• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Dynamic function allocation of agricultural robot vehicle controlled by man-machine cooperation*

    2020-10-20 06:57:00TingtingMaoShuxianDongJinlinXue

    Tingting Mao, Shuxian Dong, Jinlin Xue

    (College of Engineering, Nanjing Agricultural University, Nanjing, 210031, China)

    Abstract: It is necessary to distribute functions reasonably between a human operator and an automation system in a teleoperated agricultural robotic tractor to accomplish a task cooperatively. This paper proposes a strategy of dynamic function allocation on the basis of a BP neural network, genetic algorithm and adaptive genetic algorithm. Here, the operator’s state, workload, and task demand are chosen as trigger mechanism of dynamic function allocation. Then, a traditional BP neural network, genetic algorithm based BP neural network, and adaptive genetic algorithm based BP neural network are established by taking the operator’s state, workload, and task demand as inputs of the network and automation level as output. The three network are compared to obtain more effective dynamic function allocation. Simulation tests show that the adaptive genetic algorithm based BP neural network has minimum training time and has highest prediction accuracy.

    Keywords: teleoperation; agricultural robot; function allocation; man-machine cooperation; genetic algorithm; adaptive genetic algorithm; BP neural network

    0 Introduction

    At present, teleoperation technology is mostly used in aerospace, deep sea exploration, and medicine industry and other related fields with robot operation, replacing human to complete tasks under dangerous and harsh environments[1-5]. The combination of robot system and network teleoperation technology, that is, the fusion of human intelligence and the intelligence of robot system refers to the situation when human intelligence is used to compensated the lack of autonomy of robot system, thus to improve practicability of the robot system in complex environments[8].

    The combination of teleoperation technology and agricultural robot vehicle is the integration of human intelligence and machine intelligence through “human-in-the-loop” to bring about man-machine cooperation control, which means that operators need to understand and cooperate with automation system to complete the work task together. It can not only fully involve the operator but also greatly improve the work efficiency and intelligent level of the automation system[6-7]. The relationship between human and machine is cooperative in teleoperated agricultural robot vehicles. Therefore, the functions should be assigned between human and machine depending on the situation.

    In 1951, Fitts put forward the concept of function allocation for the first time, which refers to the process of reasonably assigning functions/tasks in the system to human and machines. Function allocation is known as “one of the most important issues in the design process of man-machine intelligent system”[9]. The traditional method of function allocation is static allocation, that is, in the system design stage, the function/task is reasonably assigned to human or machine by comparing the advantages of abilities of human and machine, and does not change in the process of system operation. But in the whole process, the function state of the operator cannot be unchangeable. What’s more, if more tasks are assigned to the operator, the workload may exceed his/her capacity, resulting in the decrease of work efficiency, misoperation, and even accidents. On the other hand, if the machine always maintains high control authority and the operator is in the position of supervision for a long time, it will lead to the lack of human situation awareness and the absence of “human-in-the-loop”[10]. Therefore, it is necessary to allocate functions dynamically, that is, to allocate functions again according to the real-time environment, so that operator’s awareness of the situation can be maintained at a high level, and thus complex tasks can be completed efficiently[11]. In this way, we can not only give full play to the advantages of human judgment and decision-making but also ensure that the automation system has the ability of independent decision-making.

    Scholars over the world have explored the function allocation methods of man-machine system in their respective research fields. Fits put forward a man-machine capability comparison method, which is widely used in the field of industrial automation[9]. Dearden et al. developed a scenario-based allocation method for naval ship system, which was later successfully applied to the functional allocation design of single-seat airplane[12]. Zhou’s team expounded the characteristics of man machine system, summarized the principles and methods of human machine function allocation in manned spaceflight system, and constructed a multi-objective fuzzy decision allocation model[13-14]. From the perspective of the overall effectiveness of the system, Zhang et al. explored the dynamic allocation of man-machine functions in UAV combat supervision and control system, and proposed the principles and methods of man-machine function allocation[15]. Based on the idea that a single operator controls multiple UAVs, Wang et al. designed a function allocation method according to the operator’s workload. The simulation results show that dynamic function allocation can improve the performance of the system[16]. Zhang et al. completed the allocation of fault detection function of civil aviation cockpit using uncertainty language multi-attribute decision-making, determined the automation level range using uncertainty extended weighted average operator, and combined it with uncertainty language mixed aggregation operator and finally determined the automation level[17]. Yang established a dynamic model that can predict the operator’s functional state and changed the current operator’s level of processing tasks according to the operator’s functional state and the level of processing tasks at the last moment[18]. In general, there are many researches and applications on function allocation in the fields of industrial automation, but there are few researches on the dynamic function allocation of man-machine system of remotely operated agricultural tractor.

    1 Function allocation and levels of automation

    1.1 Trigger mechanism of dynamic function allocation

    According to the different control subjects, the trigger mechanism of dynamic function allocation can be divided into two types: human trigger and system trigger. Human trigger refers to the operator’s subjective decision on whether to switch and change the control authority according to his own workload and current task state. System trigger mainly has the following trigger mechanisms[19]: (1) emergency—the existing function allocation mode will be changed according to the emergency degree and number of events at any time; (2) operator’s working ability—the control authority is determined according to the change of human’s working ability at a certain time or period of time; (3) operator’s physiological state—the functions are allocated by monitoring the change of operator’s physiological index; (4) operator model—the function allocation is triggered by estimating and predicting the operator’s state. In the above trigger mechanisms, human trigger mechanism will increase the load of human. the trigger mechanism based on emergency needs to list all kinds of emergency situations and determine the degree of each situation in detail, which is too difficult for dynamic complex situations, and it is also difficult to build a reliable model with human awareness by the operator model based trigger mechanism. Therefore, in this paper, the state of the operator, the workload of the operator and the task demand are used as trigger mechanism to guide the function allocation.

    On one hand, we should pay attention to the role of operators, make full use of human experience and knowledge, and reduce the complexity of automation level during dynamic function allocation. On the other hand, we should comprehensively consider the limitations of operators so that the workload and difficulty of allocation are within the scope of their ability. Function allocation is a typical multi-attribute decision-making problem, so experts can’t measure the relevant factors accurately and using only language value to evaluate them. Operator state are estimated according to the change of the physiological data of the operator. The experts evaluate the operator’s state parameters in three levels: poor, general, and good (represented by numbers 1, 2, and 3 respectively). Similarly, the task demand is evaluated and discussed by multiple experts according to actual experiences, corresponding to the three concepts of low, general and high (represented by numbers 1, 2, and 3 respectively). The operator’s workload refers to the number of tasks processed by the operator at a certain time (represented by numbers 1, 2, and 3 respectively).

    1.2 Levels of automation and its authority

    The determination of automation level is an important step in the allocation of human-machine functions. Shridan and Verplank divided the tasks/functions in the human-computer interaction system into 10 levels of automation (LOA)[20]. According to actual needs, this paper is divided into five level of automation, corresponding to different control permissions as shown in Table 1 and Table 2.

    Tab. 1 Levels of Automation

    Tab. 2 Control authority corresponding to levels of automation

    Here, we obtained the corresponding relationship of levels of automation and three trigger factors (operator state, workload, and task demand) according to the expert knowledge as shown in Table 3.

    Tab. 3 Corresponding relationship of LOA and trigger factors

    2 Neural network models

    Since BP neural network has good nonlinear mapping ability and generalization ability, it can be used to realize the human-machine function assignment of teleoperation agricultural robot system. However, there are some limitations such as slow convergence speed, poor network performance and ease to fall into local minimum. Therefore, this paper uses genetic algorithm and adaptive genetic algorithm to optimize the BP neural network.

    2.1 BP neural network model

    BP neural network is a kind of multi-layer feedback neural network adopting error back propagation learning algorithm[21]. It is one of the most widely used neural network models in artificial neural network (ANN). It has excellent nonlinear mapping ability, self-adaptive and self-learning characteristics. The topological structure of BP neural network model is divided into three parts: input layer, hidden layer and output layer. The external information is transmitted to the hidden layer through the input layer, and the learning rule uses the gradient descent method. Through back propagation, the weights and thresholds of each layer are adjusted gradually until the sum of squares of network errors is the minimum.

    Suppose the output layer hasnneurons with the actual output value ofyand the expected output value ofy′, the total error function E, namely the optimal objective function, is as follows

    (1)

    And, the modified value of each weight is,

    (2)

    whereωi jis the weight from the input layer node to the hidden layer node,ηis the learning rate, andfjis the activation function of the hidden layer. Tansing type activation functionis used from input layer to hidden layer, and Purelin type activation functionis usedfrom hidden layer to output layer.

    The main control factors of dynamic function allocation are operator state, operator workload, and task demand. The three factors above are set as input parameters of neural network model. According to relevant research, when the input node of BP neural network ismand the number of hidden layer nodes is set to 2m+1, the predicted value of BP network model is closer to the actual result[22]. Therefore, the number of hidden layer nodes is 7. The BP network model designed in this paper adopts a three-layer network, and the BP structure is 3-7-1, as shown in Figure 1.

    Fig. 1 Topological graph of BP neural networks model

    2.2 Genetic algorithm based BP neural network model

    Genetic algorithm has the ability of global search, which is used to make up for the deficiency of BP neural network in randomly selecting connection weights and thresholds. The flow chart of genetic BP neural network is shown in Figure 2.

    The specific steps are as follows:

    1) First code and generate the initial population.

    2) Set the fitness function value to determine the probability of individual selection.

    Fig. 2 Flow chart of GABP neural networks

    3) Set the operators to determine the probability of individual being selected.

    4) Cross to obtain cross set ofNchromosomes, the new generation of individuals will carry the information of the previous generation.

    5) Set the mutation probability to make some genes in the chromosome mutate to form a new population, thus to improve individual adaptability.

    6) Calculate the fitness function value and judge whether the termination conditions are met. Otherwise, return to step 2).

    2.3 Adaptive genetic algorithm based BP neural network model

    Adaptive genetic algorithm has strong global optimization characteristics, and BP neural network is good at local search, therefore the combination of the two makes the network structure performance reach the optimal[23]. The improved algorithm flowchart is shown in Figure 3.

    Fig. 3 Flow chart of BP neural network model based on adaptive genetic optimization

    According to the flow chart, adaptive genetic algorithm BP neural network is mainly divided into three steps: initialization of network topology, search of optimal weight, and output of prediction results. Adaptive genetic algorithm is mainly used to adjust the crossover probability and mutation probability until the network weight is optimal to improve the prediction accuracy of BP neural network, enhance learning efficiency, and reduce training time.

    The model parameters are listed in Table 4.

    Tab. 4 Simulation parameters

    3 Results and analysis

    In this section, 50 sets of training data and 10 sets of test data are obtained by linear interpolation. The same data is used for LOA prediction of BP neural network based on genetic algorithm and BP neural network based on adaptive genetic algorithm, and the number of iterations and prediction accuracy are compared and analyzed[24-32].

    3.1 Comparison and analysis of convergence rate

    By training the same set of data, it can be seen from Figure 4 and Figure 5 that, under the same accuracy requirement the traditional genetic algorithm needs 50 iterations and the adaptive genetic algorithm needs 23 iterations. In terms of the number of iterations, the prediction model of BP neural network based on adaptive genetic algorithm is obviously better than that based on traditional genetic algorithm.

    Fig. 4 Convergence curve of BP neural network based on genetic algorithm

    3.2 Comparison and analysis of prediction model accuracy

    The prediction results of BP neural network, genetic algorithm optimization and adaptive genetic optimization are compared with the expected values one by one.

    Fig. 5 Convergence curve of BP neural network based on adaptive genetic algorithm

    Fig. 6 Test results of BP neural network

    Fig. 7 Test results of GABP neural network

    Fig. 8 Test results of AGABP neural network

    It can be seen from the above results that the prediction accuracy of BP neural network and genetic BP neural network are 40% and 45% respectively, which is quite different from the expected value. The BP neural network automatic grade prediction model based on the adaptive genetic algorithm not only has a faster convergence speed, but also has a better accuracy of 95%.

    4 Conclusion

    In order to solve the problem of dynamic allocation of functions in the remote operating agricultural tractor system, an adaptive genetic algorithm BP neural network is proposed in this paper. The dynamic function allocation takes into account the operator’s state, operator’s workload and task requirements. Genetic algorithm is used to optimize BP neural network. Although the prediction accuracy is only enhanced to some extent, the genetic algorithm easily falls into the local optimal solution. Therefore, this paper proposes a BP neural network automation grade model as a solution based on adaptive genetic algorithm. This model not only has a faster convergence speed but also has a higher prediction accuracy compared to BP neural network model and genetic algorithm optimization BP neural network model according to the results of the simulation.

    2022亚洲国产成人精品| 亚洲人与动物交配视频| 亚洲欧美精品自产自拍| 性色avwww在线观看| 亚洲av二区三区四区| 少妇裸体淫交视频免费看高清| 亚洲国产精品sss在线观看| 欧美日韩在线观看h| 久久亚洲精品不卡| 99热这里只有精品一区| 深夜a级毛片| 欧美3d第一页| 日韩欧美 国产精品| 亚洲婷婷狠狠爱综合网| 在线观看66精品国产| 最后的刺客免费高清国语| 国产精品.久久久| 99久久无色码亚洲精品果冻| 婷婷精品国产亚洲av| 亚洲五月天丁香| 欧美日韩综合久久久久久| 日韩av在线大香蕉| 看免费成人av毛片| 国产成人a∨麻豆精品| 白带黄色成豆腐渣| 久久午夜福利片| 最好的美女福利视频网| 久久人人精品亚洲av| 成年女人看的毛片在线观看| 国产探花在线观看一区二区| 国产亚洲欧美98| 亚洲高清免费不卡视频| 男的添女的下面高潮视频| 日本撒尿小便嘘嘘汇集6| 亚洲欧美成人综合另类久久久 | 在线观看一区二区三区| 99久久成人亚洲精品观看| 国产成人精品婷婷| 国产精品人妻久久久久久| 69人妻影院| 高清日韩中文字幕在线| 乱人视频在线观看| videossex国产| 成人二区视频| 国产在线精品亚洲第一网站| 特级一级黄色大片| 亚洲一区二区三区色噜噜| 男人舔女人下体高潮全视频| 欧美一区二区国产精品久久精品| 免费观看人在逋| 嫩草影院入口| 久久久色成人| 成人鲁丝片一二三区免费| 国产又黄又爽又无遮挡在线| 国产伦理片在线播放av一区 | 99久久中文字幕三级久久日本| 国产一区二区亚洲精品在线观看| 日韩强制内射视频| 波多野结衣巨乳人妻| 中文资源天堂在线| 在线a可以看的网站| 22中文网久久字幕| 亚洲精品久久久久久婷婷小说 | 日本熟妇午夜| 看十八女毛片水多多多| 在线天堂最新版资源| av在线观看视频网站免费| www日本黄色视频网| 国产亚洲91精品色在线| 亚洲无线在线观看| 少妇裸体淫交视频免费看高清| videossex国产| 国产人妻一区二区三区在| 好男人在线观看高清免费视频| 熟女人妻精品中文字幕| 成年av动漫网址| 亚洲欧美成人精品一区二区| 网址你懂的国产日韩在线| 国产精品一区二区性色av| 只有这里有精品99| 亚洲欧美成人综合另类久久久 | 国产伦精品一区二区三区视频9| 男女下面进入的视频免费午夜| 亚洲国产欧洲综合997久久,| 日日干狠狠操夜夜爽| 在现免费观看毛片| 日韩一区二区三区影片| 亚洲久久久久久中文字幕| 精品久久久久久久人妻蜜臀av| 婷婷精品国产亚洲av| 亚洲精品久久久久久婷婷小说 | 亚洲真实伦在线观看| 久久中文看片网| 精品免费久久久久久久清纯| 99在线视频只有这里精品首页| 久久草成人影院| 中文字幕av在线有码专区| 亚洲国产高清在线一区二区三| 一区福利在线观看| 18禁裸乳无遮挡免费网站照片| 国产在线精品亚洲第一网站| 国产三级在线视频| 性色avwww在线观看| 天堂网av新在线| 成年女人看的毛片在线观看| 中国国产av一级| 51国产日韩欧美| 日韩成人伦理影院| 久久人人精品亚洲av| 久久久久久久午夜电影| 18禁在线无遮挡免费观看视频| 午夜老司机福利剧场| 国产视频内射| 国产色婷婷99| 国产成人freesex在线| 1000部很黄的大片| 国产成人91sexporn| 日本av手机在线免费观看| 国产精品嫩草影院av在线观看| 精品99又大又爽又粗少妇毛片| 人人妻人人看人人澡| 在线观看免费视频日本深夜| 欧美bdsm另类| 国产精品精品国产色婷婷| 国产精华一区二区三区| 蜜桃久久精品国产亚洲av| 在线播放无遮挡| 亚洲成人久久性| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 99在线人妻在线中文字幕| 国产精品久久视频播放| 亚洲欧美成人综合另类久久久 | 国产精品,欧美在线| 一个人免费在线观看电影| 日韩 亚洲 欧美在线| 国产真实乱freesex| 免费电影在线观看免费观看| 国产精品久久久久久精品电影| 欧美一区二区国产精品久久精品| 国产亚洲av嫩草精品影院| 婷婷色av中文字幕| 啦啦啦观看免费观看视频高清| 色综合色国产| 哪个播放器可以免费观看大片| 国产精品女同一区二区软件| 国产亚洲av嫩草精品影院| 久久草成人影院| 亚洲人成网站在线观看播放| 成人亚洲欧美一区二区av| www日本黄色视频网| 超碰av人人做人人爽久久| 禁无遮挡网站| 亚洲av不卡在线观看| 成人美女网站在线观看视频| 日韩国内少妇激情av| 日韩一本色道免费dvd| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | av免费观看日本| 我要看日韩黄色一级片| 国产真实乱freesex| av在线老鸭窝| 波野结衣二区三区在线| 热99在线观看视频| 91在线精品国自产拍蜜月| 女人被狂操c到高潮| 久久精品影院6| 一区二区三区免费毛片| 黄色欧美视频在线观看| 婷婷色综合大香蕉| 麻豆成人午夜福利视频| 少妇高潮的动态图| 欧美性猛交黑人性爽| 亚洲欧美精品综合久久99| 人体艺术视频欧美日本| 亚洲精品国产成人久久av| 亚洲av电影不卡..在线观看| 大型黄色视频在线免费观看| 日韩欧美精品免费久久| 99精品在免费线老司机午夜| 欧美日韩精品成人综合77777| 日韩欧美精品免费久久| 精品少妇黑人巨大在线播放 | 男人的好看免费观看在线视频| 成人午夜精彩视频在线观看| 日韩精品有码人妻一区| 麻豆精品久久久久久蜜桃| h日本视频在线播放| 99热只有精品国产| 精品久久久久久久末码| 99久久成人亚洲精品观看| 亚洲人成网站在线播放欧美日韩| www.色视频.com| 亚洲av熟女| 老师上课跳d突然被开到最大视频| 国产乱人视频| 一个人观看的视频www高清免费观看| 大又大粗又爽又黄少妇毛片口| 亚洲自拍偷在线| 18禁裸乳无遮挡免费网站照片| 久久久欧美国产精品| 久久婷婷人人爽人人干人人爱| 简卡轻食公司| 美女脱内裤让男人舔精品视频 | 亚洲七黄色美女视频| 亚洲国产精品国产精品| 国产精品无大码| 99久久精品国产国产毛片| 97超碰精品成人国产| www.色视频.com| 秋霞在线观看毛片| 日本黄大片高清| 亚洲七黄色美女视频| 啦啦啦观看免费观看视频高清| 91av网一区二区| 国产亚洲精品久久久com| 亚洲,欧美,日韩| 99热只有精品国产| 老司机福利观看| 三级国产精品欧美在线观看| 18禁在线无遮挡免费观看视频| 中文字幕av在线有码专区| 搡女人真爽免费视频火全软件| 能在线免费观看的黄片| 一个人看的www免费观看视频| 亚洲国产欧美人成| 国产成人a区在线观看| 亚洲精品日韩av片在线观看| 99热6这里只有精品| 亚洲人成网站在线播放欧美日韩| 99国产精品一区二区蜜桃av| 中文字幕av在线有码专区| 色综合亚洲欧美另类图片| a级毛色黄片| 全区人妻精品视频| 嫩草影院入口| 亚洲最大成人中文| 一级二级三级毛片免费看| 老女人水多毛片| av天堂在线播放| 最近手机中文字幕大全| 婷婷精品国产亚洲av| 国产精品爽爽va在线观看网站| 又爽又黄a免费视频| 免费看a级黄色片| 亚洲av免费高清在线观看| 岛国毛片在线播放| 久久久久久大精品| 大又大粗又爽又黄少妇毛片口| 日韩精品有码人妻一区| 免费看日本二区| 国产精品综合久久久久久久免费| 午夜免费激情av| 天天一区二区日本电影三级| 久久久久久国产a免费观看| 高清毛片免费看| 2022亚洲国产成人精品| 精品人妻熟女av久视频| 欧美日韩一区二区视频在线观看视频在线 | 天美传媒精品一区二区| 日韩欧美在线乱码| 麻豆国产97在线/欧美| 成熟少妇高潮喷水视频| 欧美又色又爽又黄视频| 国产精品美女特级片免费视频播放器| 色哟哟哟哟哟哟| 亚洲国产精品成人综合色| 国产午夜精品一二区理论片| 国产伦精品一区二区三区视频9| 18禁在线无遮挡免费观看视频| 美女被艹到高潮喷水动态| 久久国产乱子免费精品| 插阴视频在线观看视频| 伦精品一区二区三区| 精品久久久久久久久av| 成人美女网站在线观看视频| 丰满人妻一区二区三区视频av| 国产精品蜜桃在线观看 | 亚洲va在线va天堂va国产| av在线亚洲专区| 国产一区二区激情短视频| 中文字幕人妻熟人妻熟丝袜美| 深夜a级毛片| 日韩 亚洲 欧美在线| 高清午夜精品一区二区三区 | 色哟哟哟哟哟哟| 精品久久久久久久末码| 国产白丝娇喘喷水9色精品| 一级二级三级毛片免费看| 免费人成在线观看视频色| 久久久久久久久大av| 晚上一个人看的免费电影| 亚洲精品乱码久久久久久按摩| 午夜福利视频1000在线观看| 国产亚洲精品久久久久久毛片| 日韩成人av中文字幕在线观看| 日韩一区二区视频免费看| 国产精品免费一区二区三区在线| 直男gayav资源| 少妇人妻一区二区三区视频| 成人性生交大片免费视频hd| 精品一区二区三区人妻视频| 亚洲最大成人手机在线| 人体艺术视频欧美日本| 一级毛片我不卡| www.av在线官网国产| 黄色视频,在线免费观看| 国产在线精品亚洲第一网站| 97超视频在线观看视频| 男女那种视频在线观看| 免费av毛片视频| 亚洲欧美精品综合久久99| 日本五十路高清| 国产淫片久久久久久久久| 美女脱内裤让男人舔精品视频 | 欧美日韩国产亚洲二区| 一级毛片电影观看 | 亚洲av不卡在线观看| 大型黄色视频在线免费观看| 午夜爱爱视频在线播放| 12—13女人毛片做爰片一| 久久久久九九精品影院| 国产亚洲精品久久久久久毛片| 夜夜爽天天搞| 国产黄片美女视频| 美女内射精品一级片tv| .国产精品久久| 岛国在线免费视频观看| 九草在线视频观看| 色播亚洲综合网| 国产色婷婷99| 亚洲自拍偷在线| 日本一二三区视频观看| 人人妻人人看人人澡| 免费不卡的大黄色大毛片视频在线观看 | 日韩成人伦理影院| 免费电影在线观看免费观看| 国产日本99.免费观看| 日本免费一区二区三区高清不卡| 亚洲欧美日韩高清专用| 色哟哟哟哟哟哟| 毛片女人毛片| 成年女人看的毛片在线观看| 日韩亚洲欧美综合| 人妻夜夜爽99麻豆av| 久久九九热精品免费| 国产伦精品一区二区三区四那| 国产亚洲91精品色在线| av专区在线播放| 床上黄色一级片| 午夜精品一区二区三区免费看| 免费电影在线观看免费观看| 国产成人精品一,二区 | 内射极品少妇av片p| 欧美性猛交╳xxx乱大交人| 亚洲人成网站在线观看播放| 国产精品精品国产色婷婷| 国产精品人妻久久久久久| 成人特级av手机在线观看| 国产欧美日韩精品一区二区| 国产精品日韩av在线免费观看| 啦啦啦观看免费观看视频高清| 国产一区亚洲一区在线观看| 欧美潮喷喷水| 亚洲最大成人av| 免费av观看视频| 亚洲精品国产成人久久av| 午夜视频国产福利| 久久久精品欧美日韩精品| 97超碰精品成人国产| 中文字幕熟女人妻在线| 搞女人的毛片| 丝袜美腿在线中文| av福利片在线观看| 春色校园在线视频观看| 悠悠久久av| 国产精品一区www在线观看| 久久久久久九九精品二区国产| 人妻少妇偷人精品九色| 日产精品乱码卡一卡2卡三| 日本撒尿小便嘘嘘汇集6| 久久99精品国语久久久| 如何舔出高潮| 亚洲美女视频黄频| 久久久a久久爽久久v久久| 亚洲一级一片aⅴ在线观看| 国产在视频线在精品| 高清日韩中文字幕在线| 日韩大尺度精品在线看网址| 亚洲无线在线观看| 熟妇人妻久久中文字幕3abv| 99国产精品一区二区蜜桃av| 欧美日韩综合久久久久久| 一本久久精品| 两个人的视频大全免费| 三级毛片av免费| 亚洲精品日韩在线中文字幕 | 日本黄色片子视频| 免费观看a级毛片全部| 国产v大片淫在线免费观看| 久久精品国产自在天天线| 内地一区二区视频在线| 99久久中文字幕三级久久日本| 十八禁国产超污无遮挡网站| 国产成人精品婷婷| kizo精华| 亚洲欧美日韩卡通动漫| 变态另类成人亚洲欧美熟女| 午夜精品在线福利| 又粗又爽又猛毛片免费看| 美女 人体艺术 gogo| 男人舔奶头视频| 人妻系列 视频| 久久99精品国语久久久| 中文字幕制服av| 草草在线视频免费看| 99热这里只有精品一区| 日韩欧美三级三区| 99久久精品一区二区三区| 91久久精品国产一区二区三区| 国产伦理片在线播放av一区 | 国产精品人妻久久久久久| 欧美一区二区亚洲| 久久久久久久久久久免费av| 亚洲欧美清纯卡通| 22中文网久久字幕| 国产单亲对白刺激| 久久婷婷人人爽人人干人人爱| 最近最新中文字幕大全电影3| 国产成人精品婷婷| 亚洲国产日韩欧美精品在线观看| 丝袜美腿在线中文| 亚洲第一区二区三区不卡| 国产人妻一区二区三区在| 欧美又色又爽又黄视频| 成熟少妇高潮喷水视频| 久久中文看片网| 成人一区二区视频在线观看| 18禁在线播放成人免费| 一个人看的www免费观看视频| 久久久久九九精品影院| 成人一区二区视频在线观看| 亚洲av不卡在线观看| 亚洲精品乱码久久久久久按摩| 中国美女看黄片| 久久久久国产网址| 一级二级三级毛片免费看| 美女被艹到高潮喷水动态| 亚州av有码| 久久久久久久久久久丰满| 国产一区二区三区av在线 | 亚洲国产精品合色在线| 一级二级三级毛片免费看| 国产激情偷乱视频一区二区| 免费电影在线观看免费观看| 别揉我奶头 嗯啊视频| 亚洲精品成人久久久久久| 99热全是精品| 91久久精品电影网| 一本久久中文字幕| 在线观看66精品国产| 69av精品久久久久久| 欧美激情国产日韩精品一区| 激情 狠狠 欧美| 小蜜桃在线观看免费完整版高清| 国产精品日韩av在线免费观看| 欧美+日韩+精品| 99久久无色码亚洲精品果冻| 亚洲成人久久性| 麻豆av噜噜一区二区三区| 最新中文字幕久久久久| 成人美女网站在线观看视频| av在线天堂中文字幕| 婷婷亚洲欧美| 国内精品宾馆在线| 只有这里有精品99| 国内久久婷婷六月综合欲色啪| 亚洲自偷自拍三级| 91狼人影院| 国产精品久久久久久av不卡| 91久久精品电影网| 如何舔出高潮| 亚洲精品色激情综合| 在线国产一区二区在线| 国产精品久久久久久av不卡| 成人毛片a级毛片在线播放| 女人被狂操c到高潮| 美女国产视频在线观看| 看黄色毛片网站| 亚洲七黄色美女视频| 亚洲中文字幕日韩| 久99久视频精品免费| 国产一区二区三区av在线 | 91久久精品国产一区二区三区| 亚洲国产精品合色在线| 亚洲欧美日韩高清专用| 深夜a级毛片| 亚洲美女视频黄频| 免费人成在线观看视频色| 一个人免费在线观看电影| 99视频精品全部免费 在线| 精品一区二区三区视频在线| 亚洲国产精品sss在线观看| 日韩欧美国产在线观看| 噜噜噜噜噜久久久久久91| 伦理电影大哥的女人| 久久九九热精品免费| 欧美日本亚洲视频在线播放| 老师上课跳d突然被开到最大视频| 亚洲无线在线观看| 人人妻人人澡人人爽人人夜夜 | 成年女人永久免费观看视频| 看免费成人av毛片| 麻豆成人午夜福利视频| eeuss影院久久| 国内精品久久久久精免费| 欧美性感艳星| 九九在线视频观看精品| 日本撒尿小便嘘嘘汇集6| 国产精品久久久久久精品电影| 国产在线男女| 久久6这里有精品| 国内精品美女久久久久久| 欧美3d第一页| 久久中文看片网| 中国美白少妇内射xxxbb| 能在线免费看毛片的网站| 欧美又色又爽又黄视频| 国产乱人偷精品视频| a级毛片a级免费在线| h日本视频在线播放| 国产精品美女特级片免费视频播放器| 男女下面进入的视频免费午夜| 欧美最黄视频在线播放免费| 久久综合国产亚洲精品| 欧美三级亚洲精品| 国产精品伦人一区二区| 国产成人精品婷婷| 国产精品一区二区三区四区免费观看| 成人性生交大片免费视频hd| 国内揄拍国产精品人妻在线| 少妇的逼水好多| 免费搜索国产男女视频| 欧美+亚洲+日韩+国产| 亚洲精品456在线播放app| 久久中文看片网| 国产又黄又爽又无遮挡在线| 在线观看美女被高潮喷水网站| 成年女人看的毛片在线观看| 国产一级毛片在线| 国产av不卡久久| 久久久久久久久久成人| 禁无遮挡网站| 18禁黄网站禁片免费观看直播| 男女那种视频在线观看| 日本爱情动作片www.在线观看| 在线天堂最新版资源| 性欧美人与动物交配| 亚洲av免费在线观看| 熟妇人妻久久中文字幕3abv| 亚洲最大成人手机在线| 黄片wwwwww| 国产激情偷乱视频一区二区| 国产精品久久视频播放| 自拍偷自拍亚洲精品老妇| 国产大屁股一区二区在线视频| 最近视频中文字幕2019在线8| 全区人妻精品视频| 国产视频内射| 亚州av有码| 国内精品一区二区在线观看| 精品一区二区三区视频在线| 少妇丰满av| 久久久欧美国产精品| 最近手机中文字幕大全| 18禁黄网站禁片免费观看直播| 成人欧美大片| 国产精品久久视频播放| 黄片无遮挡物在线观看| 十八禁国产超污无遮挡网站| 欧美日韩乱码在线| 12—13女人毛片做爰片一| 高清毛片免费看| 国产精品精品国产色婷婷| 亚洲中文字幕一区二区三区有码在线看| 特大巨黑吊av在线直播| 成人特级av手机在线观看| 国产熟女欧美一区二区| 极品教师在线视频| 一级毛片电影观看 | 国产精品1区2区在线观看.| 亚洲av熟女| 蜜桃亚洲精品一区二区三区| 欧美bdsm另类| 丝袜喷水一区| 色综合站精品国产| av专区在线播放| 偷拍熟女少妇极品色| 免费无遮挡裸体视频| 99久久精品国产国产毛片| 亚洲av中文av极速乱| 国产v大片淫在线免费观看| 久久久成人免费电影| 国产精品电影一区二区三区| 青春草亚洲视频在线观看| 日韩大尺度精品在线看网址| 青春草亚洲视频在线观看| 日韩,欧美,国产一区二区三区 | 欧美性感艳星| 大香蕉久久网| 一个人观看的视频www高清免费观看| 我的老师免费观看完整版| 欧美3d第一页| 色综合亚洲欧美另类图片| 国产探花在线观看一区二区| 18禁在线播放成人免费|