林 鄲, 李 郁, 孫永健**, 諶 潔, 呂騰飛, 孫知白, 呂 旭, 劉芳艷, 郭長(zhǎng)春, 孫園園, 楊志遠(yuǎn), 馬 均
不同輪作模式下秸稈還田與氮肥運(yùn)籌對(duì)雜交秈稻產(chǎn)量及米質(zhì)的影響*
林 鄲1, 李 郁1, 孫永健1**, 諶 潔1, 呂騰飛1, 孫知白1, 呂 旭1, 劉芳艷1, 郭長(zhǎng)春1, 孫園園2, 楊志遠(yuǎn)1, 馬 均1
(1. 四川農(nóng)業(yè)大學(xué)水稻研究所/作物生理生態(tài)及栽培四川省重點(diǎn)實(shí)驗(yàn)室 溫江 611130; 2. 中國(guó)氣象局成都高原氣象研究所 成都 610072)
探討不同輪作模式下作物秸稈還田與氮肥運(yùn)籌對(duì)雜交秈稻產(chǎn)量及米質(zhì)的影響, 可為多元化輪作模式下水稻提質(zhì)豐產(chǎn)增效提供理論基礎(chǔ)和實(shí)踐依據(jù)。本研究以雜交秈稻‘F優(yōu)498’為試材, 通過(guò)大葉芥菜-水稻、油菜-水稻和小麥-水稻輪作模式下大葉芥菜、油菜、小麥3種前茬作物秸稈還田與不同氮肥運(yùn)籌(常規(guī)施純氮量為150 kg?hm-2, 4︰4︰2和3︰3︰4兩種基肥︰蘗肥︰穗肥比例運(yùn)籌, 及根據(jù)前茬作物收獲后土壤地力水平和斯坦福方程計(jì)算施氮量和基肥∶蘗肥∶穗肥為3︰3︰4的氮肥運(yùn)籌)處理, 研究前茬作物秸稈還田與氮肥優(yōu)化配施對(duì)雜交秈稻產(chǎn)量及米質(zhì)的影響, 并探討多元化輪作模式下雜交秈稻提質(zhì)豐產(chǎn)的調(diào)控途徑。結(jié)果表明, 3種輪作模式下作物秸稈還田與氮肥運(yùn)籌對(duì)雜交秈稻產(chǎn)量和米質(zhì)均存在顯著或極顯著影響, 且兩因素對(duì)產(chǎn)量、堊白粒率、籽粒蛋白質(zhì)含量等指標(biāo)均存在極顯著的互作效應(yīng)。大葉芥菜秸稈(G)分別較油菜秸稈(R)和小麥秸稈(W)還田處理增產(chǎn)1.1%~7.8%、10.5%~19.8%, 且大葉芥菜-水稻模式相對(duì)其他輪作模式能進(jìn)一步提高整精米率、降低堊白粒率和改善食味品質(zhì)。3種輪作模式下水稻季施氮處理均顯著高于不施氮處理, 且均以N2處理(施氮量150 kg?hm-2, 氮肥運(yùn)籌基肥∶蘗肥∶穗肥為3︰3︰4)產(chǎn)量最高, 在此基礎(chǔ)上3種輪作模式相對(duì)于N2處理分別減少氮肥用量16.7%(N-G處理)、30.0%(N-R處理)和16.7%(N-W處理), 產(chǎn)量分別減少2.6%、1.7%和5.8%, 其中大葉芥菜-水稻、油菜-水稻輪作模式下水稻減產(chǎn)不顯著, 且可以顯著降低稻米堊白粒率和堊白度、提高食味品質(zhì), 達(dá)到提質(zhì)穩(wěn)產(chǎn)節(jié)氮的效果。綜合產(chǎn)量及稻米品質(zhì)表現(xiàn), 大葉芥菜-水稻輪作模式下, 適當(dāng)減少氮肥施用量至125 kg?hm-2, 氮肥運(yùn)籌基肥︰蘗肥︰穗肥為3︰3︰4, 為本試驗(yàn)最優(yōu)組合; 油菜-水稻和小麥-水稻輪作模式下, 氮肥施用量分別為105 kg?hm-2和150 kg?hm-2, 氮肥運(yùn)籌基肥︰蘗肥︰穗肥為3︰3︰4為宜。
雜交秈稻; 輪作模式; 秸稈還田; 氮肥運(yùn)籌; 產(chǎn)量; 米質(zhì)
以糧食生產(chǎn)為主導(dǎo)的小麥()-水稻()輪作模式(麥-稻)、油菜()-水稻輪作模式(油-稻)和大葉芥菜()-水稻輪作模式(菜-稻)等多元化輪作模式在我國(guó)分布較廣, 且每年均產(chǎn)生大量的秸稈, 而秸稈中含有大量氮、磷、鉀、硅等營(yíng)養(yǎng)元素可供作物再吸收與利用[1-3]。秸稈還田不僅降低糧食生產(chǎn)成本、改善土壤理化性狀、提高作物產(chǎn)量與品質(zhì), 還可減少秸稈資源浪費(fèi)和環(huán)境污染等問(wèn)題[4]。為此, 前人對(duì)單一水旱輪作體系下秸稈還田對(duì)水稻產(chǎn)量及米質(zhì)的影響進(jìn)行了大量研究[5-10]。研究表明, 麥-稻模式下秸稈還田可提高作物產(chǎn)量[5]; 且秸稈還田與常規(guī)化肥配施可提高農(nóng)田固碳能力、增加作物產(chǎn)量及經(jīng)濟(jì)效益[6]; Yan等[7]、薛亞光等[8]進(jìn)一步研究表明, 麥稈還田在提高水稻產(chǎn)量的同時(shí)還能降低堊白粒率、堊白度, 提升米質(zhì); 朱蕓[9]研究表明, 油-稻體系水稻產(chǎn)量較麥-稻體系增產(chǎn)5.9%; 劉曉霞等[10]研究表明, 豆-稻-菜[春毛豆()、水稻和小蘿卜()輪作模式]秸稈還田能提高土壤有機(jī)質(zhì)、全氮、有效磷、速效鉀含量及改善土地耕種質(zhì)量。
同時(shí), 氮肥運(yùn)籌技術(shù)是水稻提質(zhì)豐產(chǎn)栽培技術(shù)的重要組成部分。劇成欣等[11]研究表明, 依據(jù)實(shí)地的土壤養(yǎng)分的有效供給量、實(shí)地的水稻產(chǎn)量和水稻對(duì)養(yǎng)分的吸收量來(lái)確定施肥量, 利用葉綠素測(cè)定儀(SPAD)和葉色卡(LCC)觀(guān)測(cè)葉片氮素情況指導(dǎo)施肥, 可提高粳稻產(chǎn)量并改善米質(zhì); 武云霞等[12]研究表明, 氮肥運(yùn)籌對(duì)直播稻產(chǎn)量和整精米率、堊白度、堊白粒率、RVA譜、蒸煮食味值的調(diào)控作用顯著。此外, 不同輪作模式下秸稈還田與氮肥優(yōu)化運(yùn)籌, 不僅能夠?qū)崿F(xiàn)資源的高效利用, 還能有效提高經(jīng)濟(jì)效益[13]。王青霞等[14]研究表明, 麥-稻模式下, 秸稈還田和氮肥運(yùn)籌可提高水稻各生育期土壤微生物活性, 改善土壤環(huán)境; 彭志蕓等[15]研究表明, 麥-稻、油-稻輪作模式下秸稈還田與氮肥運(yùn)籌對(duì)雜交稻氮素利用率具有顯著提升作用[16]。上述研究主要針對(duì)秸稈還田、氮肥運(yùn)籌, 以及單一輪作模式下配套的氮肥運(yùn)籌對(duì)水稻產(chǎn)量及米質(zhì)的影響, 但對(duì)于不同輪作模式下秸稈還田與氮肥運(yùn)籌間的比較研究較少, 尤其在不同輪作模式秸稈還田下, 進(jìn)一步研究減氮配施對(duì)雜交秈稻產(chǎn)量及米質(zhì)的影響, 發(fā)揮秸稈與氮肥間的耦合效應(yīng)鮮見(jiàn)報(bào)道。為此, 本研究設(shè)置菜-稻、油-稻和麥-稻輪作模式下大葉芥菜、油菜、小麥3種前茬作物秸稈還田與不同的氮肥運(yùn)籌處理, 研究前茬作物秸稈還田與氮肥優(yōu)化配施對(duì)雜交秈稻產(chǎn)量及米質(zhì)的影響, 并探討多元化輪作模式下雜交秈稻提質(zhì)豐產(chǎn)的調(diào)控途徑, 以期為生產(chǎn)中不同輪作模式下水稻提質(zhì)豐產(chǎn)技術(shù)提供理論依據(jù)。
試驗(yàn)于2018—2019年在四川省眉山市東坡區(qū)悅興鎮(zhèn)金光村試驗(yàn)農(nóng)場(chǎng)(103°83′E, 30°14′N(xiāo))進(jìn)行, 雜交秈稻品種為‘F優(yōu)498’(中秈遲熟型, 全生育期145~ 152 d, 主莖17葉, 5個(gè)伸長(zhǎng)節(jié)間)。試驗(yàn)田土壤為壤土, 理化性狀如表1所示。采用兩因素裂區(qū)設(shè)計(jì), 主區(qū)為3種輪作模式下前茬作物大葉芥菜(G)、油菜(R)和小麥(W)秸稈殘?jiān)糠鬯榉襁€田處理; 副區(qū)為各輪作模式下氮肥管理方式(表2)。磷肥(過(guò)磷酸鈣)施用量折合P2O575 kg?hm-2, 鉀肥(氯化鉀)施用量折合K2O 150 kg?hm-2, 均全部作基肥一次性施用。4月12日播種, 濕潤(rùn)育秧, 葉齡5葉1心時(shí), 單株人工移栽, 行株距為33.3 cm×16.7 cm。3次重復(fù), 小區(qū)面積24 m2, 小區(qū)間筑埂(寬40 cm)并用塑料薄膜包裹, 以防串水串肥, 其他田間管理按大面積生產(chǎn)田進(jìn)行。
表1 不同輪作模式耕層土壤(0~20 cm)化學(xué)性質(zhì)和秸桿還田量
表2 3種輪作模式下不同氮肥運(yùn)籌處理的水稻季氮肥施用時(shí)間和施用量
根據(jù)2018年試驗(yàn)數(shù)據(jù)結(jié)合斯坦福方程, 分別計(jì)算N-G、N-R、N-W的施氮量。如: N-W, 水稻目標(biāo)產(chǎn)量10 000 kg?hm-2, 100 kg稻谷需氮量為1.52 kg, N0平均產(chǎn)量為7 200 kg?hm-2, 土壤供氮量平均為: 7 200×1.5=10 800 kg?hm-2(1.5為不施氮區(qū)100 kg籽粒需氮量, 單位 kg), 氮肥利用率以平均35%計(jì)算。總施氮量(kg?hm-2)=(10 000×1.52/100–10 800/100)/0.35=125.7 kg?hm-2。N-W則按125 kg?hm-2純氮施用。由此再分別計(jì)算出N-G為125 kg?hm-2純氮和N-R為105 kg?hm-2純氮。According to the experimental data in 2018 and Stanford Equation, the nitrogen application rates of N-G, N-R and N-W were calculated. For example: N-W, the target yield of rice was 10 000 kg?hm-2, the N demand of 100 kg rice was 1.52 kg, N0treatment yield was 7 200 kg?hm-2, the average N supply of soil was 7 200×1.5=10 800 kg?hm-2(1.5 was the nitrogen requirement of 100 kg grain in the area without nitrogen application, unit: kg), the N use efficiency is 35%. Total N application (kg?hm-2)=(10 000×1.52/100–10 800 / 100)/0.35=125.7 kg?hm-2. The pure nitrogen rate of N-W was 125 kg?hm-2. Then, the pure nitrogen rates of N-G and N-R were calculated as 125 kg?hm-2as 105 kg?hm-2, respectively.
1.2.1 考種與計(jì)產(chǎn)
成熟期各小區(qū)調(diào)查代表性稻株50株, 計(jì)數(shù)有效穗數(shù)并計(jì)算平均值, 并隨機(jī)取10株(每株莖蘗數(shù)為各小區(qū)的平均莖蘗數(shù))為1個(gè)樣本, 室內(nèi)考種, 測(cè)定穗粒數(shù)、實(shí)粒數(shù)、千粒重, 計(jì)算結(jié)實(shí)率等性狀。各小區(qū)按實(shí)收株數(shù)計(jì)產(chǎn)(按照13.5%水分含量)。
1.2.2 米質(zhì)
各小區(qū)稻谷收獲后, 稱(chēng)取樣品1 kg自然陰干3個(gè)月, 進(jìn)行風(fēng)選、去雜后, 測(cè)定如下指標(biāo):
1)加工及外觀(guān)品質(zhì): 出糙率依據(jù)《GBT 5495—2008》、整精米率根據(jù)《GBT 21719—2009》測(cè)定, 堊白粒率、堊白度根據(jù)《GB/T 17891—1999》、長(zhǎng)寬比根據(jù)《GB/T 17891—1999》測(cè)定。
2)食味品質(zhì)和蛋白質(zhì)含量: 按米水比1∶1.4蒸煮米飯, 煮熟2 h后, 用儀器SATAKE(日本生產(chǎn))中的秈稻分析程序, 分析測(cè)定口感、硬度、黏度等指標(biāo); 采用凱氏定氮法測(cè)定稻米蛋白質(zhì)含量。
3)淀粉RVA譜: 稻米脫殼碾成精米、粉碎、過(guò)篩(100目)后, 用Super 3型RVA儀(澳大利亞生產(chǎn))測(cè)定分析稻米淀粉RVA譜及相關(guān)指標(biāo)。
采用Excel 2010、DPS6.5軟件處理試驗(yàn)數(shù)據(jù); 多重比較采用最小顯著性差異法(LSD)。
各輪作模式下前茬作物秸稈還田、氮肥運(yùn)籌及其兩因素間互作效應(yīng)對(duì)產(chǎn)量均存在極顯著影響(表3)。從3種前茬作物秸稈還田處理對(duì)產(chǎn)量影響來(lái)看, 大葉芥菜秸稈還田(G)分別較油菜秸稈(R)和小麥秸稈還田(W)處理增產(chǎn)1.1%~7.8%、10.5%~19.8%。各輪作模式下水稻季施氮處理均顯著高于N0處理, 且均以N2處理產(chǎn)量最高, G、R和W輪作模式下分別較N1處理高6.2%、2.5%和0.6%。減氮處理(N-G、N-R和N-W)與N2相比, 產(chǎn)量分別降低2.6%、1.7%和5.8%, N-G和N-R處理達(dá)到了節(jié)約氮肥穩(wěn)產(chǎn)的效果。
由表3還可看出, 有效穗數(shù)、每穗粒數(shù)、總穎花數(shù)和千粒重受氮肥運(yùn)籌的影響高于各模式下前茬作物秸稈還田處理, 且前茬作物秸稈還田對(duì)有效穗數(shù)和總穎花量影響達(dá)顯著或極顯著水平, 表明各種植模式下前茬作物秸稈還田和適宜氮肥運(yùn)籌調(diào)控可以對(duì)產(chǎn)量構(gòu)成因子進(jìn)行調(diào)節(jié), 達(dá)到促產(chǎn)的目的。各輪作模式前茬作物秸稈還田處理下, 有效穗數(shù)、每穗粒數(shù)、總穎花數(shù)均值均表現(xiàn)為G>R>W, G和R處理間差異不顯著, W處理顯著低于G和R處理; 而各輪作模式前茬作物秸稈還田處理下千粒重與結(jié)實(shí)率均值表現(xiàn)為W>R>G, 但各處理差異間均不顯著。各氮肥運(yùn)籌處理下, 前茬作物秸稈還田各產(chǎn)量構(gòu)成因子均以N2處理調(diào)控優(yōu)勢(shì)明顯, 減氮(N-G、N-R和N-W)處理相對(duì)于N2處理, 有效穗數(shù)、每穗粒數(shù)及總穎花數(shù)均呈不同程度降低, 但在千粒重或結(jié)實(shí)率方面存在不同程度的補(bǔ)償效應(yīng)。對(duì)產(chǎn)量及其構(gòu)成因素相關(guān)分析表明, 產(chǎn)量受有效穗數(shù)和總穎花數(shù)影響較大, 相關(guān)系數(shù)分別為0.924**和0.927**。
表3 3種輪作模式下秸稈還田與氮肥運(yùn)籌對(duì)雜交秈稻產(chǎn)量及構(gòu)成因素的影響
同列同一輪作模式下不同小寫(xiě)字母表示不同氮肥運(yùn)籌處理在5%水平差異顯著。*, **分別表示在<0.05和<0.01水平影響顯著。Different lowercase letters followed mean±S.E. in the same column indicate significant differences at<5% level among different N treatments within same rotation mode. *, ** indicate significant effect at<0.05 and<0.01, respectively.
3種模式下秸稈還田處理對(duì)雜交秈稻精米率、堊白粒率、堊白度均有顯著或極顯著影響(表4), 氮肥管理對(duì)籽粒加工和外觀(guān)品質(zhì)(除長(zhǎng)寬比)存在極顯著影響, 互作效應(yīng)僅對(duì)外觀(guān)品質(zhì)影響顯著或極顯著。各輪作模式前茬作物秸稈還田處理下, 大葉芥菜秸稈(G)分別較油菜秸稈(R)和小麥秸稈(W)還田處理精米率提高0.9%和1.8%, 堊白粒率降低0.9%和7.0%; G處理下堊白度較R增加3.6%, 較W處理降低3.1%。各輪作模式下, 氮肥運(yùn)籌因素(值)對(duì)雜交秈稻加工和外觀(guān)品質(zhì)的影響均顯著高于秸稈還田因素, 且施氮處理均顯著高于N0處理。氮肥管理對(duì)稻米的糙米率、精米率、整精米率均表現(xiàn)為: N2>減氮處理(N-G、N-R和N-W)>N1>N0, N2顯著高于N1, 與減氮處理差異不顯著。從稻米外觀(guān)品質(zhì)來(lái)看, 堊白粒率和堊白度均表現(xiàn)為: 減氮處理 由表5可知, 3種前茬秸稈還田處理對(duì)稻米的硬度、平衡和蛋白質(zhì)含量均存在顯著或極顯著影響, 氮肥運(yùn)籌對(duì)蒸煮食味品質(zhì)和蛋白質(zhì)含量存在顯著或極顯著影響, 兩者互作效應(yīng)僅對(duì)蛋白質(zhì)含量的影響達(dá)極顯著水平。3種輪作模式下稻米的硬度和蛋白質(zhì)含量均表現(xiàn)為: 小麥秸稈還田處理(W)<大葉芥菜秸稈還田處理(G)<油菜秸稈還田處理(R), G和W處理間差異不顯著但均顯著低于R處理; 對(duì)稻米的食味值和平衡指標(biāo)均表現(xiàn)為: G處理顯著大于R和W處理。氮肥管理對(duì)稻米的外觀(guān)、口感、食味值、硬度、平衡和蛋白質(zhì)含量均存在顯著或極顯著影響。外觀(guān)、口感和食味值均為: N2<減氮處理(N-G、N-R和N-W) 表4 3種輪作模式下秸稈還田與氮肥運(yùn)籌對(duì)雜交秈稻的加工和外觀(guān)品質(zhì)的影響 同列同一輪作模式下不同小寫(xiě)字母表示不同氮肥運(yùn)籌處理在5%水平差異顯著。*, **分別表示在<0.05和<0.01水平影響顯著。Different lowercase letters followed mean±S.E. in the same column indicate significant differences at<5% level among different N treatments within same rotation mode. *, ** indicate significant effect at<0.05 and<0.01, respectively. 表5 3種輪作模式下秸稈還田與氮肥運(yùn)籌對(duì)雜交秈稻的蒸煮食味品質(zhì)和蛋白質(zhì)的影響 同列同一輪作模式下不同小寫(xiě)字母表示不同氮肥運(yùn)籌處理在5%水平差異顯著。*, **分別表示在<0.05和<0.01水平影響顯著。Different lowercase letters followed mean±S.E. in the same column indicate significant differences at<5% level among different N treatments within same rotation mode. *, ** indicate significant effect at<0.05 and<0.01, respectively. 3種前茬秸稈還田處理僅對(duì)RVA譜的峰值黏度存在極顯著差異, 且油菜秸稈(R)>小麥秸稈(W)>大葉芥菜秸稈(G)還田處理, 各處理間差異顯著(表6)。氮肥管理對(duì)RVA譜特征值均存在顯著或極顯著影響, 且氮肥運(yùn)籌對(duì)RVA譜特征值調(diào)控作用明顯高于秸稈還田處理。對(duì)于氮肥管理進(jìn)一步分析表明, 峰值黏度、崩解值均存在N0>減氮處理(N-G、N-R和N-W)>N1>N2, 與N2相比, N1分別提高1.9%~4.2%、3.0%~3.8%, 減氮處理則分別提高1.4%~5.2%、6.1%~7.7%; 熱漿黏度表現(xiàn)為N0>N1>減氮處理>N2, 與N2相比, N1提高了1.4%~4.6%, 減氮處理提高了0.9%~4.4%。 已有研究表明, 秸稈還田、氮肥運(yùn)籌、秸稈還田配施氮肥, 對(duì)水稻提效增產(chǎn)、碳氮代謝、氮素高效利用等均具有重要的調(diào)控效應(yīng)[3,5,17-22]。在肥料減量配施方面, 劉夢(mèng)紅等[18]研究表明, 根據(jù)土壤肥力, 可減少氮肥投入33.1%, 其產(chǎn)量與農(nóng)民習(xí)慣施肥模式差異不顯著。鄭華斌等[19]研究表明, 通過(guò)施用有機(jī)肥配施減氮30%, 其產(chǎn)量?jī)H略低于常規(guī)施肥, 實(shí)現(xiàn)了化肥減量和水稻穩(wěn)產(chǎn)。李超等[21]研究表明, 稻草還田下, 進(jìn)行減氮增密(減氮20%, 增密27.3%), 能夠?qū)崿F(xiàn)高產(chǎn)。馬賢超等[22]研究表明, 對(duì)于早稻而言, 秸稈(水稻秸稈)還田處理下, 減少10%施氮量可提高水稻產(chǎn)量; 對(duì)于晚稻來(lái)說(shuō), 秸稈還田處理下, 氮肥減少10%對(duì)產(chǎn)量無(wú)顯著影響。本研究表明, 3種前茬秸稈還田處理下, 水稻產(chǎn)量表現(xiàn)為大葉芥菜秸稈>油菜秸稈>小麥秸稈還田處理, 且各處理間差異顯著; 同一秸稈還田處理下, 不同氮肥運(yùn)籌之間, 產(chǎn)量表現(xiàn)略有不同, 具體表現(xiàn)為: 大葉芥菜秸稈還田處理中, N2>N-G>N1>N0, N2顯著大于N0和N1, 與N-G差異不顯著; 油菜秸稈還田處理下, N2>N-R> N1>N0, 前3者差異未達(dá)顯著, 但減氮處理在保證穩(wěn)產(chǎn)的基礎(chǔ)上實(shí)現(xiàn)略微的增產(chǎn); 小麥秸稈還田處理下, N2>N1>N-W>N0, N2與N1差異不顯著, 但與N-W存在顯著差異??梢?jiàn), 3種前茬秸稈處理下, 產(chǎn)量均為N2>N1, 表現(xiàn)出基肥∶蘗肥∶穗肥比例3∶3∶4優(yōu)于4∶4∶2, 氮肥適當(dāng)后移, 增加穗肥比例, 有利于增產(chǎn), 這進(jìn)一步補(bǔ)充和完善了前人的研究[23-24]。此外, 大葉芥菜秸稈和油菜秸稈還田下減氮處理對(duì)產(chǎn)量影響不顯著, 分析可能因?yàn)橛筒私斩掃€田量較大, 秸稈腐解釋放的養(yǎng)分較多, 利于植株對(duì)養(yǎng)分的吸收, 進(jìn)而保證有效穗、每穗粒數(shù)、結(jié)實(shí)率、千粒重降幅不顯著, 保障穩(wěn)產(chǎn)[25]; 對(duì)于大葉芥菜秸稈還田而言, 雖然小麥秸稈還田量大于大葉芥菜秸稈, 但由于大葉芥菜種植中肥料投入量較大, 導(dǎo)致水稻季前茬土壤肥力相對(duì)較高(表1), 其次, 殘留的大葉芥菜殘?jiān)^小麥秸稈碳氮比更低、更易腐解, 產(chǎn)生的養(yǎng)分能被水稻快速吸收利用。 表6 3種輪作模式下秸稈還田與氮肥運(yùn)籌對(duì)雜交秈稻淀粉RVA譜特征值的影響 同列同一輪作模式下不同小寫(xiě)字母表示不同氮肥運(yùn)籌處理在5%水平差異顯著。*, **分別表示在<0.05和<0.01水平影響顯著。Different lowercase letters followed mean±S.E. in the same column indicate significant differences at<5% level among different N treatments within same rotation mode. *, ** indicate significant effect at<0.05 and<0.01, respectively. 李曉峰等[26]研究表明, 秸稈(小麥秸稈)還田降低了稻米堊白率和堊白度, 增加了長(zhǎng)寬比, 改善外觀(guān)品質(zhì), 但對(duì)加工品質(zhì)沒(méi)有顯著影響; 此外, 秸稈還田能顯著增加稻米蛋白質(zhì)含量[8,26-27]。李寶燦[28]認(rèn)為, 小麥秸稈還田可提高出糙率、精米率、整精米率, 降低堊白, 有利于改善加工和外觀(guān)品質(zhì)。薛亞光等[8]研究表明, 麥秸還田對(duì)蒸煮食味品質(zhì)改善效果不顯著。本研究表明不同輪作模式下前茬作物秸稈還田對(duì)雜交秈稻精米率、堊白、硬度和蛋白質(zhì)含量均有顯著或極顯著影響, 且大葉芥菜和油菜秸稈還田更利于改善加工和外觀(guān)品質(zhì); 而油菜秸稈還田對(duì)稻米硬度和蛋白質(zhì)含量的影響顯著大于大葉芥菜和小麥秸稈還田; 這可能是因前茬作物秸稈全量還田后, 對(duì)土壤碳氮比產(chǎn)生影響, 引起籽粒灌漿氮碳物質(zhì)供應(yīng)與灌漿動(dòng)態(tài)改變有關(guān)[27]。劇成欣等[11]研究表明, 實(shí)地氮肥管理, 不僅能提高氮肥利用率, 還能協(xié)同提高稻米的加工和外觀(guān)品質(zhì)。喬中英等[29]研究表明, 氮肥后移(占總施氮量40%)能夠降低稻米糙米率、精米率、整精米率和堊白粒率, 使加工和食味品質(zhì)變差, 但改善了外觀(guān)品質(zhì)。吳培[30]研究表明, 隨施氮水平的提高, 稻米食味品質(zhì)呈先增高后降低的趨勢(shì); 而朱大偉等[31]則認(rèn)為, 隨施氮量增加, 食味品質(zhì)呈下降趨勢(shì); 也有研究報(bào)道, 蛋白質(zhì)含量特別是清蛋白含量和直鏈淀粉含量對(duì)秈米的食味品質(zhì)負(fù)面影響較大[32], 而稻谷蛋白質(zhì)含量增加會(huì)導(dǎo)致蒸煮食味品質(zhì)下降[12]。本研究表明不同輪作模式下秸稈還田與氮肥配施對(duì)雜交秈稻的加工、外觀(guān)和食味品質(zhì)存在顯著或極顯著影響, 增施氮肥能顯著提高糙米率、精米率和整精米率, 降低堊白粒率和堊白度, 顯著提高加工和外觀(guān)品質(zhì); 但前人也有研究表明, 不施氮處理稻米的堊白粒率和堊白度呈現(xiàn)最優(yōu), 這可能與試驗(yàn)品種、土壤肥力和試驗(yàn)生態(tài)等差異有關(guān)[26,29]。此外, 本研究進(jìn)一步表明, 菜-稻輪作模式相對(duì)其他輪作模式可不同程度地提高稻米蒸煮的外觀(guān)、口感、食味值、平衡等指標(biāo), 還可適度降低稻米蒸煮的硬度; 各輪作模式下, 氮肥前移(N1處理)有利于改善外觀(guān)品質(zhì), 而氮肥后移(N2處理), 有利于提升加工品質(zhì), 顯著增加蛋白質(zhì)含量, 但是會(huì)降低食味品質(zhì), 這也進(jìn)一步補(bǔ)充和完善了前人研究[33]。而本研究減氮配施處理(N-G、N-R和N-W)相對(duì)于N2處理, 可以進(jìn)一步提高稻米食味品質(zhì), 使米飯更加軟糯適口。對(duì)硬度和蛋白質(zhì)含量進(jìn)行相關(guān)性分析表明, 兩者存在極顯著正相關(guān)(相關(guān)系數(shù)為0.61**), 這可能是由于填塞在淀粉顆粒間的蛋白質(zhì)對(duì)淀粉粒的糊化和膨脹起抑制作用, 導(dǎo)致淀粉粒間空隙減小, 硬度增大, 不適口, 降低了稻米的蒸煮食味品質(zhì)[34]。 淀粉RVA譜特性是評(píng)價(jià)稻米品質(zhì)的重要指標(biāo), 與蒸煮食味品質(zhì)密切相關(guān)。胡群等[35]研究表明, 隨著基蘗肥占總施氮量比例的降低, 稻米峰值黏度、熱漿黏度、崩解值和最終黏度均逐漸減小, 而消減值呈相反的變化[36]。胡雅杰等[37]研究表明, 在秸稈全量還田條件下, 隨施氮量的增加, 稻米峰值黏度和崩解值減小, 熱漿黏度和消減值增大, 不利于稻米蒸煮食味品質(zhì)形成。稻米中直鏈淀粉與支鏈淀粉含量, 會(huì)影響稻米淀粉的RVA譜特征值, 進(jìn)而影響其蒸煮食味品質(zhì)[38]。有研究認(rèn)為, 適量提高成熟期施氮量可以顯著提高灌漿中、后期水稻穎果中的焦磷酸化酶(AGP)、可溶性淀粉合酶(SSS)和淀粉分支酶(SBE)的活性, 降低穎果中淀粉粒結(jié)合型淀粉合酶(GBSS)的活性[39]。本研究表明, 3種前茬作物秸稈全量還田處理間, 峰值黏度具有極顯著差異, 而氮肥管理對(duì)稻米的淀粉RVA譜特征值影響遠(yuǎn)大于秸稈還田處理。隨著氮肥后移(N2處理), 稻米的峰值黏度、熱漿黏度和崩解值顯著降低, 峰值時(shí)間和糊化溫度提高, 這可能是由于氮肥后移導(dǎo)致蛋白質(zhì)含量顯著增加, 在米飯蒸煮過(guò)程中阻礙淀粉粒的糊化和膨脹, 使得稻米崩解下降, 增加了米飯的硬度和粗糙感, 引起蒸煮食味品質(zhì)下降[39]。本研究進(jìn)一步表明, 減氮配施處理(N-G、N-R和N-W)相對(duì)于N2處理, 提升了稻米的蒸煮食味品質(zhì)。這可能由于減氮配施處理適度減少了水稻中后期氮肥施用量, 進(jìn)一步發(fā)揮作物秸稈還田的優(yōu)勢(shì), 降低了稻米蛋白質(zhì)含量, 提高了稻米的峰值黏度、熱漿黏度和崩解值, 進(jìn)而提升了稻米的蒸煮食味品質(zhì)。 3種輪作模式下, 稻米產(chǎn)量以氮肥運(yùn)籌(施氮量150 kg?hm-2)基肥∶蘗肥∶穗肥為3∶3∶4產(chǎn)量最高;而進(jìn)行適當(dāng)減氮處理能顯著降低稻米堊白粒率和堊白度、提高食味品質(zhì)。本試驗(yàn)依據(jù)不同前茬作物收獲后土壤地力水平和斯坦福方程計(jì)算下的減氮處理, 對(duì)麥-稻輪作下稻米產(chǎn)量影響較大(減產(chǎn)5.8%, 達(dá)顯著影響), 但對(duì)菜-稻和油-稻輪作下稻米產(chǎn)量影響不顯著。綜合產(chǎn)量及稻米品質(zhì)表現(xiàn), 菜-稻和油-稻輪作模式下, 適當(dāng)減低氮肥施用量分別為125 kg?hm-2和105 kg?hm-2, 氮肥運(yùn)籌均為基肥∶蘗肥∶穗肥為3∶3∶4, 可實(shí)現(xiàn)提質(zhì)與豐產(chǎn)的協(xié)調(diào)統(tǒng)一; 麥-稻輪作模式下, 減氮對(duì)產(chǎn)量影響較大, 建議氮肥用量為150 kg hm-2。各輪作模式下, 氮肥運(yùn)籌基肥∶蘗肥∶穗肥為3∶3∶4為宜。本結(jié)果可為實(shí)際生產(chǎn)中水稻提質(zhì)豐產(chǎn)技術(shù)提供理論依據(jù)。 [1] 馬金駿, 冒維維, 曾曉萍, 等. 江蘇省稻菜(菌)輪作高效生產(chǎn)模式探討[J]. 農(nóng)業(yè)科技通訊, 2020, (1): 204–206MA J J, MAO W W, ZENG X P, et al. Discussion on high efficiency production mode of rice vegetable (fungus) rotation in Jiangsu Province[J]. Bulletin of Agricultural Science and Technology, 2020, (1): 204–206 [2] 章勇國(guó). 水稻—油菜輪作綠色優(yōu)質(zhì)高產(chǎn)栽培技術(shù)[J]. 現(xiàn)代農(nóng)業(yè)科技, 2020, (1): 19 ZHANG Y G. Green, high quality and high yield cultivation techniques of rice-rape rotation[J]. Modern Agricultural Science and Technology, 2020, (1): 19 [3] 夏文建. 優(yōu)化施氮下稻麥輪作農(nóng)田氮素循環(huán)特征[D]. 北京: 中國(guó)農(nóng)業(yè)科學(xué)院, 2011XIA W J. Nitrogen cycling in rice-wheat rotation system under optimized nitrogen management[D]. Beijing: Chinese Academy of Agricultural Sciences, 2011 [4] 牛文娟. 主要農(nóng)作物秸稈組成成分和能源利用潛力[D]. 北京: 中國(guó)農(nóng)業(yè)大學(xué), 2015 NIU W J. Physicochemical composition and energy potential of main crop straw and stalk[D]. Beijing: China Agricultural University, 2015 [5] 施波, 周華萍, 應(yīng)金耀. 小麥、水稻秸稈還田技術(shù)應(yīng)用效果分析[J]. 浙江農(nóng)業(yè)科學(xué), 2020, 61(2): 219–220 SHI B, ZHOU H P, YING J Y. Analysis on the application effect of wheat and rice straw returning technology[J]. Journal of Zhejiang Agricultural Sciences, 2020, 61(2): 219–220 [6] 吳玉紅, 郝興順, 田霄鴻, 等. 秸稈還田與化肥配施對(duì)漢中盆地稻麥輪作農(nóng)田土壤固碳及經(jīng)濟(jì)效益的影響[J]. 作物學(xué)報(bào), 2020, 46(2): 259–268 WU Y H, HAO X S, TIAN X H, et al. Effect of straw returning combined with NPK fertilization on soil carbon sequestration and economic benefits under rice–wheat rotation in Hanzhong basin[J]. Acta Agronomica Sinica, 2020, 46(2): 259–268 [7] YAN F J, SUN Y J, XU H, et al. Effects of wheat straw mulch application and nitrogen management on rice root growth, dry matter accumulation and rice quality in soils of different fertility[J]. Paddy and Water Environment, 2018, 16(3): 507–518 [8] 薛亞光, 魏亞鳳, 李波, 等. 麥秸還田和耕作方式對(duì)水稻產(chǎn)量和品質(zhì)的影響[J]. 中國(guó)農(nóng)學(xué)通報(bào), 2018, 34(22): 10–14 XUE Y G, WEI Y F, LI B, et al. Wheat straw returning and tillage patterns affecting grain yield and quality of rice[J]. Chinese Agricultural Science Bulletin, 2018, 34(22): 10–14 [9] 朱蕓. 油-稻與麥-稻輪作體系水稻產(chǎn)量差異及其養(yǎng)分機(jī)制初探[D]. 武漢: 華中農(nóng)業(yè)大學(xué), 2019 ZHU Y. Study on rice yield differences and nutrient mechanism between rapeseed-rice and wheat-rice rotation systems[D]. Wuhan: Huazhong Agricultural University, 2019 [10] 劉曉霞, 陶云彬, 倪治華, 等. 秸稈還田對(duì)豆-稻-菜循環(huán)耕作模式下作物產(chǎn)量和土壤肥力的影響[J]. 中國(guó)農(nóng)學(xué)通報(bào), 2018, 34(9): 24–28 LIU X X, TAO Y B, NI Z H, et al. Straw returning affects crop yield and soil fertility in bean-rice-vegetable cropping system[J]. Chinese Agricultural Science Bulletin, 2018, 34(9): 24–28 [11] 劇成欣, 陳堯杰, 趙步洪, 等. 實(shí)地氮肥管理對(duì)不同氮響應(yīng)粳稻品種產(chǎn)量和品質(zhì)的影響[J]. 中國(guó)水稻科學(xué), 2018, 32(3): 237–246 JU C X, CHEN Y J, ZHAO B H, et al. Effect of site-specific nitrogen management on grain yield and quality of japonica rice varieties differed in response to nitrogen[J]. Chinese Journal of Rice Science, 2018, 32(3): 237–246 [12] 武云霞, 劉芳艷, 孫永健, 等. 水氮互作對(duì)直播稻產(chǎn)量及稻米品質(zhì)的影響[J]. 四川農(nóng)業(yè)大學(xué)學(xué)報(bào), 2019, 37(5): 604–610 WU Y X, LIU F Y, SUN Y J, et al. Effect of water and nitrogen interaction on yield and quality of direct seeding rice[J]. Journal of Sichuan Agricultural University, 2019, 37(5): 604–610 [13] ZHANG L, ZHOU L H, WEI J B, et al. Integrating cover crops with chicken grazing to improve soil nitrogen in rice fields and increase economic output[J]. Science of the Total Environment, 2020, 713: 135–218 [14] 王青霞, 李美霖, 陳喜靖, 等. 秸稈還田下氮肥運(yùn)籌對(duì)水稻各生育期土壤微生物群落結(jié)構(gòu)的影響[J]. 應(yīng)用生態(tài)學(xué)報(bào), 2020: 31(3): 935–944 WANG Q X, LI M L, CHEN X J, et al. Effects of nitrogen management on soil microbial community structure at different growth stages under straw returning in paddy soils[J]. Chinese Journal of Applied Ecology, 2020, 31(3): 935–944 [15] 彭志蕓, 向開(kāi)宏, 楊志遠(yuǎn), 等. 麥/油-稻輪作下秸稈還田與氮肥管理對(duì)直播雜交稻氮素利用特征的影響[J]. 中國(guó)水稻科學(xué), 2020, 34(1): 57–68 PENG Z Y, XIANG K H, YANG Z Y, et al. Effects of straw returning to paddy field and nitrogen fertilizer management on nitrogen utilization characteristics of direct seeded hybrid rice under wheat/rape-rice rotation[J]. Chinese Journal of Rice Science, 2020, 34(1): 57–68 [16] 嚴(yán)奉君, 孫永健, 馬均, 等. 秸稈覆蓋與氮肥運(yùn)籌對(duì)雜交稻氮素利用、產(chǎn)量及米質(zhì)的影響[C]//2014年全國(guó)青年作物栽培與生理學(xué)術(shù)研討會(huì)論文集. 揚(yáng)州: 中國(guó)作物學(xué)會(huì), 2014 YAN F J, SUN Y J, MA J, et al. Effects of straw mulching and nitrogen application on nitrogen utilization, yield and quality of hybrid rice[C]//2014 National Youth Crop Cultivation and Physiology Symposium. Yangzhou: Chinese Crop Society, 2014 [17] CHEN S, LIU S W, ZHENG X, et al. Effect of various crop rotations on rice yield and nitrogen use efficiency in paddy-upland systems in southeastern China[J]. The Crop Journal, 2018, 6(6): 576–588 [18] 劉夢(mèng)紅, 杜春穎, 楊錫銅, 等. 土壤肥力和氮肥運(yùn)籌對(duì)寒地水稻產(chǎn)量、品質(zhì)及氮肥利用的影響[J]. 河南農(nóng)業(yè)科學(xué), 2019, 48(2): 25–34 LIU M H, DU C Y, YANG X T, et al. Effects of soil fertility and nitrogen application patterns on yield, quality and nitrogen utilization of rice in cold region[J]. Journal of Henan Agricultural Sciences, 2019, 48(2): 25–34 [19] 鄭華斌, 傅榮富, 賈巍, 等. 氮肥減量與替代方式對(duì)華南稻區(qū)水稻產(chǎn)量及氮肥利用效率的影響[J]. 作物研究, 2019, 33(2): 91–95 ZHENG H B, FU R F, JIA W, et al. Effect of nitrogen reducing and replacement on rice yield and nitrogen use efficiency in the region of southern China[J]. Crop Research, 2019, 33(2): 91–95 [20] 孫永健, 孫園園, 嚴(yán)奉君, 等. 氮肥后移對(duì)不同氮效率水稻花后碳氮代謝的影響[J]. 作物學(xué)報(bào), 2017, 43(3): 407–419 SUN Y J, SUN Y Y, YAN F J, et al. Effects of postponing nitrogen topdressing on post-anthesis carbon and nitrogen metabolism in rice cultivars with different nitrogen use efficiencies[J]. Acta Agronomica Sinica, 2017, 43(3): 407–419 [21] 李超, 肖小平, 唐海明, 等. 減氮增密對(duì)機(jī)插雙季稻生物學(xué)特性及周年產(chǎn)量的影響[J]. 核農(nóng)學(xué)報(bào), 2019, 33(12): 2451–2459 LI C, XIAO X P, TANG H M, et al. Biological characteristics and annual yield of double machine-transplanted rice under nitrogen-reduction and density-increase measures[J]. Journal of Nuclear Agricultural Sciences, 2019, 33(12): 2451–2459 [22] 馬賢超, 袁偉, 王子陽(yáng), 等. 雙季稻秸稈還田處理下減施氮肥對(duì)水稻生長(zhǎng)和產(chǎn)量的影響[J]. 農(nóng)業(yè)與技術(shù), 2019, 39(22): 1–5 MA X C, YUAN W, WANG Z Y, et al. Effect of reduced nitrogen application on rice growth and yield under the treatment of double crop straw returning[J]. Agriculture and Technology, 2019, 39(22): 1–5 [23] 嚴(yán)奉君, 孫永健, 馬均, 等. 秸稈覆蓋與氮肥運(yùn)籌對(duì)雜交稻根系生長(zhǎng)及氮素利用的影響[J]. 植物營(yíng)養(yǎng)與肥料學(xué)報(bào), 2015, 21(1): 23–35 YAN F J, SUN Y J, MA J, et al. Effects of straw mulch and nitrogen management on root growth and nitrogen utilization characteristics of hybrid rice[J]. Journal of Plant Nutrition and Fertilizers, 2015, 21(1): 23–35 [24] 嚴(yán)奉君, 孫永健, 馬均, 等. 灌溉方式與秸稈覆蓋優(yōu)化施氮模式對(duì)秸稈腐熟特征及水稻氮素利用的影響[J]. 中國(guó)生態(tài)農(nóng)業(yè)學(xué)報(bào), 2016, 24(11): 1435–1444 YAN F J, SUN Y J, MA J, et al. Effects of irrigation method and straw mulch-nitrogen management pattern on straw decomposition characteristics and nitrogen utilization of hybrid rice[J]. Chinese Journal of Eco-Agriculture, 2016, 24(11): 1435–1444 [25] 于建光, 顧元, 常志州, 等. 小麥秸稈浸提液和腐解液對(duì)水稻的化感效應(yīng)[J]. 土壤學(xué)報(bào), 2013, 50(2): 349–356 YU J G, GU Y, CHANG Z Z, et al. Allelopathic effects of wheat straw extract and decomposition liquid on rice[J]. Acta Pedologica Sinica, 2013, 50(2): 349–356 [26] 李曉峰, 程金秋, 梁健, 等. 秸稈全量還田與氮肥運(yùn)籌對(duì)機(jī)插粳稻產(chǎn)量及氮素吸收利用的影響[J]. 作物學(xué)報(bào), 2017, 43(6): 912–924 LI X F, CHENG J Q, LIANG J, et al. Effects of total straw returning and nitrogen application on grain yield and nitrogen absorption and utilization of machine transplanted japonica rice[J]. Acta Agronomica Sinica, 2017, 43(6): 912–924 [27] 嚴(yán)奉君. 秸稈覆蓋與水氮管理對(duì)水稻產(chǎn)量與米質(zhì)及土壤理化性質(zhì)的影響[D]. 雅安: 四川農(nóng)業(yè)大學(xué), 2015 YAN F J. Effects of straw mulch and water-nitrogen fertilizer management on yield of rice, grain quality and the properties of soil[D]. Ya’an: Sichuan Agricultural University, 2015 [28] 李寶燦. 麥秸稈全量還田對(duì)水稻產(chǎn)量和品質(zhì)的影響[J]. 現(xiàn)代農(nóng)業(yè)科技, 2011, (3): 60–61 LI B C. Effect of wheat straw total returning on yield and quality of rice[J]. Modern Agricultural Sciences and Technology, 2011, (3): 60–61 [29] 喬中英, 陳培峰, 顧俊榮, 等. 氮肥運(yùn)籌與栽插密度對(duì)秈粳雜交稻甬優(yōu)1538產(chǎn)量形成和米質(zhì)的影響[J]. 西南農(nóng)業(yè)學(xué)報(bào), 2016, 29(9): 2068–2073 QIAO Z Y, CHEN P F, GU J R, et al. Effects of nitrogen managements and transplanting density on yield formation and rice quality of indica-japonica hybrid rice Yongyou 1538[J]. Southwest China Journal of Agricultural Sciences, 2016, 29(9): 2068–2073 [30] 吳培. 施氮量和直播密度互作對(duì)優(yōu)質(zhì)食味水稻產(chǎn)量和品質(zhì)的影響[D]. 揚(yáng)州: 揚(yáng)州大學(xué), 2019 WU P. Effects of interaction between nitrogen application rate and direct-sowing density on yield and rice quality of rice with good eating quality[D]. Yangzhou: Yangzhou University, 2019 [31] 朱大偉, 李敏, 郭保衛(wèi), 等. 氮肥水平對(duì)優(yōu)質(zhì)粳稻蒸煮食味品質(zhì)與質(zhì)構(gòu)特性的影響[J]. 貴州農(nóng)業(yè)科學(xué), 2018, 46(3): 62–66 ZHU D W, LI M, GUO B W, et al. Effects of nitrogen fertilizer application level on eating and textural characteristics of high quality japonica rice[J]. Guizhou Agricultural Sciences, 2018, 46(3): 62–66 [32] 張啟莉. 秈稻米蛋白質(zhì)影響米飯蒸煮食味品質(zhì)的研究[D]. 雅安: 四川農(nóng)業(yè)大學(xué), 2012 ZHANG Q L. Rice proteins affect cooking and eating quality of cookedindica rice[D]. Ya’an: Sichuan Agricultural University, 2012 [33] 陳夢(mèng)云, 李曉峰, 程金秋, 等. 秸稈全量還田與氮肥運(yùn)籌對(duì)機(jī)插優(yōu)質(zhì)食味水稻產(chǎn)量及品質(zhì)的影響[J]. 作物學(xué)報(bào), 2017, 43(12): 1802–1816 CHEN M Y, LI X F, CHENG J Q, et al. Effects of total straw returning and nitrogen application regime on grain yield and quality in mechanical transplantingrice with good taste quality[J]. Acta Agronomica Sinica, 2017, 43(12): 1802–1816 [34] 賀帆, 黃見(jiàn)良, 崔克輝, 等. 實(shí)時(shí)實(shí)地氮肥管理對(duì)水稻產(chǎn)量和稻米品質(zhì)的影響[J]. 中國(guó)農(nóng)業(yè)科學(xué), 2007, 40(1): 123–132 HE F, HUANG J L, CUI K H, et al. Effect of real-time and site-specific nitrogen management on rice yield and quality[J]. Scientia Agricultura Sinica, 2007, 40(1): 123–132 [35] 胡群, 夏敏, 張洪程, 等. 氮肥運(yùn)籌對(duì)缽苗機(jī)插優(yōu)質(zhì)食味水稻產(chǎn)量及品質(zhì)的影響[J]. 作物學(xué)報(bào), 2017, 43(3): 420–431 HU Q, XIA M, ZHANG H C, et al. Effect of nitrogen application regime on yield and quality of mechanical pot-seedlings transplanting rice with good taste quality[J]. Acta Agronomica Sinica, 2017, 43(3): 420–431 [36] HUANG S J, ZHAO C F, ZHU Z, et al. Characterization of eating quality and starch properties of two Wallelesrice cultivars under different nitrogen treatments[J]. Journal of Integrative Agriculture, 2020, 19(4): 988–998 [37] 胡雅杰, 錢(qián)海軍, 吳培, 等. 秸稈還田條件下氮磷鉀用量對(duì)軟米粳稻產(chǎn)量和品質(zhì)的影響[J]. 植物營(yíng)養(yǎng)與肥料學(xué)報(bào), 2018, 24(3): 817–824 HU Y J, QIAN H J, WU P, et al. Effects of nitrogen, phosphorus and potassium fertilizer rates on yield and grain quality of soft japonica rice under straw returning condition[J]. Journal of Plant Nutrition and Fertilizers, 2018, 24(3): 817–824 [38] 趙春芳, 岳紅亮, 黃雙杰, 等. 南粳系列水稻品種的食味品質(zhì)與稻米理化特性[J]. 中國(guó)農(nóng)業(yè)科學(xué), 2019, 52(5): 909–920 ZHAO C F, YUE H L, HUANG S J, et al. Eating quality and physicochemical properties in Nanjing rice varieties[J]. Scientia Agricultura Sinica, 2019, 52(5): 909–920 [39] 張軍, 李運(yùn)祥, 劉娟, 等. 施氮處理對(duì)水稻穎果淀粉積累和相關(guān)酶活性的影響[J]. 作物學(xué)報(bào), 2008, 34(12): 2168–2175 ZHANG J, LI Y X, LIU J, et al. Effects of nitrogen on starch accumulation and activities of enzymes involved in starch synthesis in rice caryopsis[J]. Acta Agronomica Sinica, 2008, 34(12): 2168–2175 Effects of straw returning and nitrogen application on yield and quality of hybridrice under different rotation patterns* LIN Dan1, LI Yu1, SUN Yongjian1**, SHEN Jie1, LYU Tengfei1, SUN Zhibai1, LYU Xu1, LIU Fangyan1, GUO Changchun1, SUN Yuanyuan2, YANG Zhiyuan1, MA Jun1 (1. Rice Research Institute of Sichuan Agricultural University / Key Laboratory of Crop Physiology, Ecology, and Cultivation in Sichuan Province, Wenjiang 611130, China; 2. Institute of Plateau Meteorology, China Meteorological Administration, Chengdu 610072, China) The effects of straw return and nitrogen fertilizer application on the quality and yield ofrice were studied using the hybrid strain ‘F you 498’. The multiple-straw rotation method was investigated using the straw return of three previous crops [vegetable-rice (G), rape-rice (R), and wheat-rice (W)]. Nitrogen fertilizer was optimized by testing different ratios [conventional application of pure nitrogen = 150 kg·hm?2; base to tiller to panicle fertilizer ratios tested = 4︰4︰2 (N1) and 3︰3︰4 (N2)]. The results showed significant effects on the rice quality and yield in all of the straw return types and nitrogen fertilizer applications. Two factors had a large effect on the yield: the chalky grain rate and the grain protein content. The vegetable-straw yield (g) increased by 1.1%-7.8% compared to rape-straw (R), and by 10.5%-19.8% compared to wheat-straw (W). The vegetable-rice straw also improved the whole rice rate, reduced the chalky grain rate, and improved the food quality. Regardless of straw type, the yield increased after nitrogen fertilizer application, and the highest yield was obtained using the N2treatment. All straw types reduced the amount of nitrogen applied: N-G treatment by 16.7%, N-R treatment by 30.0%, and N-W treatment by 16.7%. Compared to the N2treatment, the yield decreased by 2.6% (N-G), 1.7% (N-R), and 5.8% (N-W). The rice yield was not significantly reduced when the N-G and N-R rotations were used, but the rice chalkiness rate and chalkiness degree were significantly reduced, and the quality improved. Therefore, rice quality was improved and yields were maintained, but nitrogen was saved. Based on the rice quality and yield when using the vegetable-rice straw rotation, the nitrogen fertilizer amount should be reduced to 125 kg·hm?2, and a base to tiller to ear fertilizer ratio of 3︰3︰4 was the optimal combination in this study. When using therape-rice and wheat-rice straw rotations, the nitrogen fertilizer amounts should be 105 kg·hm?2and 150 kg?hm-2, respectively, and the fertilizer ratio remains 3︰3︰4. This study may provide a theoretical basis for improving the quality and yield of rice when using the straw return rotation method. Hybridrice; Rotation mode; Straw returning; Nitrogen application; Yield; Rice quality S344.1 10.13930/j.cnki.cjea.200236 林鄲, 李郁, 孫永健, 諶潔, 呂騰飛, 孫知白, 呂旭, 劉芳艷, 郭長(zhǎng)春, 孫園園, 楊志遠(yuǎn), 馬均. 不同輪作模式下秸稈還田與氮肥運(yùn)籌對(duì)雜交秈稻產(chǎn)量及米質(zhì)的影響[J]. 中國(guó)生態(tài)農(nóng)業(yè)學(xué)報(bào)(中英文), 2020, 28(10): 1581-1590 LIN D, LI Y, SUN Y J, SHEN J, LYU T F, SUN Z B, LYU X, LIU F Y, GUO C C, SUN Y Y, YANG Z Y, MA J. Effects of straw returning and nitrogen application on yield and quality of hybridrice under different rotation patterns[J]. Chinese Journal of Eco-Agriculture, 2020, 28(10): 1581-1590 * 國(guó)家重點(diǎn)研發(fā)計(jì)劃重點(diǎn)專(zhuān)項(xiàng)(2018YFD0301202)、四川省科技支撐計(jì)劃項(xiàng)目(20YYJC2586)和四川省學(xué)術(shù)和技術(shù)帶頭人培養(yǎng)支持經(jīng)費(fèi)(2016-183)資助 孫永健, 主要從事水稻高產(chǎn)高效栽培研究。E-mail: yongjians1980@163.com 林鄲, 主要從事水稻高產(chǎn)高效栽培研究。E-mail: lindan54@qq.com 2020-03-31 2020-06-15 * This work was supported by the National Key R&D Program of China(2018YFD0301202), Sichuan Science and Technology Support Plan Project (20YYJC2586) and the Funding of Academic and Technical Leaders Cultivation of Sichuan Province Human Resources and Social Security Department (2016-183). , E-mail: yongjians1980@163.com Mar. 31, 2020; Jun. 15, 20202.3 3種輪作模式下秸稈還田與氮肥運(yùn)籌對(duì)稻米食味品質(zhì)和蛋白質(zhì)含量的影響
2.4 3種輪作模式下秸稈還田與氮肥運(yùn)籌對(duì)稻米R(shí)VA譜特征值的影響
3 討論
3.1 不同輪作模式下秸稈還田與氮肥管理對(duì)產(chǎn)量形成的影響
3.2 不同輪作模式下秸稈還田與氮肥管理對(duì)雜交秈稻米質(zhì)的影響
4 結(jié)論