張建龍,莊晏榕,周 康,滕光輝
基于機(jī)器視覺(jué)的育肥豬分群系統(tǒng)設(shè)計(jì)與試驗(yàn)
張建龍,莊晏榕,周 康,滕光輝※
(1.中國(guó)農(nóng)業(yè)大學(xué)水利與土木工程學(xué)院,北京 100083;2. 中國(guó)農(nóng)業(yè)大學(xué)農(nóng)業(yè)農(nóng)村部設(shè)施農(nóng)業(yè)工程重點(diǎn)實(shí)驗(yàn)室,北京 100083)
為控制育肥豬出欄時(shí)的體質(zhì)量差異,該研究開(kāi)發(fā)了一套基于機(jī)器視覺(jué)技術(shù)的育肥豬分群系統(tǒng),該系統(tǒng)通過(guò)機(jī)器視覺(jué)技術(shù)和卷積神經(jīng)網(wǎng)絡(luò)模型代替?zhèn)鹘y(tǒng)地磅對(duì)豬只體質(zhì)量進(jìn)行估測(cè),可有效避免糞污對(duì)設(shè)備精度的影響及腐蝕;以前一天全部豬只體質(zhì)量數(shù)據(jù)從小到大排列的第30%個(gè)數(shù)據(jù)作為當(dāng)日的分群基準(zhǔn)質(zhì)量,將大于等于基準(zhǔn)質(zhì)量的視為長(zhǎng)勢(shì)較快的豬只,小于基準(zhǔn)質(zhì)量的視為長(zhǎng)勢(shì)較慢的豬只,每次采食按照豬只長(zhǎng)勢(shì)快慢分為2群進(jìn)行飼喂;該系統(tǒng)依托于LabVIEW軟件開(kāi)發(fā)平臺(tái)和物聯(lián)網(wǎng)系統(tǒng)構(gòu)建,平均每頭豬只通過(guò)系統(tǒng)時(shí)間為6.2 s。為驗(yàn)證該系統(tǒng)的實(shí)際應(yīng)用效果開(kāi)展了為期30 d的現(xiàn)場(chǎng)試驗(yàn),將飼喂于裝有分群系統(tǒng)豬欄中的120頭長(zhǎng)白育肥豬作為試驗(yàn)組,由分群系統(tǒng)按豬只長(zhǎng)勢(shì)快慢分群飼喂;將飼喂于傳統(tǒng)豬欄中的120頭長(zhǎng)白育肥豬作為對(duì)照組,按照傳統(tǒng)人工調(diào)欄的方式進(jìn)行飼喂。試驗(yàn)開(kāi)始時(shí)試驗(yàn)組和對(duì)照組豬只平均體質(zhì)量分別為32.21、31.76 kg,標(biāo)準(zhǔn)差分為別2.61和2.49 kg;結(jié)束時(shí)試驗(yàn)組和對(duì)照組豬只平均體質(zhì)量分別為57.68、57.41 kg,標(biāo)準(zhǔn)差分為別5.26和5.51 kg,總料肉比分別為2.31和2.34,期間試驗(yàn)組豬只體質(zhì)量的標(biāo)準(zhǔn)差小于對(duì)照組,但是2組豬只平均體質(zhì)量、標(biāo)準(zhǔn)差、總料肉比均不存在顯著差異,表明采用該系統(tǒng)對(duì)豬只進(jìn)行分群飼喂控制豬只體質(zhì)量差異效果等同于人工調(diào)欄,同時(shí)可以節(jié)省人力成本,緩解農(nóng)業(yè)勞動(dòng)力短缺的壓力。該研究也可為母豬飼喂站、種豬測(cè)定站等智能化養(yǎng)豬設(shè)備的研發(fā)提供參考。
機(jī)器視覺(jué);動(dòng)物;育肥豬;LabVIEW;分群系統(tǒng)
目前,在規(guī)?;守i飼養(yǎng)過(guò)程中,為了提高出欄的體質(zhì)量達(dá)標(biāo)率并解決豬群等級(jí)秩序引發(fā)的相關(guān)問(wèn)題,由飼養(yǎng)員定期對(duì)豬群進(jìn)行人工調(diào)整與分欄,為長(zhǎng)勢(shì)較慢的豬只提供適宜的采食環(huán)境,從而加快其生長(zhǎng)速度,減小出欄時(shí)豬只之間的體質(zhì)量差異。然而,人工調(diào)整與分欄的過(guò)程勞動(dòng)強(qiáng)度較大,對(duì)豬只也會(huì)產(chǎn)生一定的應(yīng)激反應(yīng)。此外,重新建立的豬群等級(jí)的過(guò)程會(huì)再次引發(fā)等級(jí)秩序問(wèn)題[10-11],影響生產(chǎn)效益的同時(shí)也違背了動(dòng)物福利的要求[12-13]。因此,規(guī)?;守i養(yǎng)殖生產(chǎn)過(guò)程中迫切需要智能、自動(dòng)分群系統(tǒng)對(duì)豬群在采食過(guò)程中進(jìn)行及時(shí)的分群、并群管理,是采用全進(jìn)全出飼養(yǎng)工藝提高出欄體質(zhì)量達(dá)標(biāo)率的重要保證。
隨著數(shù)字化、自動(dòng)化、智能化技術(shù)在農(nóng)業(yè)領(lǐng)域的發(fā)展與應(yīng)用,國(guó)內(nèi)外許多公司和科研人員已經(jīng)開(kāi)始研發(fā)育肥豬分群管理設(shè)備。荷蘭睿保樂(lè)公司(Nadaq)研發(fā)了育肥豬分欄管理系統(tǒng),該系統(tǒng)采用地磅獲取育肥豬只體質(zhì)量,可以幫助豬場(chǎng)管理者關(guān)注到每頭豬的生長(zhǎng)狀況。德國(guó)大荷蘭人公司(Big Dutchman)生產(chǎn)的TriSortpro分群系統(tǒng)采用射頻識(shí)別技術(shù)(Radio Frequency Identification, RFID)技術(shù)對(duì)豬只身份進(jìn)行識(shí)別,同樣以地磅獲取的豬只體質(zhì)量作為分群的依據(jù),可以管理200~400頭育肥豬。飼養(yǎng)過(guò)程中可以標(biāo)出過(guò)肥或過(guò)瘦的豬只,并給達(dá)到出欄標(biāo)準(zhǔn)的豬只噴涂顏色后進(jìn)行自動(dòng)分離,有效地降低了勞動(dòng)強(qiáng)度。段棟梁等[14]開(kāi)發(fā)了一款將測(cè)量豬只體質(zhì)量與識(shí)別技術(shù)相結(jié)合的育肥豬智能分群系統(tǒng)。該系統(tǒng)通過(guò)光電傳感器檢測(cè)豬只進(jìn)出,采用地秤和RFID閱讀器來(lái)獲取豬只體質(zhì)量及身份數(shù)據(jù),并以此為依據(jù)分配不同的通道進(jìn)行分群。強(qiáng)志銳[15]研發(fā)設(shè)計(jì)的育肥豬分群飼喂系統(tǒng)與段棟梁等的智能分群系統(tǒng)工作原理相同,但是可以將豬群按照體質(zhì)量分為3類。曲申生等[16]設(shè)計(jì)了一種生豬分群智能飼喂設(shè)備,該設(shè)備配備有智能豬只體質(zhì)量獲取設(shè)備、智能飲水計(jì)量設(shè)備和智能喂料設(shè)備,可以記錄豬只采食量、飲水量及體質(zhì)量數(shù)據(jù)。
從以上研究來(lái)看,現(xiàn)有分群設(shè)備大多通過(guò)地磅獲取豬只體質(zhì)量數(shù)據(jù),然而,地磅的使用壽命與測(cè)量精度較易受到糞污的影響,且缺乏對(duì)豬群整齊度影響的研究。因此,國(guó)內(nèi)外學(xué)者展開(kāi)了基于機(jī)器視覺(jué)技術(shù)的豬只體質(zhì)量預(yù)估研究,預(yù)估的流程是通過(guò)獲取豬只圖像后,從圖像中提取豬只體尺、背部面積等信息,并以此作為參數(shù)建立豬只體質(zhì)量估測(cè)模型[17-25],也有研究采用橢圓擬合的方式探索豬只體質(zhì)量與橢圓參數(shù)之間的關(guān)系[26]。針對(duì)以上問(wèn)題,本研究開(kāi)發(fā)了一套基于機(jī)器視覺(jué)技術(shù)的育肥豬分群系統(tǒng),系統(tǒng)中采用卷積神經(jīng)網(wǎng)絡(luò)以端到端的方式估測(cè)豬只體質(zhì)量,以前一天全部體質(zhì)量數(shù)據(jù)從小到大排列后的第30%個(gè)數(shù)作為當(dāng)日的分群基準(zhǔn)質(zhì)量并在商業(yè)豬場(chǎng)開(kāi)展試驗(yàn),以期在控制育肥豬體質(zhì)量差異的同時(shí)減小飼養(yǎng)員的勞動(dòng)強(qiáng)度,避免調(diào)欄過(guò)程中引起豬只的應(yīng)激,為提高規(guī)?;B(yǎng)殖場(chǎng)的自動(dòng)化水平提供參考。
在本研究中設(shè)計(jì)的分群系統(tǒng)結(jié)構(gòu)圖和結(jié)構(gòu)簡(jiǎn)圖分別如圖1a、1b所示,系統(tǒng)窄的一端為入口,寬的一端為出口,出口處有2個(gè)通道,綜合考慮育肥豬體長(zhǎng)、體寬參數(shù)后將系統(tǒng)兩道氣動(dòng)門(mén)之間的長(zhǎng)度、通道寬度分別設(shè)計(jì)為1 500、500 mm。該系統(tǒng)采用多個(gè)光電傳感器檢測(cè)豬只在系統(tǒng)中的位置,使用2D相機(jī)獲取豬只背部圖像,通過(guò)分選門(mén)和氣動(dòng)門(mén)a、b配合引導(dǎo)豬只按照長(zhǎng)勢(shì)快慢分別進(jìn)入FP、SP兩個(gè)不同的采食區(qū)域,控制系統(tǒng)布置于豬舍外以防止舍內(nèi)粉塵、高濕環(huán)境及有害氣體的腐蝕。
下面結(jié)合圖1c,以長(zhǎng)勢(shì)較慢的豬只通過(guò)分群系統(tǒng)為例進(jìn)一步說(shuō)明該系統(tǒng)運(yùn)行過(guò)程:默認(rèn)狀態(tài)下,位于入口處的氣動(dòng)門(mén)a打開(kāi),氣動(dòng)門(mén)b關(guān)閉;每當(dāng)有豬進(jìn)入系統(tǒng)時(shí),安裝在入口處的光電傳感器a會(huì)被觸發(fā),氣動(dòng)門(mén)a關(guān)閉。光電傳感器和2個(gè)氣動(dòng)門(mén)的設(shè)置可以保證系統(tǒng)每次僅允許通過(guò)一頭豬。當(dāng)豬只運(yùn)動(dòng)到攝像頭正下方,安裝在相機(jī)下方稍微向前的光電傳感器b會(huì)被觸發(fā),此時(shí)系統(tǒng)控制相機(jī)獲取豬只背部圖像,同時(shí)根據(jù)圖像對(duì)豬只體質(zhì)量進(jìn)行估測(cè)并存入數(shù)據(jù)庫(kù),隨后將估測(cè)結(jié)果和分群基準(zhǔn)質(zhì)量對(duì)比判斷豬只長(zhǎng)勢(shì)快慢;長(zhǎng)勢(shì)判斷完畢后,分選門(mén)動(dòng)作開(kāi)啟通往SP采食區(qū)的通道,氣動(dòng)門(mén)b開(kāi)啟,使豬只可以通過(guò)通道進(jìn)入到SP采食區(qū)域進(jìn)行采食;當(dāng)豬只離開(kāi)分群系統(tǒng)后,會(huì)觸發(fā)光電傳感器c,隨后系統(tǒng)返回其默認(rèn)狀態(tài),氣動(dòng)門(mén)a打開(kāi),氣動(dòng)門(mén)b關(guān)閉,等待下一頭豬進(jìn)入。同理,長(zhǎng)勢(shì)較快的豬只通過(guò)分群系統(tǒng)后進(jìn)入到FP采食區(qū)域。
1.氣動(dòng)門(mén)a 2.光電傳感器a 3.相機(jī) 4.光電傳感器b 5.氣動(dòng)門(mén)b 6.光電傳感器c 7.分選門(mén) 8.單向門(mén) 9.光電傳感器d
該分群系統(tǒng)基于LabVIEW軟件開(kāi)發(fā)平臺(tái)和物聯(lián)網(wǎng)開(kāi)發(fā),LabVIEW中的機(jī)器視覺(jué)模塊可以很方便地被調(diào)用,從而使分群系統(tǒng)控制變得高效便捷,同時(shí)可以實(shí)現(xiàn)遠(yuǎn)程控制,其控制方案如圖2所示。
系統(tǒng)中由以太網(wǎng)采集模塊阿爾泰DAM-E3024采集光電傳感器信號(hào)并控制氣動(dòng)門(mén)動(dòng)作,該模塊具有6路隔離數(shù)字量輸入和6路繼電器輸出;使用像素分辨率為1294×964的Basler acA-1300-30gc工業(yè)相機(jī)獲取豬只背部圖像;采用MySQL數(shù)據(jù)庫(kù)為數(shù)據(jù)存儲(chǔ)數(shù)據(jù)庫(kù),同時(shí)采用LabVIEW Database Connectivity Toolkit和開(kāi)放數(shù)據(jù)庫(kù)互聯(lián)(Open Database Connectivity, ODBC)進(jìn)行數(shù)據(jù)庫(kù)的操作;所有的數(shù)據(jù)均通過(guò)以太網(wǎng)交換機(jī)傳輸至服務(wù)器中進(jìn)行處理,同時(shí)將服務(wù)器的指令傳輸至執(zhí)行模塊完成分群過(guò)程。
1.5統(tǒng)計(jì)學(xué)方法將本次研究的所有臨床細(xì)菌的合格數(shù)均做好記錄,并建立數(shù)據(jù)庫(kù),對(duì)細(xì)菌的合格率進(jìn)行分析統(tǒng)計(jì)。采用SPSS17.0統(tǒng)計(jì)學(xué)軟件進(jìn)行統(tǒng)計(jì)處理。計(jì)數(shù)資料以率(%)表示,實(shí)施χ2檢驗(yàn)。P<0.05表示差異有統(tǒng)計(jì)學(xué)意義。
圖2 控制系統(tǒng)示意圖
由于舍內(nèi)糞污和高濕環(huán)境會(huì)對(duì)地磅造成腐蝕,且現(xiàn)有豬只體質(zhì)量估測(cè)技術(shù)難以實(shí)現(xiàn)實(shí)時(shí)運(yùn)行,而卷積神經(jīng)網(wǎng)絡(luò)具有可以擬合任何輸入輸出間關(guān)系的強(qiáng)大能力,同時(shí)其處理速度非??臁T诜秩合到y(tǒng)工作過(guò)程中,為保證豬只通行效率,對(duì)豬只體質(zhì)量獲取速度要求高,因此該系統(tǒng)中采用卷積神經(jīng)網(wǎng)絡(luò)模型以分類的方式對(duì)豬只體質(zhì)量進(jìn)行估測(cè)。
該研究中使用的卷積神經(jīng)網(wǎng)絡(luò)模型可對(duì)25~102 kg范圍內(nèi)的豬只體質(zhì)量進(jìn)行估測(cè),其輸入為200×100像素大小的豬只背部圖像,包含78路輸出,每路輸出估測(cè)范圍為1 kg,分別對(duì)應(yīng)著25~26 kg,…,>101~102 kg范圍內(nèi)的豬只體質(zhì)量。該神經(jīng)網(wǎng)絡(luò)包含4個(gè)卷積層、4個(gè)池化層和3個(gè)全連接層:前2個(gè)卷積層的卷積核大小為5×5,后2個(gè)卷積層的卷積核大小為3×3;池化層均采用最大池化,池化核和步長(zhǎng)均為2;前2個(gè)全連接層均包含4096個(gè)通道,第3層包含78個(gè)通道,執(zhí)行78個(gè)豬只體質(zhì)量類別的輸出。除輸出層采用了softmax函數(shù)外,為增加模型的非線性性,其他卷積層和全連接層均使用ReLU函數(shù)。為防止過(guò)擬合,3個(gè)全連接層均添加了權(quán)重衰減懲罰項(xiàng),該項(xiàng)系數(shù)為0.1;并且前2個(gè)全連接層使用了dropout正則化(dropout率為0.3)。
該研究開(kāi)始前,共獲取了150頭25~102 kg范圍內(nèi)長(zhǎng)白育肥豬的44 600組豬只背部圖像與豬只體質(zhì)量數(shù)據(jù),隨機(jī)選用其中75頭豬的23 100組數(shù)據(jù)訓(xùn)練和測(cè)試了模型的估測(cè)效果,模型訓(xùn)練的過(guò)程中使用自適應(yīng)矩估計(jì)(Adam)優(yōu)化器優(yōu)化稀疏softmax交叉熵函數(shù),訓(xùn)練時(shí)學(xué)習(xí)率設(shè)為0.001,每次訓(xùn)練的批次大小為64;使用另外75頭豬的21 500組數(shù)據(jù)考察了模型的泛化能力,結(jié)果表明,該模型估測(cè)準(zhǔn)確率為93%,平均每張圖像估測(cè)時(shí)間0.16 s,可以應(yīng)用于分群系統(tǒng)對(duì)處理速度要求嚴(yán)格的場(chǎng)合。模型特征圖可視化的結(jié)果表明豬只輪廓區(qū)域被激活,并且過(guò)濾掉了背景,進(jìn)一步證明模型是根據(jù)豬只輪廓大小和形狀對(duì)豬只體質(zhì)量進(jìn)行估測(cè)。育肥豬分群試驗(yàn)中,所選豬只品種相同,體型一致,并且由于相機(jī)高度固定,即使遇到體長(zhǎng)相近,體高較大的豬只,該豬只的背部圖像中的輪廓面積也會(huì)較大,從而獲得較大的估測(cè)結(jié)果,降低估測(cè)差,因此本文中使用的2D相機(jī)也可以取得良好的估測(cè)效果。
該研究中,由于工業(yè)相機(jī)獲取的原始圖像為1 294×964像素,在輸入神經(jīng)網(wǎng)絡(luò)前,需要將原始圖像處理200×100像素大小。具體過(guò)程為:先在原始圖像中以1 200×600大小截取豬只區(qū)域,而后處理為200×100像素大小的圖像作為模型輸入對(duì)豬只體質(zhì)量進(jìn)行估測(cè),該過(guò)程如圖3所示。
圖3 豬只體質(zhì)量估測(cè)原理
如前文所述,分群系統(tǒng)對(duì)每頭豬每次進(jìn)行體質(zhì)量估測(cè)后,會(huì)將估測(cè)的結(jié)果存入數(shù)據(jù)庫(kù)。每天的零點(diǎn),分群系統(tǒng)會(huì)自動(dòng)查閱數(shù)據(jù)庫(kù)中整個(gè)豬群前一天的全部豬只體質(zhì)量數(shù)據(jù),將這些數(shù)據(jù)從小到大排列后,以取整后的第30%個(gè)數(shù)為分群中值,也就是當(dāng)日的分群基準(zhǔn)質(zhì)量,其計(jì)算方法如公式(1)和(2)
=(i)(1)
=[×30%](2)
式中為前一天總數(shù)據(jù)個(gè)數(shù),為取整后的第30%個(gè)數(shù),(i)為從小到大排列后的體質(zhì)量數(shù)據(jù),為分群基準(zhǔn)質(zhì)量。將大于等于分群基準(zhǔn)質(zhì)量的視為長(zhǎng)勢(shì)較快的豬只,小于分群基準(zhǔn)質(zhì)量的視為長(zhǎng)勢(shì)較慢的豬只。分群流程如圖4所示。
圖4 分群系統(tǒng)工作流程圖
如圖5所示,裝有分群系統(tǒng)的豬舍被劃分為躺臥區(qū)、FP采食區(qū)以及SP采食區(qū),3個(gè)區(qū)域通過(guò)分群系統(tǒng)和單向門(mén)相連。躺臥區(qū)域配備有玩具球供豬只玩耍,用以避免大群飼養(yǎng)中豬只的打斗,同時(shí)提高動(dòng)物福利。單向門(mén)的設(shè)置可以保證豬只每次采食時(shí)必須先通過(guò)分群系統(tǒng),由分群系統(tǒng)對(duì)其進(jìn)行體質(zhì)量估測(cè)和長(zhǎng)勢(shì)進(jìn)行判定后進(jìn)入相應(yīng)的采食區(qū)域。采食結(jié)束后,豬只經(jīng)過(guò)單向門(mén)進(jìn)入躺臥區(qū)域飲水、躺臥或玩耍。這樣就可以給長(zhǎng)勢(shì)較慢的豬只創(chuàng)造一個(gè)相對(duì)緩和的采食環(huán)境,減少采食過(guò)程中長(zhǎng)勢(shì)較快的豬只對(duì)長(zhǎng)勢(shì)較慢的攻擊,同時(shí)可以給長(zhǎng)勢(shì)較慢的豬只增強(qiáng)營(yíng)養(yǎng),從而提高育肥豬出欄時(shí)的整齊度,減小其體質(zhì)量差異。
圖5 分群系統(tǒng)工作原理
育肥豬分群系統(tǒng)的控制程序和人機(jī)界面采用LabVIEW V18.0進(jìn)行編寫(xiě),圖像處理及豬只體質(zhì)量估測(cè)模塊由LabVIEW中自帶的python節(jié)點(diǎn)導(dǎo)入。最終設(shè)計(jì)的人機(jī)界面如圖6所示,系統(tǒng)右側(cè)用于顯示豬只在系統(tǒng)中所處的位置,同時(shí)可以手動(dòng)控制氣動(dòng)門(mén)和分選門(mén)的動(dòng)作;系統(tǒng)中部用于顯示獲取的豬只背部圖像;系統(tǒng)左側(cè)顯示豬只體質(zhì)量預(yù)估結(jié)果以及與分群基準(zhǔn)質(zhì)量對(duì)比后豬只長(zhǎng)勢(shì)快慢的判斷結(jié)果。
圖6 分群系統(tǒng)人機(jī)界面
試驗(yàn)場(chǎng)地:2019年2月于山東榮昌育種有限公司一棟生長(zhǎng)育肥豬舍搭建了分群系統(tǒng),該舍長(zhǎng)、寬、高分別為50、8.7、5.4 m,被劃分為12欄,每欄長(zhǎng)×寬為7.5 m×3.95 m,豬欄高0.9 m,每欄可容納育肥豬30頭,整棟豬舍可容納360頭。試驗(yàn)選取其中連續(xù)的4欄合并后搭建了育肥豬分群系統(tǒng)作為試驗(yàn)組,從剩余豬欄中選取了連續(xù)4欄按照原有方式飼喂作為對(duì)照組,改造后的現(xiàn)場(chǎng)照片及試驗(yàn)組對(duì)照組設(shè)置情況如圖7所示。
試驗(yàn)對(duì)象:本試驗(yàn)以240頭長(zhǎng)白育肥豬為研究對(duì)象,隨機(jī)選取其中120頭飼喂于改造后裝有分群系統(tǒng)的試驗(yàn)組,剩余120頭按照原有生產(chǎn)方式飼養(yǎng)在對(duì)照組。試驗(yàn)開(kāi)始時(shí)豬只日齡為70~75 d,試驗(yàn)過(guò)程中所有豬只遵循公司免疫程序,分別于80、100日齡接種了偽狂犬、手足口病疫苗。
圖7 改造后的豬舍結(jié)構(gòu)
試驗(yàn)過(guò)程:分群設(shè)備搭建好后,對(duì)豬舍進(jìn)行了為期一周的消毒空置,其后于2019年3月1日—2019年3月30日開(kāi)展了試驗(yàn)。試驗(yàn)組豬只試驗(yàn)前5天為訓(xùn)練適應(yīng)期,此階段分群系統(tǒng)不工作,各個(gè)氣動(dòng)門(mén)開(kāi)啟,由飼養(yǎng)員引導(dǎo)豬只通過(guò)分群系統(tǒng)進(jìn)入采食區(qū)域進(jìn)行采食。訓(xùn)練適應(yīng)期過(guò)后分群系統(tǒng)工作,豬只每次采食時(shí)先由分群系統(tǒng)進(jìn)行體質(zhì)量估測(cè),隨后與當(dāng)日的分群基準(zhǔn)質(zhì)量對(duì)比判斷該豬只長(zhǎng)勢(shì)快慢而后豬只進(jìn)入相應(yīng)采食區(qū)域采食,整個(gè)豬群被分2群。對(duì)照組豬只采用傳統(tǒng)飼養(yǎng)方式,每周由飼養(yǎng)員進(jìn)入到豬舍進(jìn)行調(diào)欄,使得每欄中的豬只長(zhǎng)勢(shì)趨于一致,試驗(yàn)期間共調(diào)欄4次。
試驗(yàn)過(guò)程中采用人工投喂的方式對(duì)兩組豬只進(jìn)行飼喂,所投喂的飼料均為本公司產(chǎn)的袋裝飼料,每袋40 kg,2組豬只均采用不限飼的飼喂方式,每天投喂3次,時(shí)間分別為7:00、11:00和15:30,每天早上飼喂時(shí)都須將前一天的剩余飼料清除,每次投喂時(shí)均記錄2組豬只每天的飼料消耗量。試驗(yàn)期間豬舍的平均溫度為25.2 ℃(范圍:22.3~27.3 ℃),相對(duì)濕度為39%~57%(平均值:47%)。
試驗(yàn)過(guò)程中獲取了試驗(yàn)組豬只每天的豬只體質(zhì)量數(shù)據(jù),并于試驗(yàn)開(kāi)始時(shí)、第10天、第20天以及結(jié)束時(shí),測(cè)量并記錄了對(duì)照組每頭豬只的體質(zhì)量數(shù)據(jù),同時(shí)按公式(3)計(jì)算2組豬只總體料肉比(Feed Conversion Ratio, FCR):
本研究以豬只體質(zhì)量為主要考察指標(biāo),以體質(zhì)量均值(Mean Weight,MW)和標(biāo)準(zhǔn)差(Standard Deviation, SD)為豬群生長(zhǎng)狀況和體質(zhì)量差異大小的判別標(biāo)準(zhǔn),試驗(yàn)開(kāi)始和結(jié)束時(shí)試驗(yàn)組、對(duì)照組豬只體質(zhì)量數(shù)據(jù)、料肉比如表1所示,可以看出:試驗(yàn)開(kāi)始時(shí),試驗(yàn)組豬只平均體質(zhì)量高于對(duì)照組0.45 kg,對(duì)2組豬只體質(zhì)量數(shù)據(jù)做方差齊性檢驗(yàn),=1.095<0.05(119,119)=1.35,>0.05,表明試驗(yàn)開(kāi)始時(shí)2組豬只體質(zhì)量的標(biāo)準(zhǔn)差無(wú)顯著差異。隨后對(duì)試驗(yàn)開(kāi)始時(shí)2組豬只體質(zhì)量的均值做檢驗(yàn)分析,結(jié)果=1.38<0.05(119)=1.97,>0.05,表明試驗(yàn)開(kāi)始時(shí)2組豬只體質(zhì)量不存在顯著的差異。試驗(yàn)結(jié)束時(shí),試驗(yàn)組豬只平均體質(zhì)量比對(duì)照組高0.27 kg,同樣對(duì)2組豬只體質(zhì)量數(shù)據(jù)做方差齊性檢驗(yàn),=1.098<0.05(119,119)=1.35,>0.05,表明試驗(yàn)結(jié)束時(shí)2組豬只體質(zhì)量的標(biāo)準(zhǔn)差無(wú)顯著差異。隨后對(duì)試驗(yàn)結(jié)束時(shí)2組豬只體質(zhì)量的均值做檢驗(yàn)分析,結(jié)果=0.37<0.05(119)=1.97,>0.05,表明試驗(yàn)結(jié)束時(shí)2組豬只體質(zhì)量也不存在顯著的差異。試驗(yàn)期間,試驗(yàn)組豬只平均體質(zhì)量增加25.47 kg,較對(duì)照組低0.18 kg,差異不顯著;試驗(yàn)組豬只總體料肉比為2.31,低于對(duì)照組,但差異不顯著。
表1 兩組豬只生長(zhǎng)狀況對(duì)比
注:同列不同字母表示差異顯著(0.05)。
Note: The different letter in same column indicated that the difference between two groups was significant (0.05).
試驗(yàn)期間系統(tǒng)每天的分群基準(zhǔn)質(zhì)量變化以及2組豬只體質(zhì)量標(biāo)準(zhǔn)差變化如圖8所示。試驗(yàn)過(guò)程中分群基準(zhǔn)質(zhì)量隨著豬只生長(zhǎng)呈直線上升的趨勢(shì),由于分群基準(zhǔn)質(zhì)量的選取為前一天全部數(shù)據(jù)從小到大排列后取整的第30%個(gè)數(shù),因此每天被確定為長(zhǎng)勢(shì)較慢豬只的數(shù)量基本不變。2組豬只的體質(zhì)量標(biāo)準(zhǔn)差均呈上升趨勢(shì),試驗(yàn)剛開(kāi)始時(shí),由于試驗(yàn)組豬只在適應(yīng)階段,分群系統(tǒng)未工作,因此試驗(yàn)組豬只體質(zhì)量的標(biāo)準(zhǔn)差增長(zhǎng)速度較對(duì)照組豬只快。分群系統(tǒng)開(kāi)始工作后,試驗(yàn)組豬只標(biāo)準(zhǔn)差增長(zhǎng)速度逐漸減小,到試驗(yàn)結(jié)束時(shí)試驗(yàn)組豬只標(biāo)準(zhǔn)差已經(jīng)小于對(duì)照組,但差異不顯著。
試驗(yàn)結(jié)束時(shí)2組豬只體質(zhì)量分布情況如圖9所示:在體質(zhì)量范圍>55~60、>60~65、>65~70 kg內(nèi)的豬只數(shù)量幾乎相同,但是在45~50 kg范圍內(nèi),試驗(yàn)組豬只數(shù)量少于對(duì)照組。
圖8 分群基準(zhǔn)質(zhì)量及豬只體質(zhì)量標(biāo)準(zhǔn)差變化
注:兩組豬只體質(zhì)量總體分布不存在顯著差異(P>0.05)。
在試驗(yàn)期間,試驗(yàn)組豬只體質(zhì)量標(biāo)準(zhǔn)差增長(zhǎng)趨勢(shì)小于對(duì)照組且在結(jié)束時(shí)長(zhǎng)勢(shì)較慢豬只的數(shù)量少于對(duì)照組的原因可能是在對(duì)照組中,為使每欄豬只體質(zhì)量趨于一致,由飼養(yǎng)員每周進(jìn)入豬欄調(diào)欄,將每欄中長(zhǎng)勢(shì)較差豬只挑出后重新歸為新的一欄飼養(yǎng),試驗(yàn)期間共進(jìn)行了4次調(diào)欄。每次調(diào)欄時(shí)飼養(yǎng)員進(jìn)入豬欄對(duì)豬只進(jìn)行追捕,給豬只帶來(lái)不少應(yīng)激,甚至導(dǎo)致豬只采食量下降,勞動(dòng)強(qiáng)度也大。調(diào)欄后豬群需要重新確立等級(jí)關(guān)系,此過(guò)程中打斗現(xiàn)象嚴(yán)重,等級(jí)關(guān)系確立后豬只往往皮膚損傷嚴(yán)重,也影響到了豬只增重。而試驗(yàn)組的豬只群體一旦確定后則不再變化,無(wú)需重新確立等級(jí)關(guān)系,通過(guò)分群系統(tǒng)進(jìn)行分群免去了飼養(yǎng)員給豬只造成的應(yīng)激。此外,由于試驗(yàn)組布置有玩具球,也大大減少了試驗(yàn)過(guò)程中的打斗次數(shù)。
由以上結(jié)果可以得出,試驗(yàn)組和對(duì)照組豬只在試驗(yàn)開(kāi)始和結(jié)束時(shí)體質(zhì)量的標(biāo)準(zhǔn)差、均值均不存在顯著差異,總體料肉比也近乎一致,且試驗(yàn)組中長(zhǎng)勢(shì)較慢豬只的數(shù)量少于對(duì)照組,說(shuō)明基于機(jī)器視覺(jué)技術(shù)的育肥豬分群系統(tǒng)可以同人工調(diào)欄一樣控制豬只體質(zhì)量差異,并能代替飼養(yǎng)員完成育肥豬調(diào)欄過(guò)程,減小飼養(yǎng)員勞動(dòng)強(qiáng)度,進(jìn)而避免了調(diào)欄過(guò)程中給豬只帶來(lái)的應(yīng)激。本研究中開(kāi)發(fā)的分群系統(tǒng)處理速度快,響應(yīng)時(shí)間短,豬只通過(guò)系統(tǒng)的時(shí)間主要取決于豬只行走速度,豬只平均通過(guò)時(shí)間為6.2 s。
本文針對(duì)基于機(jī)器視覺(jué)技術(shù)的育肥豬分群系統(tǒng)進(jìn)行了設(shè)計(jì)并開(kāi)展了現(xiàn)場(chǎng)試驗(yàn),得出以下結(jié)論:
1)基于LabVIEW開(kāi)發(fā)平臺(tái)和機(jī)器視覺(jué)技術(shù)開(kāi)發(fā)了育肥豬分群系統(tǒng),該系統(tǒng)中通過(guò)卷積神經(jīng)網(wǎng)絡(luò)對(duì)豬只體質(zhì)量進(jìn)行估測(cè),以整個(gè)豬群前一天的全部豬只體質(zhì)量數(shù)據(jù)從小到大排列后取整的第30%個(gè)數(shù)為分群基準(zhǔn)質(zhì)量,于每次采食前對(duì)豬只按照長(zhǎng)勢(shì)快慢進(jìn)行分群,豬只平均通過(guò)系統(tǒng)時(shí)間為6.2 s。
2)在商業(yè)豬場(chǎng)開(kāi)展現(xiàn)場(chǎng)試驗(yàn)對(duì)分群系統(tǒng)的效果進(jìn)行了驗(yàn)證,以240頭長(zhǎng)白育肥豬為研究對(duì)象,隨機(jī)挑選120頭飼養(yǎng)于改造后裝有分群系統(tǒng)的試驗(yàn)組,剩余120頭作為對(duì)照組飼養(yǎng)于傳統(tǒng)飼喂方式的豬欄中。試驗(yàn)剛開(kāi)始時(shí)兩組豬只的長(zhǎng)勢(shì)一致,試驗(yàn)初期由于試驗(yàn)組豬只處于適應(yīng)階段,分群系統(tǒng)未開(kāi)啟,其體質(zhì)量標(biāo)準(zhǔn)差增長(zhǎng)速度較對(duì)照組快,分群系統(tǒng)工作后其標(biāo)準(zhǔn)差增長(zhǎng)速度較對(duì)照組慢。試驗(yàn)結(jié)束時(shí),試驗(yàn)組豬只體質(zhì)量均值為57.68 kg,大于對(duì)照組的57.41 kg,標(biāo)準(zhǔn)差為5.26 kg,小于對(duì)照組的5.51 kg,長(zhǎng)勢(shì)較慢豬只的數(shù)量也少于對(duì)照組,但均不存在顯著差異,表明采用基于機(jī)器視覺(jué)技術(shù)的育肥豬分群系統(tǒng)對(duì)豬只進(jìn)行分群飼喂可以在代替人工調(diào)欄的同時(shí)控制豬只體質(zhì)量差異。
下一步的研究中可以結(jié)合液飼系統(tǒng),同時(shí)給長(zhǎng)勢(shì)較慢的豬只單獨(dú)添加營(yíng)養(yǎng),考察其是否可以提高育肥豬出欄時(shí)體質(zhì)量的達(dá)標(biāo)率。同時(shí)也可以增加每臺(tái)分群系統(tǒng)所管理的豬只的數(shù)量,提高設(shè)備的利用率。
[1]朱佳,于濱銅,張熙,等. 非洲豬瘟對(duì)豬肉消費(fèi)行為的影響研究:基于遼寧省沈陽(yáng)市459份消費(fèi)者問(wèn)卷調(diào)查[J]. 中國(guó)食物與營(yíng)養(yǎng),2019,25(5):37-41.
Zhu Jia, Yu Bintong, Zhang Xi, et al. The influence of african swine fever on pork consumption behavior: Based on 459 consumer questionnaires in Shenyang city of Liaoning province[J]. Food and Nutrition in China, 2019, 25(5): 37-41. (in Chinese with English abstract)
[2]國(guó)家統(tǒng)計(jì)局. 中華人民共和國(guó)2019年國(guó)民經(jīng)濟(jì)和社會(huì)發(fā)展統(tǒng)計(jì)公報(bào)[EB/OL]. [2020-02-28]. http://www.stats.gov.cn/ tjsj/zxfb/202002/t20200228_1728913.html.
[3]國(guó)務(wù)院辦公廳. 國(guó)務(wù)院辦公廳關(guān)于穩(wěn)定生豬生產(chǎn)促進(jìn)轉(zhuǎn)型升級(jí)的意見(jiàn)[EB/OL]. 2019-09-06[2019-09-10]. http://www.gov.cn/zhengce/content/2019-09/10/content_5428819.htm?_zbs_baidu_bk.
[4]Hwang Hyun Su, Lee Jae Kang, Eom Tae Kyung, et al. Behavioral characteristics of weaned piglets mixed in different groups[J]. Asian Australasian Journal of Animal Sciences, 2015, 29(7): 1060-1064.
[5]Tan Shenton S L, Shackleton David M. Effects of mixing unfamiliar individuals and of azaperone on the social behaviour of finishing pigs[J]. Applied Animal Behaviour Science, 1990, 26(1/2): 157-168.
[6]Coutellier Laurence, Arnould Cécile, Boissy Alain, et al. Pig's responses to repeated social regrouping and relocation during the growing-finishing period[J]. Applied Animal Behaviour Science, 2007, 105(1/3): 102-114.
[7]惠雪,施正香,李保明. 福利化養(yǎng)豬生產(chǎn)工藝與技術(shù)裝備[J]. 豬業(yè)科學(xué),2016,33(8):43-46.
Hui Xue, Shi Zhengxiang, Li Baoming. Welfare pig production technology and technical equipment[J]. Swine Industry Science, 2016, 33(8): 43-46. (in Chinese with English abstract)
[8]彭利英. 淺談“全進(jìn)全出”的現(xiàn)代化養(yǎng)豬工藝[J]. 獸醫(yī)導(dǎo)刊,2014(S1):65-66.
Peng Liying. Talking about the “all-in, all-out” modern pig raising technology[J]. Veterinary Orientation, 2014(S1): 65-66. (in Chinese with English abstract)
[9]Evans Anabel. Variability in growers a great expense[J]. Pig Progress, 2002, 18(5): 29-32.
[10]Stookey J M, Gonyou H W. The effect of regrouping on behavioral and production parameters in finishing swine[J]. Journal of Animal Science, 1994, 72(11): 2804-2811.
[11]Fels Michaela, Hartung J Rg, Hoy Steffen. Social hierarchy formation in piglets mixed in different group compositions after weaning[J]. Applied Animal Behaviour Science, 2014, 152: 17-22.
[12]Melotti Luca, Oostindjer Marije, Bolhuis J. Elizabeth, et al. Coping personality type and environmental enrichment affect aggression at weaning in pigs[J]. Applied Animal Behaviour Science, 2011, 133(3/4): 144-153.
[13]Li Y Z, Johnston L J. Behavior and performance of pigs previously housed in large groups[J]. Journal of Animal Science, 2009, 87(4): 1472-1478.
[14]段棟梁,申浩,王樹(shù)華,等. 育肥豬智能分群系統(tǒng):2016 20972589.6[P]. 2017-04-05.
[15]強(qiáng)志銳. 一種育肥豬智能化飼喂系統(tǒng):2016 10315627.5[P]. 2017-11-24.
[16]曲申生,張杰,付海東,等. 一種生豬分群智能飼喂設(shè)備:2019 20462993.2[P]. 2019-12-31.
[17]Kongsro J?rgen. Estimation of pig weight using a microsoft kinect prototype imaging system[J]. Computers and Electronics in Agriculture, 2014, 109: 32-35.
[18]Minagawa H. Determining the weight of pigs with image analysis[J]. Transactions of the ASAE, 1994, 37(3): 1011-1015.
[19]Schofield C P. Evaluation of image analysis as a means of estimating the weight of pigs[J]. Journal of Agricultural Engineering Research, 1990, 47(4): 287-296.
[20]Shi Chen, Teng Guanghui, Li Zhuo. An approach of pig weight estimation using binocular stereo system based on LabVIEW[J]. Computers & Electronics in Agriculture, 2016, 129: 37-43.
[21]Wang Yongsheng, Yang Wade, Winter Phil, et al. Non-contact sensing of hog weights by machine vision[J]. 2006, 22(1): 577-582.
[22]付為森. 基于雙目視覺(jué)的豬體尺檢測(cè)與體重預(yù)估方法研究[D]. 北京:中國(guó)農(nóng)業(yè)大學(xué),2011.
Fu Weisen. Study of Pig’s Body Dimensions Detection and Weight Estimation Based on Binocular Stereovision[D]. Beijing: China Agricultural University, 2011. (in Chinese with English abstract)
[23]李卓. 基于立體視覺(jué)技術(shù)的生豬體重估測(cè)研究[D]. 北京:中國(guó)農(nóng)業(yè)大學(xué),2016.
Li Zhuo. Research of Pig Weight Estimation Based on Stereo Vision Technology[D]. Beijing: China Agricultural University, 2016. (in Chinese with English abstract)
[24]劉同海. 基于雙目視覺(jué)的豬體體尺參數(shù)提取算法優(yōu)化及三維重構(gòu)[D]. 北京:中國(guó)農(nóng)業(yè)大學(xué),2014.
Liu Tonghai. Study of Pig’S Body Size Parameter Extraction Algorithm Optimization and Three-Dimensional Reconstruction Based on Binocular Stereo Vision[D]. Beijing: China Agricultural University, 2014. (in Chinese with English abstract)
[25]楊艷,滕光輝,李保明. 利用二維數(shù)字圖像估算種豬體重[J]. 中國(guó)農(nóng)業(yè)大學(xué)學(xué)報(bào),2006,11(3):61-64.
Yang Yan, Teng Guanghui, Li Baoming. Determination of pig weight from 2D images[J]. Journal of China Agricultural University, 2006, 11(3): 61-64. (in Chinese with English abstract)
[26]Kashiha M, Bahr C, Ott S, et al. Automatic weight estimation of individual pigs using image analysis[J]. Computers & Electronics in Agriculture, 2014, 107: 38-44.
Design of automatic group sorting system for fattening pigs based on machine vision
Zhang Jianlong, Zhuang Yanrong, Zhou Kang, Teng Guanghui※
(1.,,100083,;2.,,,100083,)
Excessive weight variation among slaughtered fattening pigs has posed a practical challenge on the economic benefits of pig farm in recent years. Therefore, live weight homogeneity of pig batches during fattening has drawn great interest in the pig industry. In this study, an automatic sorting system was developed for the growing and fattening pigs, using the machine vision technology and Convolutional Neural Network (CNN) framework, in order to reduce the weight variation among pigs, and further to save labor in the subsequent process. A CNN model in the system was used to estimate the weight of pigs, instead of ground scale. This arrangement can effectively avoid the influence of manure on the surface corrosion and the accuracy of facilities. The back images (200×100 pixels) of pigs served as the input data in the model, thereby to estimate the weight of pigs ranging from 25 to 102 kg with the accuracy of 93%, and the average estimated time of 0.16 s. In view of changing every day, the standard value of sorting was set as the 30th percentile of pigs weight from the previous day in an ascending order. The pigs that heavier than the baseline were considered as the fast-growing pigs (FP), otherwise, they were supposed as the slow-growing pigs (SP). The modelling system was performed on the LabVIEW software development platform and internet of things, where the average time for each pig to pass through the system was 6.2 s. Field experiments were carried out to verify the application effect of the system at a commercial pig farm in Shandong province in March, 2019. The experimental pig house was divided into 12 pens, four of which were merged and installed with the sorting system. The experimental pen (EP) consisted of the feeding area for FP, feeding area for SP, and lying area. The pigs fed in EP were treated as the experimental group. Specifically, the pigs first passed through the sorting system before feeding, and then entered the corresponding feeding area after being marked as SP or FP. Therefore, two groups each time, including SP and FP, were categorized after the pigs were fed. The pigs in other four unmodified pens were regarded as the control group, in which the pigs were fed and sorted by traditionally manual method. At the beginning of the experiment, the initial average weights of the pigs in the experimental and control group were 32.21 and 31.76 kg, with the values of standard deviation (SD) of 2.61 and 2.49 kg, respectively. At the end of experiment, the average weights of the pigs in the experimental and control group were 57.68 and 57.41 kg, where the values of SD were 5.26 and 5.51 kg, and the total feed-to-meat ratios were 2.31 and 2.34 kg, respectively. The number of pigs in the weight range of 45-50 kg in the experimental group was less than that of control group. There was no significant difference in the average weight, SD, and total feed-to-meat ratio between the two groups during the experiment. In the early stage of the experiment, the weight variance of the experimental group increased faster than that of the control group, for the reason that the grouping system was not activated, and then the change was slower than that of the control group. The results indicated that the proposed system can be equivalent to the manual adjustment for the group feeding of pigs, while, the sorting system can be used for group feeding to save labor. The findings can also provide a sound theoretical reference for the development of intelligent pig feeding equipment, such as sow feeding and breeding station in the pig industry.
machine vision; animals; growing-finishing pigs; LabVIEW; sorting system
張建龍,莊晏榕,周康,等. 基于機(jī)器視覺(jué)的育肥豬分群系統(tǒng)設(shè)計(jì)與試驗(yàn)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2020,36(17):174-181.doi:10.11975/j.issn.1002-6819.2020.17.021 http://www.tcsae.org
Zhang Jianlong, Zhuang Yanrong, Zhou Kang, et al. Design of automatic group sorting system for fattening pigs based on machine vision[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2020, 36(17): 174-181. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2020.17.021 http://www.tcsae.org
2020-05-18
2020-06-28
國(guó)家重點(diǎn)研發(fā)計(jì)劃(2016YFD0700204)
張建龍,博士生,主要從事設(shè)施養(yǎng)殖過(guò)程控制研究。Email:zhangjianlong@cau.edu.cn
滕光輝,教授,博士生導(dǎo)師,主要從事設(shè)施環(huán)境監(jiān)測(cè)與信息技術(shù)應(yīng)用研究。Email:futong@cau.edu.cn
10.11975/j.issn.1002-6819.2020.17.021
S818
A
1002-6819(2020)-17-0174-08