謝 騰,王雅君,叢宏斌,趙立欣,邱 凌,姚宗路,康 康,朱銘強(qiáng),張?zhí)鞓?lè),霍麗麗,袁艷文
玉米秸稈炭和典型農(nóng)業(yè)廢棄物混合成型與燃燒特性試驗(yàn)
謝 騰1,2,王雅君3,叢宏斌2,趙立欣1,4※,邱 凌1,姚宗路4,康 康1,朱銘強(qiáng)1,張?zhí)鞓?lè)1,霍麗麗4,袁艷文2
(1. 西北農(nóng)林科技大學(xué)機(jī)械與電子工程學(xué)院,楊凌 712100;2.農(nóng)業(yè)農(nóng)村部規(guī)劃設(shè)計(jì)研究院,農(nóng)業(yè)農(nóng)村部農(nóng)業(yè)廢棄物能源化利用重點(diǎn)實(shí)驗(yàn)室,北京 100125;3. 農(nóng)業(yè)農(nóng)村部環(huán)境保護(hù)科研監(jiān)測(cè)所,天津 300191;4. 中國(guó)農(nóng)業(yè)科學(xué)院農(nóng)業(yè)環(huán)境與可持續(xù)發(fā)展研究所,北京 100081)
以玉米秸稈炭和玉米秸稈、蘋果枝、沼渣、菌渣為原料,在成型壓力為6 MPa的條件下,研究了不同混配比例混合燃料的成型特性,并在此基礎(chǔ)上探討了特定混配比例下的混合樣品燃燒特性。研究結(jié)果表明:農(nóng)業(yè)廢棄物質(zhì)量分?jǐn)?shù)、種類對(duì)混合成型燃料穩(wěn)定性均有影響,農(nóng)業(yè)廢棄物占70%比例時(shí)混合成型燃料的抗跌碎強(qiáng)度均大于99.50%;玉米秸稈對(duì)成型燃料的穩(wěn)定性影響最為明顯,其質(zhì)量分?jǐn)?shù)大于30%時(shí),成型燃料抗跌碎強(qiáng)度達(dá)到99.68%以上,而沼渣和菌渣質(zhì)量分?jǐn)?shù)大于50%時(shí),其成型燃料的抗跌碎強(qiáng)度分別超過(guò)99.11%和99.71%;蘋果枝質(zhì)量分?jǐn)?shù)大于60%,其成型燃料抗跌碎強(qiáng)度超過(guò)99.34%;4種成型燃料的能量密度與原料相比分別提高14.93、11.36、11.74、14.53 GJ/m3;堆積密度分別提高792.99、596.92、605.63、820.12 kg/m3。該研究為農(nóng)業(yè)廢棄物新型成型燃料的開發(fā)提供了基礎(chǔ)支撐。
廢棄物;生物炭;試驗(yàn);抗跌碎強(qiáng)度;成型特性;燃燒特性
中國(guó)是傳統(tǒng)的農(nóng)業(yè)大國(guó),每年產(chǎn)生大量的生物質(zhì)資源。據(jù)統(tǒng)計(jì),2017年中國(guó)農(nóng)作物秸稈可收集資源量為8.27億t,其中玉米秸稈資源量約有37.2億t,占全國(guó)秸稈資源總量的50.5%[1]。農(nóng)作物秸稈產(chǎn)量占生物質(zhì)資源總量的三分之一,傳統(tǒng)的處理方法為直接燃燒,約2.6%經(jīng)處理后再利用[2]。農(nóng)作物秸稈炭化后再利用很大程度提高其利用效率,其水分、揮發(fā)分質(zhì)量分?jǐn)?shù)都有所降低,并且固定碳的質(zhì)量分?jǐn)?shù)增加了約一倍[3-4]。生物炭在固氮、碳、減少碳排放、固體成型燃料等多領(lǐng)域具有廣闊的應(yīng)用前景[5-6]。作為“環(huán)境友好型”燃料,從節(jié)能減排和能源利用角度考慮,合理的開發(fā)利用生物炭有著重要意義。
生物炭成型燃料即將粉粒狀的生物炭、黏合劑、助劑按照一定的比例混合攪拌,壓制成的具有一定形狀和機(jī)械強(qiáng)度的成型燃料[7-8]。成型燃料相對(duì)于粉末原料,體積更小,結(jié)構(gòu)更緊湊,為生物質(zhì)的儲(chǔ)存和運(yùn)輸很大程度上節(jié)約成本[9-11]。秦麗元等[12]研究生物質(zhì)和木質(zhì)素混合成型燃料,發(fā)現(xiàn)成型條件分別為:壓力6 kN、溫度80~100 ℃、含水率20%、木質(zhì)素添加量8%~9%時(shí),成型燃料品質(zhì)最佳。Ramírez等[13]研究了不同比例的生物炭和麻風(fēng)樹果殼混合成型燃料的特性,結(jié)果發(fā)現(xiàn)生物炭和麻風(fēng)樹果殼各占50%,加入25%水分成型粒徑為4 mm顆粒具有最好的機(jī)械穩(wěn)定性和更高的熱值。Yilmaz等[14]以農(nóng)業(yè)廢棄物和下水道污泥共混成型,發(fā)現(xiàn)成型燃料熱解產(chǎn)物中熱解油的品質(zhì)明顯提高。Hu等[15]研究溫度對(duì)成型壓力為128 MPa、含水率為35%的生物炭成型顆粒聯(lián)結(jié)機(jī)制的影響,結(jié)果發(fā)現(xiàn)隨著成型溫度的增加,成型顆粒堆積密度及能量損耗都隨之變化;并發(fā)現(xiàn)木屑在550~650 ℃熱解后致密成型的生物炭顆粒效果最佳。劉澤偉等[16]研究多種原料混合制備成型燃料,發(fā)現(xiàn)多種原料成型的穩(wěn)定性和耐摔強(qiáng)度均高于單一原料成型(與涂德浴等[17]研究結(jié)果類似),并在一定壓力范圍內(nèi)與穩(wěn)定性、抗跌落強(qiáng)度呈正相關(guān)。一般需要加入黏合劑或者提供更高的成型條件,這都會(huì)造成成型成本增加,故尋找合適的低成本黏結(jié)劑、減少成型成本,在成型燃料制備和推廣方面起著關(guān)鍵作用。
本文以玉米秸稈炭與玉米秸稈、蘋果枝、沼渣、菌渣等4種典型農(nóng)業(yè)廢棄物為成型原料,探究農(nóng)業(yè)廢棄物添加量和種類對(duì)成型燃料吸水特性、抗跌落強(qiáng)度的影響及特定混配比例下混合樣品燃燒特性,期望對(duì)混合成型和農(nóng)業(yè)廢棄物綜合利用提供參考。
選擇玉米秸稈炭作為成型燃料的原料,本研究中使用的玉米秸稈取材于西北農(nóng)林科技大學(xué)試驗(yàn)田。試驗(yàn)采用的蘋果枝、馬鈴薯厭氧發(fā)酵殘?jiān)托吁U菇渣等農(nóng)業(yè)廢棄物均在中國(guó)楊凌采集。
本試驗(yàn)生物炭是在長(zhǎng)800 mm,直徑100 mm的管式爐(圖1)(SK-G08123K,中國(guó)中環(huán))中慢速熱解制備。將6 g玉米秸稈裝入陶瓷坩堝中,并將坩堝置于石英管中心。每次試驗(yàn)前將真空泵與管式爐連接,排出空氣,然后將氮?dú)庖?0 mL/min的流速通過(guò)石英管,并運(yùn)行10 min。管式爐升溫速率設(shè)定為3 ℃/min,當(dāng)溫度達(dá)到550 ℃時(shí)保持恒溫150 min。將玉米秸稈炭和農(nóng)業(yè)廢棄物粉碎至小于80目,然后放在干燥箱中,105 ℃條件下干燥6 h用于下一步制備成型燃料。
1.氮?dú)馄?2.閥門 3.流量計(jì) 4.壓力表 5.管式爐 6.坩堝 7.換熱器 8.真空泵
本試驗(yàn)采用液壓造粒機(jī)(769YP-30T,Keqi,China)進(jìn)行致密化試驗(yàn)。液壓造粒機(jī)由內(nèi)徑為10 mm,長(zhǎng)度為100 mm的鋼制圓柱形模具和模套組成。設(shè)備的示意圖如圖2所示。
1.操縱輪 2.支撐柱 3.螺桿 4.成型柱 5.成型室 6.成型顆粒 7.模具基部 8.工作臺(tái) 9.泄壓閥 10.壓力表 11.儲(chǔ)油池 12.加壓手柄
制備方法和步驟:1)取制備好的生物炭和農(nóng)業(yè)廢棄物混合樣0.9 g、純凈水0.1 g混合,混合樣中農(nóng)業(yè)廢棄物質(zhì)量百分?jǐn)?shù)為10%~70%;2)將混合后的原料放入模套中;3)把混合物加壓至目標(biāo)壓力(6 MPa)后,保持3 min,防止回彈變形。成型燃料制備完成后,將模具中成型燃料取出并置于10 mL離心管中,準(zhǔn)備進(jìn)行下一步試驗(yàn)。本文中4種農(nóng)業(yè)廢棄物,玉米秸稈、蘋果枝、沼渣、杏鮑菇渣分別表示為:MS(Maize Stalk)、AB(Apple Branch)、BR(Biogas Residue)、MD(Mushroom Dreg);農(nóng)業(yè)廢棄物、純農(nóng)廢成型燃料及混合成型燃料分別表示為:AW(Agriculture Waste)、AWP(Agriculture Waste Pellets)、PF(Pellet Fuel)。
基于ASTM 1762-84對(duì)原料和成型燃料的工業(yè)分析。用氧彈熱量計(jì)(ZDHW-9000,HK,China)測(cè)量樣品的高位發(fā)熱量(Higher Heating Value,HHV),使用500 mL比重杯測(cè)量原料的堆積密度。由顆粒的質(zhì)量和體積計(jì)算燃料松弛密度。試驗(yàn)中用到的參數(shù)有成型燃料的直徑(),長(zhǎng)度()和質(zhì)量。其中成型燃料松弛密度是通過(guò)游標(biāo)卡尺和電子天平測(cè)量結(jié)果計(jì)算的。成型燃料呈圓柱型,其直徑和長(zhǎng)度均測(cè)量3次取平均值。成型后的混合顆粒放入10 mL離心管中24 h后進(jìn)行顆粒松弛密度測(cè)量,具體的計(jì)算方法[18]如公式(1)所示。
式中為成型燃料的質(zhì)量,kg;為成型燃料的直徑,m;為成型燃料長(zhǎng)度,m。
能量密度表示樣品儲(chǔ)存能量的能力,其通過(guò)公式(2)計(jì)算。
式中ED為能量密度,GJ/m3;HHV為高位發(fā)熱量,MJ/kg;為成型燃料松弛密度,kg/m3。
使用熱重分析儀(TGA/DSC,梅特勒-托利多,美國(guó))評(píng)估所選粒料的燃燒性能。將小于20 mg的樣品放入坩堝,并將坩堝放入分析儀中進(jìn)行分析,溫度以10 ℃/min從室溫逐漸升到800 ℃,載流氣體氧氣流量為20 mL/min。引入綜合燃燒特性指數(shù)()進(jìn)一步分析混合樣品綜合燃燒性能。
綜合燃燒特性指數(shù)[19-20]代表了生物質(zhì)燃料綜合燃燒能力,其值越大代表其燃燒特性越好,計(jì)算如公式(3)所示:
式中max為最大燃燒速率,%/min;V平均燃燒速率,%/min;T為著火溫度,℃;T為燃盡溫度,℃。
顆粒的穩(wěn)定性通過(guò)抗跌碎強(qiáng)度和抗壓強(qiáng)度來(lái)體現(xiàn)。抗跌落性的測(cè)量:讓成型顆粒從1.85 m高度自由下落到鋼板上,通過(guò)跌落至鋼板后的碎塊質(zhì)量與初始質(zhì)量之比來(lái)確定成型顆粒的抗跌碎強(qiáng)度[21]??箟簭?qiáng)度通過(guò)壓力計(jì)確定,壓力計(jì)對(duì)成型顆粒橫向持續(xù)加壓,顆粒受壓破損時(shí)的橫向最大受力確定為顆粒的抗壓強(qiáng)度??沟閺?qiáng)度和抗壓強(qiáng)度的確定分別進(jìn)行3次重復(fù)試驗(yàn),取平均值。
樣品的吸水特性是在恒溫恒濕培養(yǎng)箱(Model MD1400, Snijders, Netherlands)中進(jìn)行測(cè)量的。將樣品置于溫度為30 ℃,恒定相對(duì)濕度為70%的培養(yǎng)箱中。在最初的4 h內(nèi)每30 min對(duì)樣品質(zhì)量進(jìn)行稱量,然后在接下來(lái)的6 h內(nèi)以120 min的間隔對(duì)樣品質(zhì)量進(jìn)行稱量。此外,為了觀察長(zhǎng)時(shí)間暴露在潮濕環(huán)境下對(duì)成型顆粒的影響,分別在10 h和48 h進(jìn)行2次測(cè)量。
采用掃描電鏡(TM 3030,Hitachi,日本)觀察成型顆粒內(nèi)部的外觀形態(tài),使用手術(shù)刀將顆粒沿垂直于軸向的方向切成厚度大致相同的薄片,并將薄片黏在鋁制托盤上進(jìn)行電鏡掃描,設(shè)定入射電子束為5 kV,放大倍數(shù)設(shè)定為100倍與500倍。
原料的基本參數(shù)如表1所示,4類農(nóng)業(yè)廢棄物在工業(yè)分析及纖維素分析結(jié)果上各有特點(diǎn)。MS和AB的固定碳和揮發(fā)分質(zhì)量百分?jǐn)?shù)高于BR和MD,MS揮發(fā)分質(zhì)量百分?jǐn)?shù)為72.68%,AB揮發(fā)分質(zhì)量百分?jǐn)?shù)為73.58%,這說(shuō)明它們?cè)谌紵阅苌暇哂刑烊粌?yōu)勢(shì)[12,22-23]。BR與MD的灰分質(zhì)量百分?jǐn)?shù)較高,分別為36.16%和20.71%。在纖維素分析中,AB中纖維素質(zhì)量百分?jǐn)?shù)為40.55%,高于其他農(nóng)業(yè)廢棄物,而MD與BR的木質(zhì)素質(zhì)量百分?jǐn)?shù)較高,分別為34.76%和37.34%,主要原因是厭氧發(fā)酵與杏鮑菇生產(chǎn)過(guò)程中,原料中的纖維素和半纖維素更容易被厭氧微生物和真菌轉(zhuǎn)化。木質(zhì)素可作為成型過(guò)程中理想的黏結(jié)劑,成型過(guò)程中木質(zhì)素會(huì)填充成型顆粒的空隙,提高成型顆粒品質(zhì)[12,24]。相較于MS,其低溫?zé)峤獾玫降纳锾康墓潭ㄌ假|(zhì)量百分?jǐn)?shù)提高50.32%,揮發(fā)分質(zhì)量百分?jǐn)?shù)減低至5.69%,在其纖維素分析結(jié)果中,發(fā)現(xiàn)其纖維素質(zhì)量百分?jǐn)?shù)僅為4.60%,而半纖維素已經(jīng)基本無(wú)法檢測(cè)出,說(shuō)明低溫?zé)峤膺^(guò)程半纖維素已經(jīng)基本分解。
表1 成型原料的理化性質(zhì)
由圖3可知,AW質(zhì)量百分?jǐn)?shù)對(duì)抗跌碎強(qiáng)度的影響非常明顯,當(dāng)AW質(zhì)量百分?jǐn)?shù)僅有10%時(shí),BR10與AB10(10代表質(zhì)量分?jǐn)?shù),下同)顆粒無(wú)法成型,MS10與AB10經(jīng)過(guò)跌落試驗(yàn)后,二者的抗跌碎強(qiáng)度分別為49.99%和18.57%,證明此摻混比例所制混合成型顆??沟閺?qiáng)度極差。隨著農(nóng)業(yè)廢棄物質(zhì)量百分?jǐn)?shù)的增加,混合成型顆粒的抗跌碎強(qiáng)度呈增加趨勢(shì),當(dāng)MS占比30%時(shí),顆??沟閺?qiáng)度為99.68%;當(dāng)MD和BR占比50%時(shí),顆??沟閺?qiáng)度分別為99.11%和99.71%;AB占比例為60%時(shí),混合成型顆??沟閺?qiáng)度為99.34%,說(shuō)明農(nóng)業(yè)廢棄物種類對(duì)混合成型燃料穩(wěn)定性影響存在差異。為保證4類共混成型顆粒的平均抗跌碎強(qiáng)度均能保持在99.50%以上,即在跌落試驗(yàn)中基本無(wú)破損,將農(nóng)業(yè)廢棄物、生物炭與水的共混比例設(shè)置為7:2:1,制得的4種共混成型顆粒為MS70、AB70、BR70和MD70,平均抗跌碎強(qiáng)度分別為99.84%、99.78%、99.81%和99.89%。通過(guò)壓力計(jì)確定的MS70、AB70、BR70和MD70的抗壓強(qiáng)度分別為98.73、220.17、92.33和162.13N,抗壓性能較高??紤]廢棄物最大化利用7:2:1的共混成型比例滿足成型燃料在抗跌碎強(qiáng)度與抗壓強(qiáng)度的要求[12]。
圖3 AW添加量對(duì)成型顆??沟閺?qiáng)度的影響
為研究PF的黏結(jié)機(jī)理,對(duì)AW以及PF(Pallets Fuel)的橫向切片進(jìn)行電鏡掃描。掃描結(jié)果如圖4所示,圖4a~圖4e分別為MS、AB、BR、MD、Biochar原料。與生物炭相比,AW有顆粒大、分布松散、密度小、有較大間隙等特點(diǎn);而生物質(zhì)熱解后,纖維素、半纖維素、木質(zhì)素部分分解,導(dǎo)致其脆弱、易于研磨[25]。生物炭和AW混合成型燃料如圖4f~圖4i,致密成型時(shí)脆性生物炭顆粒相互擠壓或與AW相互碰撞,生物炭填充在AW的間隙之中;木質(zhì)素受壓軟化,壓力穩(wěn)定后軟化的木質(zhì)素硬化,形成“固體橋梁”[26]。圖4f~圖4i中左下角為成型燃料,右上角為成型燃料表面500倍電鏡掃描圖。
注:70分別代表玉米秸稈、蘋果枝、沼渣、菌渣質(zhì)量分?jǐn)?shù)。
木質(zhì)素是苯丙烷單元通過(guò)C-C和C=O組成的高分子聚合材料,由于其結(jié)構(gòu)特殊,包含多個(gè)苯環(huán),苯環(huán)間以化學(xué)鍵連成為大分子化合物,且苯環(huán)上尚有可發(fā)生交聯(lián)反應(yīng)的空位可進(jìn)一步反應(yīng)增大分子量而固化[27-28]。因此,AW的添加引入木質(zhì)素,從而促進(jìn)混合燃料的成型[12]。
對(duì)AW、AWP和PF(MS70、AB70、BR70、MD70)的能量密度、堆積密度進(jìn)行分析,結(jié)果如圖5所示。研究者[29-30]發(fā)現(xiàn)成型顆粒含水率在5%~12%其穩(wěn)定性和燃料性能最佳,本試驗(yàn)成型燃料含水率均在7%左右,說(shuō)明試驗(yàn)原料配備合理。
由圖5a可知,未成型的AW能量密度遠(yuǎn)小于成型后,約為AWP能量密度的13.97%~38.66%,說(shuō)明成型有助于AW能量密度的提高;BR組混合成型能量密度最高,為16.41 GJ/m3,結(jié)合圖5b可知BR的堆積密度最高,為561.96 kg/m3,主要因?yàn)樯镔|(zhì)經(jīng)過(guò)厭氧發(fā)酵后纖維素、半纖維素被大量分解[31],組織破壞后堆積密度增加,根據(jù)能量密度計(jì)算公式可知,熱值相差較小時(shí),堆積密度越大,則能量密度越大。與AW相比,AWP和PF的能量密度和堆積密度很大程度提高,MS70、AB70、BR70、MD70比4種AW原料的能量密度分別提高了14.93、11.36、11.74、14.53 GJ/m3;堆積密度分別提高了792.99、596.92、605.63、820.12 kg/m3。說(shuō)明混合成型可減少AW的運(yùn)輸、存儲(chǔ)成本,促進(jìn)AW綜合利用。
混合成型后燃料能量密度、堆積密度相比農(nóng)業(yè)廢棄物原料均大幅度提高。其中,玉米秸稈的能量密度和堆積密度提高最為顯著,分別比玉米秸稈原料提高了4.25倍和5.06倍;蘋果枝的能量密度和堆積密度分別提高了0.43倍和0.58倍;沼渣的能量密度和堆積密度分別提高了0.08倍和0.59倍、菌渣的能量密度和堆積密度分別提高了1.65倍和2.52倍,可降低運(yùn)輸、存儲(chǔ)成本。
圖5 AW、AWP、PF的能量密度及堆積密度
分析混合成型燃料吸水特性時(shí),對(duì)相同壓力下制成的AW成型燃料與混合成型燃料同時(shí)進(jìn)行吸水性測(cè)試。試驗(yàn)結(jié)果如圖6所示,除BR成型燃料和BR70,其他成型燃料在2 000 min后含水率趨于穩(wěn)定。整體上,PF疏水性能均優(yōu)于AWP,以MD70和MD成型燃料為例,經(jīng)過(guò)8 000 min的水分吸收,MD成型燃料因吸水導(dǎo)致質(zhì)量增加了5.97%,與MD70相比增加了0.35個(gè)百分點(diǎn)。此外,AB70與AB成型燃料相比含水率減少0.44個(gè)百分點(diǎn);BR70與BR成型燃料相比含水率減少0.58個(gè)百分點(diǎn);MS70與MS成型燃料相比含水率減少0.82個(gè)百分點(diǎn)。證明生物炭的添加可提高混合燃料的疏水性能。對(duì)生物炭粉末和其他成型燃料進(jìn)行吸水性測(cè)試,發(fā)現(xiàn)生物炭吸水導(dǎo)致質(zhì)量?jī)H增加3.95%。試驗(yàn)所用生物炭粉末由玉米秸稈低溫?zé)峤庵苽?,說(shuō)明低溫?zé)峤夤に嚳商岣哂衩捉斩挼氖杷訹25]。
在AWP的吸水性比較中,發(fā)現(xiàn)吸水性排序?yàn)锳B>MD>MS>BR。且在PF的吸水性排序中,也為AB70>MD70>MS70>BR70。說(shuō)明在相同的摻混比例、成型壓力的條件下,BR70和BR成型燃料具有良好的疏水性能,而AB70和AB成型燃料疏水性較差。
圖6 AWP和PF的吸水特性
燃料特性是評(píng)價(jià)生物質(zhì)成型燃料最重要的指標(biāo)之一。通過(guò)熱重分析儀對(duì)混合樣品進(jìn)行燃燒特性試驗(yàn)。確定各組混合樣品的著火溫度、燃盡溫度、平均燃燒速率、最大燃燒速率、綜合燃燒特征指數(shù)與燃燒穩(wěn)定性判定指數(shù)等指標(biāo)[19-20,32]。本文利用TG-DTG法確定著火溫度[33],以玉米秸稈炭燃燒熱重曲線為例,如圖7所示:失質(zhì)量速率最大值對(duì)應(yīng)縱坐標(biāo)為玉米秸稈炭的最大燃燒速率max,對(duì)應(yīng)橫坐標(biāo)為max。由max做垂線交TG曲線為點(diǎn)a,做a點(diǎn)切線與TG曲線前期質(zhì)量穩(wěn)定階段切線交于點(diǎn)b,過(guò)b點(diǎn)做橫坐標(biāo)垂線,交點(diǎn)為T。T為燃盡溫度,本試驗(yàn)中燃燒物質(zhì)燃燒失質(zhì)量速率基本恒定為0時(shí),即認(rèn)為此時(shí)溫度為燃盡溫度。因此,可將玉米秸稈炭和混合樣品的燃燒分為4個(gè)階段:1)水分蒸發(fā)階段:120 ℃之前;2)揮發(fā)分析出階段:120 ℃到T;3)固定碳燃燒階段:T到max;4)燃盡階段:max到終溫。由圖可知玉米秸稈炭T為327.83 ℃,剩余質(zhì)量百分?jǐn)?shù)90.68%;T為574.83 ℃,剩余質(zhì)量百分?jǐn)?shù)為15.31%,max為6.87%/min,對(duì)max為329.67 ℃,經(jīng)計(jì)算得V為1.09%/min。
利用上述方法對(duì)4種混合樣品燃燒熱重曲線進(jìn)行分析,燃燒熱重曲線如圖8所示。MS70、AB70、BR70、MD70的著火溫度分別為245.33、246.17、271.00、255.33 ℃,均低于玉米秸稈炭的著火溫度,說(shuō)明AW與玉米秸稈炭混合樣品比玉米秸稈炭容易點(diǎn)火燃燒,原因是AW添加帶來(lái)大量揮發(fā)分,而揮發(fā)分質(zhì)量百分?jǐn)?shù)越高,T值越低[34]。在T比較中,MS70、AB70、BR70、MD70的燃盡溫度分別為488.50、474.17、550.33、525.00 ℃,與表1中MS、AB、BR、MD揮發(fā)分質(zhì)量百分?jǐn)?shù)排序恰好相反,說(shuō)明混合樣品中揮發(fā)分質(zhì)量百分?jǐn)?shù)會(huì)影響其燃盡溫度。對(duì)綜合燃燒特性指數(shù)進(jìn)行分析可知,4種混合樣品的值均高于生物炭,說(shuō)明AW的添加提高成型燃料的綜合燃燒能力。其中,MS70和BR70的值分別為6.55×10-6、3.09×10-6,為綜合性能較好的兩種成型燃料。長(zhǎng)期施用沼肥能增加土壤養(yǎng)分,但土壤養(yǎng)分和鹽分快速累積,對(duì)土壤環(huán)境帶來(lái)較大的污染風(fēng)險(xiǎn)[35]。因此,用沼渣做成型燃料是對(duì)其利用的另一途徑。
注:Ti、Te、Vmax 、Tmax分別為著火溫度、燃盡溫度、最大燃燒速率、最大燃燒速率對(duì)應(yīng)溫度。a為Tmax的垂線與TG曲線交點(diǎn);b為TG曲線前期質(zhì)量穩(wěn)定階段切線與a切線交點(diǎn)。
圖8 混合樣品的燃燒特性
表2 混合樣品的燃燒特性指數(shù)
1)混合成型試驗(yàn)表明,農(nóng)業(yè)廢棄物種類及其添加量均會(huì)影響成型燃料的穩(wěn)定性,其中玉米秸稈對(duì)成型燃料的穩(wěn)定性影響最為明顯,玉米秸稈添加量為30%時(shí),其成型燃料抗跌碎強(qiáng)度為99.68%,而沼渣和菌渣添加量為50%時(shí),其成型燃料的抗跌碎強(qiáng)度分別達(dá)到99.11%和99.71%;蘋果枝添加量為60%,其成型燃料抗跌碎強(qiáng)度為99.34%。農(nóng)業(yè)廢棄物、生物炭與水的共混比例設(shè)置為7:2:1,制得的4種共混成型顆??沟閺?qiáng)度分別為99.84%、99.78%、99.81%和99.89%,具有較高的機(jī)械穩(wěn)定性。
2)混合成型后燃料能量密度、堆積密度相比農(nóng)業(yè)廢棄物原料均大幅度提高。其中,玉米秸稈的能量密度和堆積密度提高最為顯著,分別比玉米秸稈原料提高了4.25倍和5.06倍;蘋果枝的能量密度和堆積密度分別提高了0.43倍和0.58倍;沼渣的能量密度和堆積密度分別提高了0.08倍和0.59倍、菌渣的能量密度和堆積密度分別提高了1.65倍和2.52倍,可降低運(yùn)輸、存儲(chǔ)成本。
3)混合成型燃料疏水性能均優(yōu)于農(nóng)業(yè)廢棄物成型燃料,菌渣質(zhì)量百分?jǐn)?shù)70%成型燃料相比于純菌渣成型燃料含水率減少0.35個(gè)百分點(diǎn);蘋果枝質(zhì)量百分?jǐn)?shù)70%相較于純蘋果枝成型燃料含水率減少0.44個(gè)百分點(diǎn);沼渣質(zhì)量百分?jǐn)?shù)70%較于純沼渣成型燃料含水率減少0.58個(gè)百分點(diǎn);玉米秸稈質(zhì)量百分?jǐn)?shù)70%相較于純玉米秸稈成型燃料含水率0.82個(gè)百分點(diǎn)。綜合分析表明,成型壓力為6 MPa時(shí),70%的玉米秸稈、沼渣與玉米秸稈炭混合成型燃料相對(duì)理想。
[1] 叢宏斌,姚宗路,趙立欣,等. 中國(guó)農(nóng)作物秸稈資源分布及其產(chǎn)業(yè)體系與利用路徑[J]. 農(nóng)業(yè)工程學(xué)報(bào),2019,35(22):132-140.
Cong Hongbin, Yao Zonglu, Zhao Lixin, et al. Distribution of crop straw resources and its industrial system and utilization path in China [J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2019, 35(22): 132-140. (in Chinese with English abstract)
[2] 李忠. 生物質(zhì)秸稈綜合利用現(xiàn)狀與對(duì)策分析[J]. 中國(guó)資源綜合利用,2017,35(12):72-74.
Li Zhong. The status quo and countermeasures of comprehensive utilization of biomass stalks[J]. China Resources Comprehensive Utilization, 2017, 35(12): 72-74. (in Chinese with English abstract)
[3] 秦麗元,張世慧,高忠志,等. 不同添加劑油茶殼炭粉成型性能與燃燒特性研究[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2018,49(7):303-310.
Qin Liyuan, Zhang Shihui, Gao Zhongzhi, et al. Molding fuel and combustion characteristics of biochar prepared from camellia oleifera shell pyrolysis[J]. Transactions of the Chinese Society for Agricultural Machinery, 2018, 49(7): 303-310. (in Chinese with English abstract)
[4] 潘偉林. 生物質(zhì)炭燃燒及氣化特性實(shí)驗(yàn)研究[D]. 南京:南京師范大學(xué),2013.
Pan Weilin. Experimental Study on Combustion and Gasification Characteristics of Biomass Carbon[D]. Nanjing: Nanjing Normal University, 2013. (in Chinese with English abstract)
[5] 何緒生,耿增超,佘雕,等. 生物炭生產(chǎn)與農(nóng)用的意義及國(guó)內(nèi)外動(dòng)態(tài)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2011,27(2):1-7.
He Xusheng, Geng Zengchao, She Diao, et al. Implications of production and agricultural utilization of biochar and its international dynamics[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2011, 27(2): 1-7. (in Chinese with English abstract)
[6] 孔絲紡,姚興成,張江勇,等. 生物質(zhì)炭的特性及其應(yīng)用的研究進(jìn)展[J]. 生態(tài)環(huán)境學(xué)報(bào),2015,24(4):716-723.
Kong Sifang, Yao Xingcheng, Zhang Jiangyong, et al. Review of characteristics of biochar and research progress of its applications[J]. Ecology and Environmental Sciences. 2015, 24(4): 716-723. (in Chinese with English abstract)
[7] 李澤亞,伍林,饒文昊,等. 生物質(zhì)炭成型燃料的成型機(jī)理及制備工藝研究進(jìn)展[J]. 生物質(zhì)化學(xué)工程,2017,51(6):62-66.
Li Zeya, Wu Lin, Rao Wenhao, et al. Effect of torrefaction on characteristics of pyrolytic products of biomass[J]. Biomass Chemical Engineering. 2017, 51(6): 62-66. (in Chinese with English abstract)
[8] 姚云隆,張守玉,吳順延,等. 成型工藝參數(shù)對(duì)生物質(zhì)熱壓成型燃料理化特性的影響研究[J]. 太陽(yáng)能學(xué)報(bào),2018,39(7):1918-1923.
Yao Yunlong, Zhang Shouyu, Wu Shunyan, et al. Effect of briquetting process parameters on properties of briquette prepared from biomass[J]. Actae Nergiaes Olaris Sinica. 2018, 39(7): 1918-1923. (in Chinese with English abstract)
[9] Ines M. Ríos-Badran, Ivan Luzardo-Ocampo, Juan Fernando García-Trejo, et al. Production and characterization of fuel pellets from rice husk and wheat straw[J]. Renewable Energy, 2020, 145: 500-507.
[10] 楊偉. 生物質(zhì)成型燃料顆粒物生成特性研究[D]. 武漢:華中科技大學(xué),2018.
Yang Wei. Study on the Formation Characteristics of Particulate Matter During Biomass Pellets Combustion[D]. Wuhan: Huazhong University of Science and Technology, 2018. (in Chinese with English abstract)
[11] 司耀輝. 秸稈類生物質(zhì)成型燃料品質(zhì)提升及粘結(jié)機(jī)理研究[D]. 武漢:華中科技大學(xué),2018.
Si Yaohui. Study on the Quality Promotion and Bonding Mechanism of Agricultural Residues Pellets[D]. Wuhan: Huazhong University of Science and Technology, 2018. (in Chinese with English abstract)
[12] 秦麗元,張世慧,高忠志,等. 生物炭與木質(zhì)素混合成型及其燃燒特性研究[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2017,48(4):276-283.
Qin Liyuan, Zhang Shihui, Gao Zhongzhi, et al. Effect of torrefaction on characteristics of pyrolytic products of biomass[J]. Transactions of the Chinese Society for Agricultural Machinery, 2017, 48(4): 276-283. (in Chinese with English abstract)
[13] Ramírez V, Martí-Herrero J, Romero M, et al. Energy use of Jatropha oil extraction wastes: Pellets from biochar and Jatropha shell blends[J]. Journal of Cleaner Production, 2019, 215: 1095-1102.
[14] Yilmaz E, Wzorek M, Ak?ay S. Co-pelletization of sewage sludge and agricultural wastes[J]. Journal of Environmental Management, 2018, 216: 169-175.
[15] Hu Q, Yang H, Yao D, et al. The densification of bio-char: Effect of pyrolysis temperature on the qualities of pellets[J]. Bioresource Technology, 2016, 200: 521-527.
[16] 劉澤偉,戴世金,黃啟飛,等. 松木屑/煙煤粉/PVC粉混合制備成型燃料[J]. 中國(guó)環(huán)境科學(xué),2019,39(7):2938-2943.
Liu Zewei, Dai Shijin, Huang Qifei et al. Production of pellet fuel derived from pinewood sawdust/PVC plastic/bitumite mixed together[J]. China Environmental Science, 2019, 39(7): 2938-2943. (in Chinese with English abstract)
[17] 涂德浴,李安心,何貴生. 水稻秸稈與木屑混合原料熱壓成型試驗(yàn)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2015,31(20):205-211.
Tu Deyu, Li Anxin, He Guisheng. Hot pressing forming experiment of the rice straw and sawdust mixed material[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2015, 31(20): 205-211. (in Chinese with English abstract)
[18] 陳樹人,段建,姚勇,等. 環(huán)模式成型機(jī)壓縮水稻稈成型工藝參數(shù)優(yōu)化[J]. 農(nóng)業(yè)工程學(xué)報(bào),2013,29(22):32-41.
Chen Shuren, Duan Jian, Yao Yong, et al. Optimization of technique parameters of annular mould briquetting machine for straw briquette compressing[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2013, 29(22): 32-41. (in Chinese with English abstract)
[19] 熊紹武,張守玉,吳巧美,等. 生物質(zhì)炭燃燒特性與動(dòng)力學(xué)分析[J]. 燃料化學(xué)學(xué)報(bào),2013,41(8):958-965.
Xiong Shaowu, Zhang Shouyu, Wu Qiaomei et al. Investigation on combustion characteristics and kinetics of biochar[J]. Journal of Fuel Chemistry and Technology, 2013, 41(8): 958-965. (in Chinese with English abstract)
[20] 范方宇,邢獻(xiàn)軍,施蘇薇,等. 水熱生物炭燃燒特性與動(dòng)力學(xué)分析[J]. 農(nóng)業(yè)工程學(xué)報(bào),2016,32(15):219-224.
Fan Fangyu, Xing Xianjun, Shi Suwei, et al. Combustion characteristic and kinetics analysis of hydrochars[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2016, 32(15): 219-224. (in Chinese with English abstract)
[21] Al-Widyan M I, Al-Jalil H F. Stress density relationship and energy requirement of compressed oive cake[J]. Applied Engineering in Agriculture, 2001, 17(6): 749-753.
[22] Ibeto C N, Ayodele J A, Anyanwu C N. Evaluation of pollution potentials and fuel properties of Nigerian subbituminous coal and its blends with biomass[J]. Journal of Materials and Environmental Science, 2016, 7(8): 2929-2937.
[23] Mahalingam Arulprakasajothi, Nagappan Beemkumar, Jayaram Parthipan, et al. Investigating the physiochemical properties of densified biomass pellet fuels from fruit and vegetable market waste[J]. Arabian Journal for Science and Engineering, 2020, 45: 563-574.
[24] Li Weizhen, Jiang Yang, Yin Xiuli. Characterization of hydrolysis lignin bonding properties during the pelletization of eucalyptus sawdust[J]. Waste and Biomass Valorization, 2018, 11(3): 995-1003.
[25] 朱丹晨,胡強(qiáng),何濤,等. 生物質(zhì)熱解炭化及其成型提質(zhì)研究[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2018,39(7):1938-1945.
Zhu Danchen, Hu Qiang, He Tao, et al. Integrate quality upgrading of biomass through pyrolysis and densification[J]. Transactions of the Chinese Society for Agricultural Machinery, 2018, 39(7): 1938-1945. (in Chinese with English abstract)
[26] Kang Kang, Zhu Mingqiang, Sun Guotao, et al. Codensi?cation of Eucommia Ulmoides Oliver stem with pyrolysis oil and char for solid biofuel: An optimization and characterization study[J]. Applied Energy, 2018, 223: 347-357.
[27] 黃志桂,黃冬根. 改性黑液木質(zhì)素膠-木屑纖維板的研制[J].西南師范大學(xué)學(xué)報(bào),1993,18(1):44-51.
Huang Zhigui, Huang Donggen. The making of the super hard sawdust fiberboard with the modified black lignin as adhesive[J]. Journal of Southwest China Normal University, 1993, 18(1): 44-51. (in Chinese with English abstract)
[28] Li Yanding, Li Shuai, Kim Hoon, et al. An “ideal lignin” facilitates full biomass utilization[J]. Science Advances, 2018, 4(9).
[29] Li Yadong, Liu Henry. High-pressure densification cation of wood residues to form an upgraded fuel[J]. Biomass and Bioenergy, 2000, 19: 177-186.
[30] 回彩娟. 生物質(zhì)燃料常溫高壓致密成型技術(shù)及成型機(jī)理研究[D]. 北京:北京林業(yè)大學(xué),2006.
Hui Caijuan. The Studies of Biomass Solidifying Technology and Principle with High Pressure on Natural Conditions for Bio-fuel Making[D]. Beijing: Beijing Forestry University, 2006. (in Chinese with English abstract)
[31] 王芳,張德俐,高子翔,等. 玉米秸稈及其發(fā)酵沼渣熱解動(dòng)力學(xué)研究[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2018,49(1):296-304.
Wang Fang, Zhang Deli, Gao Zixiang, et al. Kinetics of pyrolysis of corn stove and it's fermentation residue[J]. Transactions of the Chinese Society for Agricultural Machinery, 2018, 49(1): 296-304. (in Chinese with English abstract)
[32] 馬騰,郝彥輝,姚宗路,等. 秸稈水熱生物炭燃燒特性評(píng)價(jià)[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2018,49(12):340-346.
Ma Teng, Hao Yanhui, Yao Zonglu, et al. Evaluation on combustion characteristics of straw hydrothermal bio-char[J]. Transactions of the Chinese Society for Agricultural Machinery, 2018, 49(12): 340-346. (in Chinese with English abstract)
[33] 盧洪波,戴惠玉,馬玉鑫. 生物質(zhì)三組分燃燒特性及動(dòng)力學(xué)分析[J]. 農(nóng)業(yè)工程學(xué)報(bào),2012,28(17):186-191.
Lu Hongbo, Dai Huiyu, Ma Yuxin. Combustion characteristics and dynamic analysis of three biomass components[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2012, 28(17): 186-191. (in Chinese with English abstract)
[34] 馬培勇,陳水林,吳照斌,等. 生物質(zhì)三組分與成型秸稈燃燒特性及反應(yīng)動(dòng)力學(xué)研究[J]. 太陽(yáng)能學(xué)報(bào),2018,39(3):837-843.
Ma Peiyong, Chen Shuilin, Wu Zhaobin, et al. Combustion characteristic and dynamic analysis of three biomass components and straw briquette[J]. Acta Energiae Solaris Sinica, 2018, 39(3): 837-843. (in Chinese with English abstract)
[35] 郭全忠,龔曉松,劉化隆. 長(zhǎng)期施用沼肥對(duì)設(shè)施田土壤養(yǎng)分和鹽分累積量的影響[J]. 西北農(nóng)業(yè)學(xué)報(bào),2020,29(1):127-134.
Guo Quanzhong, Gong Xiaosong, Liu Hualong. Study on effect of long-term application of biogas manure on soil nutrients and salt in protected land vegetable field[J]. Acta Agriculturae Boreali-occidentalis Sinica, 2020, 29(1): 127-134. (in Chinese with English abstract)
Experiment on combustion characteristic and densified biomass pellets from maize stalk char mixing typical agricultural wastes
Xie Teng1,2, Wang Yajun3, Cong Hongbin2, Zhao Lixin1,4※, Qiu Ling1, Yao Zonglu4, Kang Kang1, Zhu Mingqiang1, Zhang tianle1, Huo lili4, Yuan Yanwen2
(1.,,712100,; 2.,,,100125,; 3.,,300191,; 4.,,100081,)
Renewable energy, often referred to as clean energy, become necessary in recent years, as the consumption of fossil energy has worsened the environment and global climate. The rich agriculture resources in China can be expected to achieve the typical renewable energy for the sustainable development. Normally, biochar can be used as adsorbing materials, catalyst carrier and fuel, due to its abundant pore structure. This study aims to investigate the combustion characteristic of a molding fuel that fabricated by maize straw char and agricultural wastes. Four kinds of agriculture wastes were selected as adhesive, including the maize stalk, apple tree branch, biogas residue and mushroom dreg, and then molded with maize stalk char to manufactured by a hydraulic granulating machine. The maize stalk char was produced by the slow pyrolysis at 550℃, with the heating rate of 3℃/min. The pressure of all the pellets was 6 MPa, while the content of agriculture waste was 10%-70% in weight. The drop test machine was used to examine the crush resistance of molding fuel and agriculture waste pellets. The results showed that the combination properties of molding fuel depended strongly on the type and content of agricultural wastes during densification. Furthermore, the mechanical strength of molding fuel increased with the increase of agricultural waste content. The durability of molding fuel particles reached 99.68%, when the content of agriculture waste was 70%, with an emphasis on the content of maize stalk. In addition, a chamber with constant temperature and humidity was used to explore the water absorption characteristics of the densified biomass pellets. The water absorption characteristics of molding fuel can be ranked in order, AB70, MD70, MS70, BR70, lower than four kind of agriculture waste pellets. Scanning electron microscope was used to characterize the binding mechanism of molding fuel. The surface of molding fuel became more smoothly as the combustion proceeded. The lignin was regarded as the major component of binder in the process of molding. The thermogravimetric analyzer was used to analyze the combustion characteristics of the molding fuel. The energy density and bulk density of MS70 improved by 4.25 times and 5.06 times, respectively, compared with other agriculture wastes. It infers that the molding fuel can be beneficial to the storage and transportation of agriculture wastes. The energy density of molding fuel MS70, AB70, BR70,MD70 improved to 14.93, 11.36, 11.74, 14.53 GJ/m3, respectively, compared with AW materials. Two kind of ideal molding fuel MS70 and BR70 were achieved the optimal performance. The combustion characteristic index of all the molding fuel were higher than that of biochar, whereas, the ignition temperature of each molding fuel was lower than that of biochar. Therefore, the mix molding of agricultural wastes and biochar can be a great efficient approach to improve the utilization of agriculture wastes. The research can provide a new promising reference for the comprehensive utilization of agricultural waste, as well as molding fuels.
waste; biochar; experiment; crush resistance; molding characteristics; combustion characteristics
謝騰,王雅君,叢宏斌,等. 玉米秸稈炭和典型農(nóng)業(yè)廢棄物混合成型與燃燒特性試驗(yàn)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2020,36(15):227-234.doi:10.11975/j.issn.1002-6819.2020.15.028 http://www.tcsae.org
Xie Teng, Wang Yajun, Cong Hongbin, et al. Experiment on combustion characteristic and densified biomass pellets from maize stalk char mixing typical agricultural wastes[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2020, 36(15): 227-234. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2020.15.028 http://www.tcsae.org
2020-04-12
2020-07-13
現(xiàn)代農(nóng)業(yè)產(chǎn)業(yè)技術(shù)體系專項(xiàng)資金資助(CARS-02);中國(guó)博士后科學(xué)基金面上項(xiàng)目(2019M663831)
謝騰,主要從事生物質(zhì)能源方向研究。Email:1436054679@qq.com
趙立欣,研究員,主要從事生物質(zhì)能資源開發(fā)利用技術(shù)與政策研究。Email:zhaolixin5092@163.com
10.11975/j.issn.1002-6819.2020.15.028
TK6
A
1002-6819(2020)-15-0227-08