高清视频 | 亚洲精品美女久久久久99蜜臀| 国产伦人伦偷精品视频| 久久香蕉激情| 色综合欧美亚洲国产小说| 国产精品一区二区在线不卡| 岛国在线观看网站| 自线自在国产av| 国产一卡二卡三卡精品| 岛国毛片在线播放| 人成视频在线观看免费观看| 人人妻人人澡人人看| 亚洲欧洲日产国产| 午夜91福利影院| 老汉色∧v一级毛片| 18禁观看日本| 搡老岳熟女国产| 成年人免费黄色播放视频| 伊人亚洲综合成人网| 欧美黄色淫秽网站| 国产人伦9x9x在线观看| 亚洲欧美清纯卡通| 乱人伦中国视频| 国产欧美日韩精品亚洲av| 91av网站免费观看| 亚洲熟女精品中文字幕| 男女高潮啪啪啪动态图| 黄色毛片三级朝国网站| 亚洲中文字幕日韩| 久热这里只有精品99| 国产一区二区三区在线臀色熟女 | 五月开心婷婷网| 国产又色又爽无遮挡免| 三级毛片av免费| 一边摸一边抽搐一进一出视频| 19禁男女啪啪无遮挡网站| 2018国产大陆天天弄谢| 成人av一区二区三区在线看 | 99久久99久久久精品蜜桃| 另类亚洲欧美激情| 热99re8久久精品国产| 亚洲欧美日韩另类电影网站| 亚洲精品美女久久av网站| 亚洲精品自拍成人| 可以免费在线观看a视频的电影网站| 丁香六月欧美| 九色亚洲精品在线播放| 午夜免费成人在线视频| 美女高潮到喷水免费观看| 欧美日韩成人在线一区二区| 亚洲国产中文字幕在线视频| 国产精品熟女久久久久浪| 丁香六月天网| 国产男女超爽视频在线观看| 国产成人av教育| 91精品国产国语对白视频| 国产日韩欧美视频二区| 久久天堂一区二区三区四区| 亚洲中文av在线| 香蕉国产在线看| 伦理电影免费视频| 欧美日韩精品网址| 亚洲欧美色中文字幕在线| 亚洲人成77777在线视频| 国产av又大| 国产日韩一区二区三区精品不卡| 国产精品久久久久久精品电影小说| 91成人精品电影| 精品久久久久久久毛片微露脸 | 熟女少妇亚洲综合色aaa.| 夜夜骑夜夜射夜夜干| 亚洲伊人色综图| 人人妻人人澡人人爽人人夜夜| 波多野结衣一区麻豆| 青青草视频在线视频观看| 日韩一区二区三区影片| 日韩欧美一区二区三区在线观看 | 一本色道久久久久久精品综合| 亚洲国产欧美网| 欧美+亚洲+日韩+国产| 国产亚洲欧美在线一区二区| 如日韩欧美国产精品一区二区三区| 欧美大码av| 建设人人有责人人尽责人人享有的| 国产av一区二区精品久久| 人成视频在线观看免费观看| 亚洲免费av在线视频| 99久久综合免费| 天天躁夜夜躁狠狠躁躁| 久久久精品免费免费高清| 亚洲欧美一区二区三区黑人| 黄色片一级片一级黄色片| 丰满迷人的少妇在线观看| 午夜两性在线视频| 精品少妇黑人巨大在线播放| 男人操女人黄网站| av天堂久久9| 午夜激情av网站| 亚洲精品一二三| 国产av又大| 啦啦啦中文免费视频观看日本| 婷婷色av中文字幕| 欧美黑人精品巨大| 18在线观看网站| 国产免费视频播放在线视频| 久久国产精品男人的天堂亚洲| 亚洲七黄色美女视频| 精品国产乱码久久久久久小说| 高清在线国产一区| 国产无遮挡羞羞视频在线观看| 岛国毛片在线播放| 免费不卡黄色视频| av国产精品久久久久影院| 少妇粗大呻吟视频| 国产精品一区二区在线观看99| 老司机午夜十八禁免费视频| 午夜福利影视在线免费观看| 每晚都被弄得嗷嗷叫到高潮| 深夜精品福利| 久久精品久久久久久噜噜老黄| 午夜福利影视在线免费观看| 久久国产精品男人的天堂亚洲| 久久人妻福利社区极品人妻图片| 自拍欧美九色日韩亚洲蝌蚪91| 少妇 在线观看| 日韩电影二区| 1024视频免费在线观看| 黑人猛操日本美女一级片| 精品国产超薄肉色丝袜足j| www.999成人在线观看| 国产极品粉嫩免费观看在线| 脱女人内裤的视频| 动漫黄色视频在线观看| 老汉色av国产亚洲站长工具| 欧美日韩一级在线毛片| 午夜福利影视在线免费观看| 久久久欧美国产精品| 交换朋友夫妻互换小说| 国产黄频视频在线观看| www.熟女人妻精品国产| 一本综合久久免费| 国产深夜福利视频在线观看| 成年美女黄网站色视频大全免费| www.熟女人妻精品国产| 黄色 视频免费看| 叶爱在线成人免费视频播放| 亚洲国产中文字幕在线视频| 久久久久国产精品人妻一区二区| 亚洲第一青青草原| 免费在线观看黄色视频的| 99久久99久久久精品蜜桃| 99国产极品粉嫩在线观看| 精品免费久久久久久久清纯 | 飞空精品影院首页| 亚洲人成77777在线视频| 亚洲国产欧美在线一区| 侵犯人妻中文字幕一二三四区| 男女床上黄色一级片免费看| 18禁黄网站禁片午夜丰满| 黄色视频,在线免费观看| 菩萨蛮人人尽说江南好唐韦庄| 高清欧美精品videossex| 国产av一区二区精品久久| 制服诱惑二区| 亚洲av片天天在线观看| 国产xxxxx性猛交| 大香蕉久久成人网| 亚洲成人手机| 欧美97在线视频| 国产黄频视频在线观看| 热re99久久国产66热| 精品国产一区二区三区四区第35| 黄片大片在线免费观看| 91精品国产国语对白视频| 搡老岳熟女国产| 国产精品偷伦视频观看了| 91精品伊人久久大香线蕉| 青春草视频在线免费观看| 69精品国产乱码久久久| 欧美日韩国产mv在线观看视频| 国产精品久久久av美女十八| 亚洲五月婷婷丁香| 精品国产国语对白av| 精品第一国产精品| 又紧又爽又黄一区二区| 国产精品一区二区在线观看99| 男女高潮啪啪啪动态图| 成人国产一区最新在线观看| 亚洲精华国产精华精| 免费一级毛片在线播放高清视频 | 中文字幕色久视频| 另类精品久久| 高清黄色对白视频在线免费看| 亚洲精品av麻豆狂野| 亚洲第一av免费看| 久久香蕉激情| 水蜜桃什么品种好| 人人妻人人澡人人爽人人夜夜| 欧美少妇被猛烈插入视频| videos熟女内射| 91国产中文字幕| 五月天丁香电影| 亚洲精品粉嫩美女一区| 国产成人啪精品午夜网站| 亚洲 国产 在线| 1024视频免费在线观看| 亚洲成人手机| 欧美变态另类bdsm刘玥| 亚洲av男天堂| 国产亚洲一区二区精品| 大陆偷拍与自拍| 久久热在线av| 美女中出高潮动态图| 国产精品秋霞免费鲁丝片| 又紧又爽又黄一区二区| 国产成人精品在线电影| 中文字幕最新亚洲高清| 久久人人97超碰香蕉20202| 精品福利永久在线观看| 国产免费视频播放在线视频| 国产免费av片在线观看野外av| 国产精品秋霞免费鲁丝片| 欧美亚洲日本最大视频资源| 欧美精品一区二区大全| 国产1区2区3区精品| 午夜免费观看性视频| 99久久精品国产亚洲精品| 国产亚洲一区二区精品| 满18在线观看网站| 国产成人精品久久二区二区免费| 亚洲第一青青草原| 人妻久久中文字幕网| 国产深夜福利视频在线观看| 久久精品亚洲av国产电影网| 欧美性长视频在线观看| 黑丝袜美女国产一区| 亚洲av片天天在线观看| 一个人免费在线观看的高清视频 | 午夜福利影视在线免费观看| 亚洲,欧美精品.| 18禁裸乳无遮挡动漫免费视频| 美女视频免费永久观看网站| 亚洲黑人精品在线| 在线观看免费高清a一片| kizo精华| 午夜激情久久久久久久| 国产精品影院久久| 国产色视频综合| 欧美日韩av久久| 亚洲九九香蕉| 中文字幕av电影在线播放| 1024香蕉在线观看| 自拍欧美九色日韩亚洲蝌蚪91| 丝瓜视频免费看黄片| 久久精品亚洲av国产电影网| 曰老女人黄片| 日韩欧美免费精品| 午夜福利视频精品| 久久中文看片网| www.精华液| 国产精品麻豆人妻色哟哟久久| 99热国产这里只有精品6| 国产日韩欧美视频二区| 国产成人精品久久二区二区91| 王馨瑶露胸无遮挡在线观看| 久久久久精品人妻al黑| 国产人伦9x9x在线观看| 美女中出高潮动态图| 色婷婷av一区二区三区视频| 久久久久久久大尺度免费视频| 国产成人影院久久av| 亚洲国产精品成人久久小说| 肉色欧美久久久久久久蜜桃| 美女福利国产在线| 十八禁网站免费在线| 丰满迷人的少妇在线观看| 亚洲国产毛片av蜜桃av| 日韩制服骚丝袜av| 欧美日韩亚洲高清精品| 国产欧美日韩一区二区精品| 97精品久久久久久久久久精品| 男女免费视频国产| 国产亚洲精品一区二区www | 法律面前人人平等表现在哪些方面 | 亚洲视频免费观看视频| 国产男女内射视频| 在线观看一区二区三区激情| 日本撒尿小便嘘嘘汇集6| 欧美+亚洲+日韩+国产| 精品国产乱码久久久久久小说| 婷婷成人精品国产| 国产av又大| 一区二区三区激情视频| 久久精品亚洲av国产电影网| 亚洲精品第二区| 国产精品久久久久久人妻精品电影 | 国产精品偷伦视频观看了| 精品少妇一区二区三区视频日本电影| 啪啪无遮挡十八禁网站| 亚洲一区中文字幕在线| 在线看a的网站| 国产精品熟女久久久久浪| 男女之事视频高清在线观看| 夜夜骑夜夜射夜夜干| 国产精品免费大片| 一区二区日韩欧美中文字幕| √禁漫天堂资源中文www| 久久狼人影院| 多毛熟女@视频| 午夜福利一区二区在线看| 久久久久精品国产欧美久久久 | 国产有黄有色有爽视频| 女人爽到高潮嗷嗷叫在线视频| 精品久久久久久久毛片微露脸 | 婷婷成人精品国产| 青草久久国产| 亚洲三区欧美一区| 亚洲精品久久久久久婷婷小说| 久热爱精品视频在线9| 狠狠狠狠99中文字幕| 美国免费a级毛片| 久久人妻福利社区极品人妻图片| 亚洲专区字幕在线| 亚洲欧美一区二区三区黑人| 老司机亚洲免费影院| 高清黄色对白视频在线免费看| 日韩免费高清中文字幕av| 日韩欧美免费精品| 欧美日韩国产mv在线观看视频| 亚洲人成77777在线视频| 精品久久久精品久久久| 久久人妻福利社区极品人妻图片| 午夜福利影视在线免费观看| 肉色欧美久久久久久久蜜桃| 亚洲va日本ⅴa欧美va伊人久久 | 日本wwww免费看| 国产野战对白在线观看| 老司机午夜福利在线观看视频 | 国产精品熟女久久久久浪| 精品福利永久在线观看| 亚洲精品第二区| 制服诱惑二区| 韩国精品一区二区三区| 性少妇av在线| 国产在线观看jvid|