• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Experimental model standardizing polyvinyl alcohol hydrogel to simulate endoscopic ultrasound and endoscopic ultrasound-elastography

    2020-10-09 08:53:26ElymirGalvisGarciaSergioSobrinoCossioArturoRedingBernalYesicaContrerasMarinKarinaSolorzanoAcevedoPatriciaGonzalezZavalaRosaQuispeSiccha
    World Journal of Gastroenterology 2020年34期

    Elymir S Galvis-Garcia, Sergio Sobrino-Cossio, Arturo Reding-Bernal, Yesica Contreras-Marin, Karina Solorzano-Acevedo, Patricia Gonzalez -Zavala, Rosa M Quispe-Siccha

    Abstract

    Key Words: Endoscopic ultrasound simulators in endoscopy; Polyvinyl alcohol; Endoscopic ultrasound; Endoscopic ultrasound elastography; Strain; Elasticity

    INTRODUCTION

    According to the American Society for Gastrointestinal Endoscopy, before trainees can be certified in advanced endoscopic techniques, they must perform a minimum number of procedures to achieve competence[1]. Simulators may reduce the learning curve[1]; however, current models do not recreate reality, require considerable investment in terms of time and resources, and do not necessarily reproduce the haptic[2,3]. Biomaterials, compatible with human tissues make it possible to simulate lesions[4]. Natural (collagen, chitosan, fibrin,etc.) or synthetic hydrogels [polyethylene oxide, polyacrylic acid, polyvinyl pyrrolidone and polyvinyl alcohol (PVA)], absorb liquid without dissolving, due to their permeability and low friction coefficient[5,6]. Manipulation of the molecular weight (MW) and concentration of the PVA hydrogel results in contrasting densities (viscoelasticity), in order to simulate models more realistically[7-9]. These phantoms are compatible with magnetic resonance imaging and ultrasonography; which can produce acoustic, optical and elastographic images[10]. Elastography measures the degree of tissue stiffness illustrated in digital color distribution by means of the deformation histogram (DH) and strain ratio (SR). The classification system for EUS-elastography (EUS-E) is based on color patterns that measure the degree of tissue stiffness. EUS-E refers to the region of interest: A which comprises the tumor area and B the soft surface quotient; B/A strain ratio (SR) represents the elastographic measurement of interest[11-13]. Leeet al[14]reported the DH effectiveness for diagnosing solid masses is 97.7%. The sensitivity (SR > 6.04 or elasticity < 0.05%) and specificity (SR > 15.41 or elasticity < 0.03%) of the SR is close to 100%. However, these results were not confirmed with the same high figures in subsequent studies[15-17].

    Although results are not consistent, knowledge of elasticity coefficient of digestive organs and lesions (cystic, semi-solid and solid) makes it possible to create more realistic models, due to the viscoelastic properties of PVA hydrogels. It is thus important to assess the modulus of elasticity or Young's modulus (E = stress/strain; KPa) of phantoms in order to construct them and compare them with tissues[18]. This work was designed to standardize the mechanical properties of PVA phantoms, employing endoscopic ultrasound images for the simulation of organs and digestive lesions and elastography to evaluate the degree of tissue stiffness.

    MATERIALS AND METHODS

    This experimental study was performed in the Unidad de Investigación y Desarrollo Tecnológico (its acronym in Spanish is Unidad de Investigación y Desarrollo Tecnológico) of Hospital General de México “Dr. Eduardo Liceaga”, Mexico City. PVA hydrogels (phantoms) with different densities (by changing molecular weight and concentration) were prepared. The study was exempt from approval by the Ethics Committee as there are no live specimens involved (human or animal tissue). Two molecular weights were used: MW1= 85000-124000 and MW2= 146000-186000 and a range of PVA concentrations: 3%, 5%, 7%, 9%, 12%, 15% and 20% (Sigma-Aldrich) with a 99.9% degree of hydrolysis.

    Preparation of PVA phantoms

    We used the following equation to obtain the desired concentrations of PVA phantoms (3%, 5%, 7%, 9%, 12%, 15% and 20%) for the two molecular weights, and to calculate the weight of PVA powder in 100 mL of Milli-Q ultrapure H2O (Merck). The PVA powder crystals were dissolved after heating the mixture to 90°C, while stirring continuously (magnetic bar) until a more homogeneous hydrogel was obtained. The hydrogel was cooled for 25 min at room temperature (25°C) and stored in stainless steel boxes (containers) to avoid contamination and ensure accuracy in terms of dimensions, as presented in Figure 1. The containers were subjected to four freezing cycles (-80°C/1.5 h; Freezer-Kaltis) and defrosting (25°C/4 h), until the phantoms showed stable mechanical properties. They were then submerged in ultrapure water for preservation (where they can last for years).

    Density and Young’s modulus

    The density (g/cm3) and Young's modulus (elasticity module, KPa) for each phantom (E = stress/strain) were calculated after trimming the films (1 cm × 1 cm × 0.2 cm) from the PVA phantoms.

    Endoscopic ultrasound images

    Images were obtained (Olympus GF-UM160 and Pentax Medical EUS 360o EG-3670URK), after submerging the phantom (Milli-Q ultrapure water at 25°C) and pressing one of its walls with a latex balloon, placed on the tip of the echoendoscope, as presented in Figure 2.

    The frequency used was 7.5 MHz. Images were contrasted to those of healthy organs (pancreas and liver) and pancreatic lesions (cysts and solid masses).

    Endoscopic ultrasound elastography images

    We evaluated phantoms in terms of stiffness/elasticity (Pentax EUS-Hitachi EUB900, Real-Time Tissue Elastography) with 2-panel images inBmode of conventional grayscale (right) and elastographic image (left). The frequency used was 7.5 MHz (5.0 to 10.0 MHz)[11]. The point of interest (A or B) was measured to determine the degree of normal deformity (SR) < 6.04 and the degree of normal elasticity (B/A ratio) > 0.05%. The “A” area comprises the largest area of the tumor and the “B” area the soft surface (red). The B/A ratio (strain ratio) was considered to represent an elastographic evaluation[12].

    Figure 1 Stainless steel mold used to obtain polyvinyl alcohol phantoms.

    Figure 2 Endoscopic ultrasound images with the echoendoscope placed inside the polyvinyl alcohol phantom.

    Observers

    Observer 1 had > 12 years of experience in EUS diagnosis, with formal training in Denmark and Venezuela, and was in charge of the area in the HGM; Observer 2 had > 8 years of experience in EUS diagnosis, with formal training in Mexico and the United States.

    Statistical analysis

    We calculated the inter-observer agreement (kappa index, intra-class correlation coefficient, and extent of agreement) between the two EUS experts. To compare their congruence, we conducted an independent and blind test of simulated/real images. Kappa values and degree of concordance were as follows: < 0.2 = Poor, 0.21-0.40 = Weak, 0.41-0.60 = Moderate, 0.61-0.80 = Good, and 0.81-1.00 = Very good.

    A satisfaction survey was applied, consisting of nine questions regarding the simulated image (Likert-4 points: 0 = Not satisfied, 1 = Little satisfied, 2 = Quite satisfied and 3 = Very satisfied): (1) Normal pancreas; (2) Normal liver; (3) Homogeneous lesions; (4) Heterogeneous lesions; (5) Solid lesions; (6) Cystic lesions; (7) Semi-solid lesions; (8) Elastographic image contrast; and (9) Feasibility of measuring the degree of elasticity. For the analysis, the measurement was binary (22 table): Yes = Very satisfied/satisfiedvsNo = Moderately satisfied/not satisfied, and 20 images were evaluated. The correlation between density and degree of elasticity of tissues was calculated.

    RESULTS

    The density and Young’s modulus (M.Y.) of each PVA-phantom are summarized in Table 1. The stiffness of the phantom was correlated with higher MW and concentration (correlationr= 0.8,P= 0.01) and with the increase in density and M.Y. This depended on cross-linking the monomers by freeze/thaw cycles. Simulated lesions were visible using EUS. As shown in Figure 3, endoscopic ultrasound revealed differences between phantoms: C1vsC5(MW1= 85000-124000).

    Density was higher in homogeneous lesions (MW2= 146000–186000: C9= 15% and C10= 20%), (Figure 4) than in heterogeneous lesions (MW1= 85000–124000: C1= 7% and C2= 9%) (Figure 5). Concordance was 0.8 with a high degree of satisfaction.

    Cystic lesions were created with higher density phantoms: C6and C10(MW2= 146000–186000) (Figure 6). These cystic lesions were measured by EUS (E-EUS was never used for this). Concordance was 0.8 (kappa), with a high degree of satisfaction (Likert scale 4-points). Solid lesions were contrasted with soft areas (Figure 7). The color contrasts, RI: A and B, and SR: B/A of elastographic images are presented in Figure 8. We observed lower elasticity (dark blue area), in the case of a simulated solid lesion that contrasted with green areas (normal). SR values of > 6.04 or elasticity of < 0.05% corresponded to areas with less elasticity (rigid). The differences between the B/A ratios (65.6vs7.13) and point A (0.02vs0.07%) translated into greater tissue stiffness. Figure 9 and Table 2 show the relationship between points of interest and strain ratios with different PVA phantom densities.

    DISCUSSION

    Simulation by EUS/EUS-E of visible organs and lesions is feasible using PVA phantoms. The model had high inter-observer concordance and satisfaction. This simulation facilitates practice, while curtailing risk. The increase in the number of repetitions amplifies skills and reduces the learning curve[2,3]. However, the models lack the realism necessary to achieve competence[2]. The focus of our experiment was to build lesions and organs visible by EUS and EUS-E, but we did not evaluate whether the technique was the most appropriate tool for differentiating malignant lesions from normal tissue. We were able to create realistic ultrasonic images using PVA phantoms. However, knowledge of the elastographic parameters of different tissues allowed us to create simulated lesions due to the viscoelastic properties of the PVA hydrogel and to contrast these with normal structures. EUS-E enables a comparison between the target and normal tissue but a stiff lesion can be either benign or malignant; therefore, the elastic properties of a tumor area may be different to those in another area[15]. Currently, the effectiveness of the DH for diagnosing solid masses is a matter of debate and outcomes are controversial. However, the rationale for using EUS–E in chronic pancreatitis relates to the possibility of detecting the increased degree of fibrosis in diseased pancreas, compared to normal pancreas[19]. Despite the controversy, we selected the B/A ratio (strain ratio) to measure tissue stiffness[12]as well as the region of interest. A and B were marked in different colors (on a scale of 0-255)[19]. It is difficult to place the region of interest of the target at the same level; this is associated with low specificity and reproducibility, and great variability in cutoff for inflammatory pancreatic masses and pancreatic cancer[15]. In contrast, if the lesion appears soft, EUSE can rule out malignancy with a high level of certainty. However two negative fine needle aspirations (FNAs), using EUS, in the case of a soft and enhancing lesion can rule out the diagnosis of pancreatic adenocarcinoma in 95% of patients[15]. The accuracy of strain ratio to distinguish between normal pancreas and pancreatitis is greater, but depends on the cutoff (97.7%-ROC 0.98[19]and 91%[18]). However, one of the largest single-center studies reported a modest diagnostic utility by quantitative analysis (4.65 for SR and 0.27% for mass elasticity) for discriminating pancreatic masses[17]. One analysis of the qualitative pattern for diagnosing malignancy reported 94% accuracy (ROC curve 0.854,P< 0.0001)[20]with high interobserver coincidence (0.77 and 0.84,respectively)[20,21]. By using quantitative analysis, bias in selecting the target was diminished (accuracy 89.7%)[17].

    Table 1 Relationship between Young's Modulus and different densities of polyvinyl alcohol phantoms

    Table 2 Strain ratios (B/A) and regions of interest: A and B

    Figure 3 Comparison of endoscopic ultrasound images: A: Phantom concentration 1; B: Phantom concentration 5.

    Figure 4 Type of lesions: A: Real homogeneous; B: Simulated homogeneous that refers to the liquid component inside the polyvinyl alcohol (PVA) phantom (blue arrow), surrounded by 15% PVA (concentration 9) and 20% PVA (concentration 10).

    Figure 5 Type of lesions: A: Real heterogeneous lesion; B: Simulated heterogeneous lesion of hypoechoic predominance (concentration 1); C: Normal pancreatic tissue; and D: Simulated homogeneous image: phantom with 20% polyvinyl alcohol (concentration 10).

    Furthermore, multilayer perceptron neural networks can be trained to classify focal lesions as either benign or malignant (accuracy 95%)[21]. Our phantom was designed to distinguish lesions, increase the n (repetitions), and evaluate skills for selecting a target, while improving spatio-temporal and haptic skills. A great advantage of practice with our phantom is that there is no need to practice EUS/EUS-E exclusively on animals. Qualitative pattern analysis yielded a high accuracy of 92.9% (ROC: 0.95) for the differential diagnosis between benign and malignant lymph nodes (LNs)[22]. The accuracy for discriminating between these is of great importance for prognosis and selection of appropriate therapy[23]. Due to the characteristics of LNs, these can also be simulated using our phantom. Another study reported lower yield of EUS-E (strain ratio) in detecting LNs but prevalence was greater (61%) in 34 patients, and it showed great heterogeneity (large width of the 95% confidence intervals)[24]. Learning in clinical scenarios in order to acquire skills has ethical and legal implications. The low prevalence of cases is a severe limit to training, in addition to the fact that in most centers, it is the expert who performs the interventions[1]. Regarding biomaterials, these have been used to obtain acoustic, optical and elastographic images[8,11,12,18]. In order to have greater realism in our simulated lesions, we needed to assess the mechanical properties (elasticity/stiffness) of tissue. In our experiment, biomaterial concentration was inversely proportional to the degree of tissue elasticity. The retention of liquid within the fibers produces echogenic differences. If we increase the density of the biomaterial, it will tend to be more homogeneous and hyperechoic. Density disperses sound and modifies impedance[16].

    Figure 6 Cystic lesion: A: A hypoechoic image surrounded by a hyperechoic wall is visible, which produces a posterior reinforcement compatible with a pseudocyst of the pancreas (real image); and B: Endoscopic ultrasound contrast of the interior and exterior of the polyvinyl alcohol phantom (concentration 10): A hypoechoic image (inside) surrounded by a hyperechoic image (wall).

    Figure 7 Solid lesion: A: Real; and B: Simulated (concentration 10).

    In our study, density manipulation made it possible for us to build more realistic models. The presence of bubbles within the material increased the degree of realism. The degree of water retention within the phantoms enables the simulation of different injuries. The 20% concentrations (C5and C10) contain less water (solid lesions), in contrast to those at 7% (C1and C6), which contain a greater quantity (semi-solid). PVA characteristics are dynamic and differ when densities are compared. The area of least elasticity (> M.Y) is the point of greatest strength and cross-linking. The zone of least tension is the place where the transducer exerts pressure (deformity). The advantages of using PVA phantoms are as follows: (1) They do not require different equipment to that commonly used for patients, however, for the animal model they do; (2) Organs and lesions, whether hard or soft, can be simulated by modifying the molecular weight, concentration and freeze/thaw cycles of PVA; and (3) The simulators are inexpensive, this will vary depending on the size and sophistication of the phantom, for example depending on the completeness of an organ. In this work, as it only consisted of phantom characterization, each phantom costs approximately $15 to $20; 4) phantoms can be reused many times, provided they are kept immersed in water at room temperature (25-27°C) after use. Limitations in this study include: (1) It is necessary to submerge the PVA phantom in the water container; and (2) The main problem with EUS-E refers to difficulties in controlling tissue compression by the EUS transducer that may increase errors in measurement. Knowledge of the elasticity coefficient made it possible to create solid and semi-solid organs; both homo and heterogeneous, as well as more realistic cystic and solid lesions, due to the advantages of the viscoelastic properties of the phantom.

    Figure 8 Elastographic images. A: Diagram showing color distribution; B: Color scale (elastography) of phantom concentration (C) 6; and C: Contrast between phantom C6 (green hue) molecular weight 2 = 146000– 186000 vs phantom C5 (dark blue hue) with molecular weight 1 = 85000 – 124000.

    CONCLUSION

    In conclusion, the use of PVA phantoms with different densities allowed adequate and consistent simulation of organs and digestive lesions, visible by EUS-E.

    Figure 9 Relationship between the region of interest A and B and the (B/A) strain ratio.

    ARTICLE HIGHLIGHTS

    Research results

    The density of PVA phantoms depended on MW and C. The stiffness of these phantoms was correlated with higher MW and C (correlationr= 0.8,P= 0.01) as well as with increasing density and M.Y. All simulated lesions were visible using EUS. We calculated elasticity and deformation parameters of solid (blue) areas, contrasting with the norm (Kappa = 0.8; high degree of satisfaction)

    Research conclusions

    The use of PVA phantoms with different densities allowed adequate and consistent simulation of organs and digestive lesions, visible by EUS/EUS-E. Knowledge of the elasticity coefficient made it possible to create different lesions.

    Research perspectives

    Training in a clinical setting has medical and legal implications. Skill and abilities depend on shortening the learning curve. However, in order to achieve this, a model must be realistic. PVA phantoms were demonstrated to be feasible, economical and realistic models for EUS/EUS-E training.

    ACKNOWLEDGEMENTS

    To Dr. Jorge Cerecedo-Rodríguez (Hospital ángeles Acoxpa) for his contribution to the interpretation of the endosonographic images. Thanks to the engineers Yair Pacheco, Javier Márquez Cortez (Medical Scope) and Lilia Vázquez Romero (Endomédica, S.A. de C. V) for informing us about the technical aspects of obtaining EUS/elastography images.

    99久久人妻综合| 欧美精品一区二区大全| 亚洲,欧美,日韩| 国产日韩欧美在线精品| 国产欧美日韩一区二区三区在线| 水蜜桃什么品种好| 亚洲国产最新在线播放| 午夜免费鲁丝| av网站在线播放免费| 亚洲成国产人片在线观看| 26uuu在线亚洲综合色| 制服诱惑二区| 纵有疾风起免费观看全集完整版| 亚洲人成77777在线视频| 中文字幕人妻丝袜一区二区 | 精品国产国语对白av| 日本爱情动作片www.在线观看| 一级毛片电影观看| 一边亲一边摸免费视频| 十分钟在线观看高清视频www| 国产国语露脸激情在线看| 国产精品一国产av| 日韩人妻精品一区2区三区| 精品国产一区二区三区久久久樱花| 在线天堂中文资源库| 亚洲第一青青草原| 国产日韩欧美在线精品| 在线观看一区二区三区激情| 精品亚洲乱码少妇综合久久| 亚洲图色成人| 久久久久久人人人人人| 黄色 视频免费看| 丝袜在线中文字幕| 亚洲精品中文字幕在线视频| 99热全是精品| 亚洲欧美日韩另类电影网站| av女优亚洲男人天堂| 2021少妇久久久久久久久久久| 亚洲婷婷狠狠爱综合网| 9191精品国产免费久久| 91精品国产国语对白视频| av免费在线看不卡| 男女边摸边吃奶| 国产精品国产av在线观看| 日本欧美视频一区| 国产成人精品一,二区| 老女人水多毛片| 一个人免费看片子| 亚洲欧美色中文字幕在线| 精品人妻一区二区三区麻豆| 男女午夜视频在线观看| 亚洲三级黄色毛片| 精品一品国产午夜福利视频| 久久久国产欧美日韩av| 国产野战对白在线观看| 免费黄频网站在线观看国产| 亚洲精品一区蜜桃| 涩涩av久久男人的天堂| 午夜福利视频在线观看免费| 国产亚洲av片在线观看秒播厂| 免费黄网站久久成人精品| 纯流量卡能插随身wifi吗| 18禁观看日本| 999久久久国产精品视频| 黄色 视频免费看| 久久久久久人人人人人| 18禁观看日本| 国产亚洲精品第一综合不卡| 丝袜喷水一区| 国产日韩欧美在线精品| 亚洲国产看品久久| h视频一区二区三区| 日韩一区二区视频免费看| 久久精品aⅴ一区二区三区四区 | 国产av精品麻豆| 亚洲成人av在线免费| 天堂俺去俺来也www色官网| 免费观看性生交大片5| xxxhd国产人妻xxx| 国产成人av激情在线播放| 亚洲精品av麻豆狂野| 精品卡一卡二卡四卡免费| 国产精品久久久久久av不卡| av国产精品久久久久影院| 日日爽夜夜爽网站| 精品少妇内射三级| 欧美日韩国产mv在线观看视频| 大片免费播放器 马上看| 99九九在线精品视频| 午夜91福利影院| 一本久久精品| 99久国产av精品国产电影| 美女国产高潮福利片在线看| 国产黄色视频一区二区在线观看| 曰老女人黄片| 狂野欧美激情性bbbbbb| 99热全是精品| 亚洲国产欧美日韩在线播放| 18禁观看日本| tube8黄色片| 日韩视频在线欧美| 成年女人在线观看亚洲视频| 国产午夜精品一二区理论片| 黄片小视频在线播放| 久久鲁丝午夜福利片| videosex国产| 寂寞人妻少妇视频99o| 男的添女的下面高潮视频| 国产精品一国产av| 日韩制服骚丝袜av| 亚洲国产欧美在线一区| 国产精品免费大片| 9色porny在线观看| 美女福利国产在线| 777久久人妻少妇嫩草av网站| 黄网站色视频无遮挡免费观看| 中文字幕亚洲精品专区| 高清在线视频一区二区三区| 在线观看一区二区三区激情| 蜜桃在线观看..| 久久久国产精品麻豆| 亚洲国产精品一区二区三区在线| 丝袜人妻中文字幕| 又大又黄又爽视频免费| 各种免费的搞黄视频| 欧美中文综合在线视频| 天堂8中文在线网| 亚洲婷婷狠狠爱综合网| 国产老妇伦熟女老妇高清| 亚洲欧美日韩另类电影网站| 国产成人欧美| 亚洲国产精品国产精品| 欧美97在线视频| 精品人妻在线不人妻| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 日韩熟女老妇一区二区性免费视频| 国产精品av久久久久免费| 国产福利在线免费观看视频| 免费高清在线观看视频在线观看| 亚洲欧美成人综合另类久久久| 少妇的丰满在线观看| 成人漫画全彩无遮挡| 精品卡一卡二卡四卡免费| 国产精品嫩草影院av在线观看| 亚洲欧美精品综合一区二区三区 | 久久亚洲国产成人精品v| 黄色一级大片看看| 大香蕉久久成人网| 欧美日韩成人在线一区二区| 一区二区av电影网| 国产成人精品婷婷| 人人妻人人添人人爽欧美一区卜| 国产免费一区二区三区四区乱码| 热99国产精品久久久久久7| 免费看av在线观看网站| 熟妇人妻不卡中文字幕| 精品视频人人做人人爽| 国产精品二区激情视频| 日本免费在线观看一区| 18在线观看网站| 日韩中字成人| 一级片'在线观看视频| 日韩成人av中文字幕在线观看| 亚洲国产最新在线播放| 麻豆精品久久久久久蜜桃| 国产乱人偷精品视频| 国产成人一区二区在线| 精品国产一区二区三区久久久樱花| 精品人妻偷拍中文字幕| 日韩制服骚丝袜av| 丰满乱子伦码专区| 亚洲精品av麻豆狂野| 曰老女人黄片| 午夜精品国产一区二区电影| 久久国产精品男人的天堂亚洲| 高清视频免费观看一区二区| 日本免费在线观看一区| 欧美日韩成人在线一区二区| 日本wwww免费看| 伦理电影免费视频| 欧美日韩国产mv在线观看视频| 美国免费a级毛片| 免费在线观看视频国产中文字幕亚洲 | 国产成人精品久久久久久| 国产一区二区三区av在线| 爱豆传媒免费全集在线观看| 在线观看国产h片| 亚洲婷婷狠狠爱综合网| 一级黄片播放器| 男女午夜视频在线观看| 欧美黄色片欧美黄色片| 日本-黄色视频高清免费观看| 亚洲精品,欧美精品| 国产成人精品婷婷| 中文字幕av电影在线播放| 中文乱码字字幕精品一区二区三区| 纯流量卡能插随身wifi吗| 日韩视频在线欧美| 女人久久www免费人成看片| 男女边摸边吃奶| 久久久久久伊人网av| 久久综合国产亚洲精品| 一级毛片我不卡| 在线观看www视频免费| 午夜福利视频在线观看免费| 亚洲,欧美,日韩| 大话2 男鬼变身卡| av福利片在线| 多毛熟女@视频| 美国免费a级毛片| 飞空精品影院首页| 久久这里有精品视频免费| 久久精品人人爽人人爽视色| 国产极品天堂在线| 18禁裸乳无遮挡动漫免费视频| 日本av手机在线免费观看| 曰老女人黄片| 日日啪夜夜爽| 中文字幕人妻丝袜一区二区 | 日本-黄色视频高清免费观看| 成人黄色视频免费在线看| 一级片'在线观看视频| 精品久久久精品久久久| 自线自在国产av| 免费在线观看完整版高清| 满18在线观看网站| 极品人妻少妇av视频| 国产综合精华液| 丝袜脚勾引网站| av线在线观看网站| 亚洲精品美女久久av网站| a级毛片在线看网站| 国产成人免费观看mmmm| 黄片播放在线免费| 一级黄片播放器| 精品视频人人做人人爽| 欧美日韩综合久久久久久| 少妇被粗大猛烈的视频| 久久ye,这里只有精品| 男人爽女人下面视频在线观看| 伊人久久国产一区二区| 国产精品二区激情视频| 国产精品 国内视频| 亚洲一级一片aⅴ在线观看| 亚洲成人手机| 亚洲精品国产av蜜桃| 亚洲,欧美,日韩| 久久免费观看电影| 亚洲综合色网址| 精品久久久精品久久久| 国产欧美日韩一区二区三区在线| 日韩在线高清观看一区二区三区| 国产熟女欧美一区二区| 看非洲黑人一级黄片| 国产高清国产精品国产三级| 中文乱码字字幕精品一区二区三区| videos熟女内射| 成年人免费黄色播放视频| 国产精品国产三级专区第一集| 日本猛色少妇xxxxx猛交久久| 午夜老司机福利剧场| 久久久久久久国产电影| 热99久久久久精品小说推荐| 国产福利在线免费观看视频| 菩萨蛮人人尽说江南好唐韦庄| 国精品久久久久久国模美| 麻豆乱淫一区二区| 赤兔流量卡办理| 成人毛片60女人毛片免费| 亚洲av.av天堂| 亚洲国产最新在线播放| 在线亚洲精品国产二区图片欧美| 亚洲,欧美精品.| 亚洲av国产av综合av卡| 国产精品免费大片| 欧美国产精品va在线观看不卡| 国产乱人偷精品视频| 九草在线视频观看| 一区在线观看完整版| 人人澡人人妻人| 亚洲精品在线美女| 久久亚洲国产成人精品v| 日韩人妻精品一区2区三区| 日本猛色少妇xxxxx猛交久久| 久久国内精品自在自线图片| 黑人巨大精品欧美一区二区蜜桃| 国产欧美亚洲国产| 亚洲天堂av无毛| 精品第一国产精品| 建设人人有责人人尽责人人享有的| 少妇的逼水好多| 一级,二级,三级黄色视频| 日韩av免费高清视频| av女优亚洲男人天堂| 亚洲欧美色中文字幕在线| 国产福利在线免费观看视频| 亚洲一级一片aⅴ在线观看| 夜夜骑夜夜射夜夜干| 亚洲av在线观看美女高潮| 欧美最新免费一区二区三区| 欧美日韩国产mv在线观看视频| 婷婷成人精品国产| 亚洲精品美女久久久久99蜜臀 | 天天躁日日躁夜夜躁夜夜| 日日啪夜夜爽| 中文字幕另类日韩欧美亚洲嫩草| 中文字幕色久视频| 99久久精品国产国产毛片| 国产日韩欧美在线精品| 久久人妻熟女aⅴ| 大片电影免费在线观看免费| www日本在线高清视频| 国产精品麻豆人妻色哟哟久久| 熟女电影av网| 精品午夜福利在线看| 亚洲av免费高清在线观看| 丁香六月天网| 亚洲av电影在线进入| 99热网站在线观看| 亚洲国产最新在线播放| 欧美av亚洲av综合av国产av | 五月开心婷婷网| 国产熟女午夜一区二区三区| 我的亚洲天堂| 国产精品久久久久久精品古装| 宅男免费午夜| av免费观看日本| 久久精品久久精品一区二区三区| 晚上一个人看的免费电影| www.av在线官网国产| 哪个播放器可以免费观看大片| av国产精品久久久久影院| 三上悠亚av全集在线观看| 久久久国产精品麻豆| 精品久久久久久电影网| 美国免费a级毛片| 一级爰片在线观看| 久久99一区二区三区| 2018国产大陆天天弄谢| 韩国av在线不卡| 久久久久国产网址| 亚洲欧洲国产日韩| 美国免费a级毛片| 亚洲国产看品久久| 丝袜人妻中文字幕| 久久久久久久久免费视频了| 性色av一级| 欧美+日韩+精品| 精品国产乱码久久久久久小说| 午夜日韩欧美国产| 久久久国产欧美日韩av| 满18在线观看网站| 激情五月婷婷亚洲| 成人二区视频| 看十八女毛片水多多多| 色吧在线观看| 亚洲国产色片| 80岁老熟妇乱子伦牲交| 中文欧美无线码| 人人妻人人添人人爽欧美一区卜| 亚洲av综合色区一区| 成年人免费黄色播放视频| 国产国语露脸激情在线看| 精品少妇内射三级| 天天躁狠狠躁夜夜躁狠狠躁| 欧美精品一区二区大全| 久久午夜综合久久蜜桃| 飞空精品影院首页| 亚洲成人av在线免费| 少妇的丰满在线观看| 下体分泌物呈黄色| 18禁国产床啪视频网站| 亚洲人成电影观看| av在线播放精品| 国产一区有黄有色的免费视频| 国产精品 国内视频| 色视频在线一区二区三区| 中文字幕亚洲精品专区| 一级毛片黄色毛片免费观看视频| 国产精品三级大全| 三级国产精品片| 亚洲经典国产精华液单| 大码成人一级视频| 国产乱来视频区| 美女高潮到喷水免费观看| 最近最新中文字幕免费大全7| 欧美人与性动交α欧美软件| 一区二区日韩欧美中文字幕| 免费高清在线观看视频在线观看| 日本爱情动作片www.在线观看| 丁香六月天网| 国产精品国产三级专区第一集| 亚洲,一卡二卡三卡| 精品亚洲成a人片在线观看| 天天操日日干夜夜撸| 天堂8中文在线网| 男女午夜视频在线观看| 一级片免费观看大全| 久久热在线av| 日韩制服丝袜自拍偷拍| 成人亚洲欧美一区二区av| 欧美精品国产亚洲| www日本在线高清视频| 1024香蕉在线观看| av免费观看日本| 亚洲欧美清纯卡通| 亚洲视频免费观看视频| 五月伊人婷婷丁香| 99久国产av精品国产电影| 日韩在线高清观看一区二区三区| 少妇被粗大猛烈的视频| 不卡av一区二区三区| kizo精华| 一级毛片 在线播放| 亚洲欧美中文字幕日韩二区| 亚洲成av片中文字幕在线观看 | 高清不卡的av网站| 亚洲国产看品久久| 男人操女人黄网站| 亚洲国产欧美网| 少妇的逼水好多| 亚洲国产av新网站| 下体分泌物呈黄色| 国产欧美亚洲国产| 久久久国产一区二区| 欧美成人精品欧美一级黄| 欧美激情高清一区二区三区 | 免费久久久久久久精品成人欧美视频| 精品少妇一区二区三区视频日本电影 | 国产日韩一区二区三区精品不卡| 久久人人97超碰香蕉20202| 母亲3免费完整高清在线观看 | 亚洲精品在线美女| 肉色欧美久久久久久久蜜桃| 久久ye,这里只有精品| 国产日韩欧美视频二区| 亚洲经典国产精华液单| 熟女少妇亚洲综合色aaa.| 中文字幕制服av| 国产女主播在线喷水免费视频网站| 色视频在线一区二区三区| 在线观看一区二区三区激情| 亚洲精品日韩在线中文字幕| 国语对白做爰xxxⅹ性视频网站| 18禁国产床啪视频网站| 99热网站在线观看| 妹子高潮喷水视频| 天堂中文最新版在线下载| 久久久久久久精品精品| 国产色婷婷99| 黄片无遮挡物在线观看| 日韩免费高清中文字幕av| 亚洲精华国产精华液的使用体验| 亚洲欧洲国产日韩| 精品少妇一区二区三区视频日本电影 | 午夜老司机福利剧场| 伊人久久大香线蕉亚洲五| 一级片免费观看大全| 好男人视频免费观看在线| 宅男免费午夜| 各种免费的搞黄视频| 亚洲精品在线美女| 国产福利在线免费观看视频| 中文字幕av电影在线播放| 成人午夜精彩视频在线观看| 精品一区二区三区四区五区乱码 | 日韩电影二区| 亚洲欧洲国产日韩| 一级a爱视频在线免费观看| 精品国产一区二区三区久久久樱花| 亚洲av电影在线观看一区二区三区| 97在线人人人人妻| 91国产中文字幕| 亚洲精品日本国产第一区| 美女高潮到喷水免费观看| 国产亚洲最大av| 精品人妻一区二区三区麻豆| 如日韩欧美国产精品一区二区三区| 中文字幕精品免费在线观看视频| 亚洲国产日韩一区二区| 欧美国产精品一级二级三级| 在线观看人妻少妇| 日韩中字成人| 麻豆乱淫一区二区| 大话2 男鬼变身卡| 男男h啪啪无遮挡| 人妻一区二区av| 国产成人精品婷婷| 欧美成人午夜免费资源| 中文欧美无线码| 亚洲国产精品成人久久小说| 色网站视频免费| 久久青草综合色| 免费看不卡的av| 精品久久蜜臀av无| 在线亚洲精品国产二区图片欧美| 国产黄色免费在线视频| 免费在线观看视频国产中文字幕亚洲 | 亚洲一区中文字幕在线| 性高湖久久久久久久久免费观看| 制服人妻中文乱码| 国产精品麻豆人妻色哟哟久久| 99热国产这里只有精品6| 建设人人有责人人尽责人人享有的| 制服丝袜香蕉在线| 热re99久久国产66热| 精品人妻熟女毛片av久久网站| 黑人猛操日本美女一级片| 国产野战对白在线观看| 久久精品久久久久久噜噜老黄| 秋霞在线观看毛片| 久久99一区二区三区| 亚洲国产最新在线播放| 欧美日本中文国产一区发布| 国产一区二区 视频在线| 秋霞伦理黄片| 一本—道久久a久久精品蜜桃钙片| 精品99又大又爽又粗少妇毛片| 亚洲激情五月婷婷啪啪| 夜夜骑夜夜射夜夜干| 亚洲经典国产精华液单| 免费观看性生交大片5| 宅男免费午夜| 亚洲欧洲日产国产| 国产又爽黄色视频| 菩萨蛮人人尽说江南好唐韦庄| 免费看av在线观看网站| 日产精品乱码卡一卡2卡三| 97人妻天天添夜夜摸| 成年美女黄网站色视频大全免费| 精品少妇内射三级| 在线天堂中文资源库| 我的亚洲天堂| 国产精品不卡视频一区二区| 日本猛色少妇xxxxx猛交久久| 一级爰片在线观看| 国产97色在线日韩免费| 成年av动漫网址| 看非洲黑人一级黄片| 欧美亚洲日本最大视频资源| 男女啪啪激烈高潮av片| 午夜激情av网站| 国产成人精品久久二区二区91 | 色婷婷av一区二区三区视频| 精品99又大又爽又粗少妇毛片| 久久99蜜桃精品久久| 青春草国产在线视频| 欧美日韩成人在线一区二区| 九色亚洲精品在线播放| 亚洲国产精品一区二区三区在线| 国语对白做爰xxxⅹ性视频网站| 人人妻人人澡人人爽人人夜夜| 最近中文字幕高清免费大全6| 宅男免费午夜| 久久影院123| 1024香蕉在线观看| 精品一区在线观看国产| 80岁老熟妇乱子伦牲交| 又粗又硬又长又爽又黄的视频| 一级爰片在线观看| 18禁裸乳无遮挡动漫免费视频| 国产日韩欧美亚洲二区| 亚洲欧洲国产日韩| 黑人巨大精品欧美一区二区蜜桃| 视频区图区小说| www.自偷自拍.com| 日韩不卡一区二区三区视频在线| 亚洲美女搞黄在线观看| 一区二区av电影网| 久久久久久久国产电影| 69精品国产乱码久久久| 女的被弄到高潮叫床怎么办| 欧美日韩一级在线毛片| 久久久久久免费高清国产稀缺| freevideosex欧美| 日韩一区二区三区影片| 亚洲一区二区三区欧美精品| 亚洲欧美日韩另类电影网站| 免费日韩欧美在线观看| 在线天堂最新版资源| 欧美日韩国产mv在线观看视频| 欧美日韩综合久久久久久| 国产在视频线精品| 狠狠婷婷综合久久久久久88av| 国产在视频线精品| 欧美日韩一区二区视频在线观看视频在线| 午夜日韩欧美国产| 欧美日韩综合久久久久久| 国产在视频线精品| 欧美xxⅹ黑人| 亚洲国产精品成人久久小说| 一级片免费观看大全| 亚洲五月色婷婷综合| 国产极品天堂在线| 免费看av在线观看网站| 婷婷色综合大香蕉| 亚洲美女搞黄在线观看| 色吧在线观看| 国产成人精品一,二区| 2018国产大陆天天弄谢| 80岁老熟妇乱子伦牲交| 搡老乐熟女国产| 午夜福利,免费看| 日韩成人av中文字幕在线观看| 久久久久国产网址| 嫩草影院入口| 美女脱内裤让男人舔精品视频| 不卡av一区二区三区| 欧美精品一区二区大全| 最近的中文字幕免费完整| 一区二区三区精品91| 老汉色∧v一级毛片| 最黄视频免费看| 亚洲伊人色综图| 日韩三级伦理在线观看|