虎膽·吐馬爾白,焦 萍,米力夏提·米那多拉
新疆干旱區(qū)成齡核桃滴灌制度優(yōu)化
虎膽·吐馬爾白,焦 萍,米力夏提·米那多拉
(新疆農(nóng)業(yè)大學(xué)水利與土木工程學(xué)院,烏魯木齊 830052)
科學(xué)合理的灌溉制度是提高灌水利用效率的主要因素。該研究采用HYDRUS-2D模型結(jié)合尋優(yōu)模型相結(jié)合的方法,研究新疆核桃滴灌優(yōu)化制度。利用2018年和2019年定點(diǎn)觀測(cè)土壤水分?jǐn)?shù)據(jù)進(jìn)行模型率定與驗(yàn)證;利用模型設(shè)定128種情景進(jìn)行模擬研究,分析南疆干旱區(qū)滴灌成齡核桃不同灌溉制度下的深層滲漏和水分脅迫。應(yīng)用模型結(jié)合灌溉制度尋優(yōu)函數(shù)探求滴灌條件下成齡核桃各灌溉制度土壤水分通量。結(jié)果表明:HYDRUS-2D模型模擬土壤含水率精度較高,2為83.03%~83.73%,均方根誤差在0.016~0.017 cm3/cm3范圍。根據(jù)模型模擬結(jié)果,推薦新疆干旱區(qū)核桃滴灌制度為灌水定額35 mm,灌溉11次,灌水周期9 d,灌溉定額385 mm或者灌水定額50 mm,灌溉7次,灌水周期14 d,灌溉定額350 mm,在以上滴灌制度下,可最大限度減少農(nóng)田水分損失和提高灌水利用效率。該研究可為制定南疆滴灌條件下成齡核桃適宜灌溉制度提供參考。
灌溉;優(yōu)化;新疆;干旱區(qū);核桃;滴灌制度;HYDRUS-2D
對(duì)處于典型干旱區(qū)的南疆地區(qū)來(lái)說(shuō),灌溉是決定其作物產(chǎn)量的關(guān)鍵因素[1]。適宜的灌溉制度不僅可以維持作物產(chǎn)量,而且可以提高作物水分利用效率,實(shí)現(xiàn)有限水資源高效利用。作物灌溉制度包括全生育期灌水次數(shù)、灌水周期、灌水定額和灌溉定額。確定灌溉制度的常用方法為小區(qū)試驗(yàn)[2],但大田試驗(yàn)耗時(shí)費(fèi)力,易受天氣影響。因HYDRUS模型對(duì)土壤水鹽熱運(yùn)移模擬的精確度高,模型可靠等優(yōu)點(diǎn)[3-6]。很多學(xué)者都將其用于田間土壤水分的運(yùn)移模擬[7-9]及灌溉制度的研究[10-14]。如,楊鵬年等[15]對(duì)干旱區(qū)不同地下水埋深膜下滴灌灌溉制度做了模擬研究,蔣光昱等[16]對(duì)疏勒河流域的辣椒灌溉制度做了優(yōu)化分析,得到了畦灌條件下的灌溉制度,劉曉媛等[17]模擬冬小麥夏玉米節(jié)水灌溉模式下的土壤水分運(yùn)移,得出了夏玉米、冬小麥季的灌溉量,王在敏等[18]對(duì)棉花微咸水膜下的滴灌灌溉制度做了優(yōu)化。在農(nóng)田中,作物生長(zhǎng)耗水量主要源自降雨和灌溉,農(nóng)田水分消耗包括蒸發(fā)、蒸騰和深層滲漏等[19]。HYDRUS-2D模型中包括的土壤水分動(dòng)力學(xué)模型、根系吸水模型和蒸發(fā)蒸騰模型3個(gè)模塊可以精確模擬蒸發(fā)、蒸騰和深層滲漏。以深層滲漏量較小又無(wú)水分脅迫為判斷標(biāo)準(zhǔn),減少無(wú)效農(nóng)田水分消耗,提高灌溉水利用效率,可以解決大田試驗(yàn)費(fèi)時(shí)耗力和南疆成齡核桃樹灌溉水利用率低等問(wèn)題。因此,通過(guò)模擬計(jì)算不同灌溉制度下的深層滲漏量與作物水分脅迫量確定最優(yōu)灌溉制度,利用模型研究作物耗水規(guī)律,不受其研究地域影響,大大縮短試驗(yàn)周期,增加試驗(yàn)變量,可排除干擾因子,最終得到試驗(yàn)因素間的關(guān)系[20]。本研究擬將HYDRUS-2D模型與成齡核桃田間滴灌灌溉制度尋優(yōu)相結(jié)合,模擬各灌溉制度情景方案下的田間水分通量來(lái)選擇最適宜的滴灌灌溉制度,以期為南疆滴灌成齡核桃灌溉提供理論指導(dǎo)和科學(xué)依據(jù)。
研究區(qū)位于新疆阿克蘇地區(qū)紅旗坡農(nóng)場(chǎng),地處天山南坡中段,塔里木盆地邊緣。地理坐標(biāo)為80°20′E,41°16′N,該地海拔1 130 m,屬暖溫帶干旱性氣候,年內(nèi)及晝夜氣溫值變化較大,多年平均太陽(yáng)總輻射量544.115~590.156 kJ/cm2,多年平均日照時(shí)數(shù)2 855~2 967 h,無(wú)霜期達(dá)205~219 d,多年平均降水量42.4~94.4 mm,多年平均氣溫11.2 ℃,年有效積溫為3 950 ℃。試驗(yàn)區(qū)面積6 666.7 m2,0~120 cm土壤平均干容重1.39 g/cm3、田間持水量19.44%。地下水埋深在6 m以下,水質(zhì)符合灌溉水質(zhì)標(biāo)準(zhǔn)(GB5084-2005)。
試驗(yàn)樣本樹為11 a成齡核桃樹,品種為“溫185”,屬早熟紙皮核桃。種植密度為1 667株/hm2,株行距為2 m×3 m。每年4月初開(kāi)始進(jìn)入新的生育周期,8月下旬進(jìn)行采收。采用地表滴灌充分灌溉,灌水次數(shù)為8次(表1)。模擬基礎(chǔ)數(shù)據(jù)為2018年、2019年2 a的實(shí)測(cè)數(shù)據(jù)。生育期內(nèi)對(duì)果樹進(jìn)行常規(guī)施肥(溝施及隨水施肥),氮肥400 g/株、磷肥200 g/株、鉀肥200 g/株,定期除去雜草。滴灌帶為新疆坎兒井公司生產(chǎn),滴頭流量為3.2 L/h,滴頭間距20 cm。滴灌帶距樹40 cm,一行兩管式鋪設(shè)。
表1 核桃灌溉制度
試驗(yàn)小區(qū)為無(wú)底自由排水邊界的測(cè)坑(長(zhǎng)3 m,寬2 m,高4 m),測(cè)坑內(nèi)核桃樹種植與大田一致,測(cè)坑內(nèi)土體為原狀土,土壤試驗(yàn)設(shè)定3組重復(fù)(3個(gè)測(cè)坑)。試驗(yàn)測(cè)定項(xiàng)目如下:
1)土壤含水率采用剖面土壤水分傳感器(TRIME-PICO-IPH,IMKO Inc.,Germany)測(cè)定。水平方向每40 cm設(shè)監(jiān)測(cè)管,測(cè)定距離150 cm;垂直方向每10 cm設(shè)監(jiān)測(cè)點(diǎn),測(cè)定深度100 cm。
2)棵間土壤蒸發(fā)采用微型蒸滲儀測(cè)定,每天10:00左右測(cè)定1次,利用精度0.01 g的電子天平稱質(zhì)量。微型蒸滲儀用直徑110 mm的PVC管制成,高度15 cm,為保持與田間土壤水分的交換,底部用1 mm間隔的網(wǎng)包扎封底。將微型蒸滲儀放入預(yù)埋管中,頂部與地面平齊。預(yù)埋管為直徑125 mm的PVC管,高度20 cm。每2~3 d更換1次微型蒸滲儀中的土壤。
3)根長(zhǎng)密度采用分段分層掘進(jìn)法,采用Delta-T scan(CB50EJ,Cambridge,UK)軟件計(jì)算根長(zhǎng)密度。以30 cm×30 cm×10 cm的單元體取樣,取至行間150 cm,深度取至100 cm止。將核桃根長(zhǎng)密度在核桃樹行方向進(jìn)行平均,得到核桃樹二維根長(zhǎng)密度分布函數(shù)。
4)葉面積指數(shù)(Leaf Area Index,LAI)采用Hemiview冠層分析系統(tǒng)(Delta-T,Self Levelling Mount SLM8,UK)每月對(duì)核桃樹冠層定期(15 d)測(cè)定1次,測(cè)定位置距樹干80 cm,選擇東西南北4個(gè)方向擇定,取四個(gè)方向核桃樹葉面積指數(shù)的平均值。
5)氣象數(shù)據(jù)根據(jù)試驗(yàn)站架設(shè)的微型氣象站(Watch Dog2000,Spectrum,USA)測(cè)定,每30 min記錄1次,包括太陽(yáng)輻射、氣溫、相對(duì)濕度、風(fēng)速及降雨量等。2018年和2019年核桃生育期內(nèi)有效降雨、灌水量及日均蒸騰速率如圖1所示。
圖1 2018和2019年各因子動(dòng)態(tài)變化
2.1.1 土壤水分運(yùn)動(dòng)方程
采用HYDRUS-2D V 2.X版本軟件,二維土壤水分運(yùn)動(dòng)方程表示如下:
式中為水平向坐標(biāo),cm;為垂向坐標(biāo),cm;為時(shí)間,h;為土壤體積含水率,%;()為土壤水分運(yùn)動(dòng)擴(kuò)散率,cm3/h;()為非飽和土壤導(dǎo)水率,cm/h;為根系吸水匯源項(xiàng),1/h。
土壤水分運(yùn)動(dòng)方程的初始條件:以灌水前測(cè)定的剖面土壤含水率為初始含水率,水平向坐標(biāo)同一土層內(nèi)取平均值。
θ(,,0)=0n,0≤≤150 cm,0≤≤100 cm,=1,…,10(2)
式中θ為第層土壤實(shí)測(cè)體積含水率,%;0n為=0時(shí)土壤體積含水率,%;為土層數(shù),共10層。
邊界條件設(shè)定:不灌水時(shí),上邊界為大氣邊界。上邊界的其余部分(R≤≤150 cm)始終為大氣邊界。R為飽和半徑,本研究中實(shí)測(cè)飽和半徑為4.2 cm。大氣邊界土壤水分運(yùn)動(dòng)主要取決于降水或地面蒸發(fā),為第一、二、三類邊界,隨著時(shí)間變化,可在各類邊界之間相互轉(zhuǎn)化。考慮地下水埋深大于6 m的情況,下邊界假定為自由排水邊界條件。左右邊界(=0、150 cm)處,假定為不透水邊界,即零通量邊界[23]。
上邊界條件:
下邊界條件:
左右邊界條件:
式中()為蒸發(fā)強(qiáng)度,cm/min;()為入滲強(qiáng)度,為滴頭流量與單位長(zhǎng)度滴灌管表面積的比值, cm/min,。
2.1.2 根系吸水模型
式(1)中的采用Feddes等[21]提出的根系吸水模型計(jì)算:
=()S(6)
式中()為土壤水勢(shì)指定相應(yīng)函數(shù)(0≤≤1);S為潛在根系吸水速率,1/h;(,)為根長(zhǎng)密度分布函數(shù);S為與蒸騰相關(guān)的土壤表面寬度,cm;T為潛在蒸騰強(qiáng)度,cm/h。
式中X和Z為根系在和方向上最大根系伸展深度,cm。采用2018年根系實(shí)測(cè)數(shù)據(jù)利用DPS軟件進(jìn)行二次多項(xiàng)式回歸擬合,獲得擬合參數(shù)P為1P為1.20為45.83x為1.78,擬合精度2為0.87。
根據(jù)試驗(yàn)地土壤質(zhì)地和機(jī)械組成,使用HYDRUS-2D軟件自帶的Rosetta軟件通過(guò)人工神經(jīng)網(wǎng)絡(luò)預(yù)測(cè)得出各土層水力特性參數(shù)(土壤殘余含水率、土壤飽和含水率、飽和導(dǎo)水率、模型參數(shù)和)。以2019年土壤含水率數(shù)據(jù)為率定數(shù)據(jù),以2018年土壤含水率數(shù)據(jù)為驗(yàn)證數(shù)據(jù),得到優(yōu)化后的參數(shù)見(jiàn)表2。其中顆粒組成為實(shí)測(cè)結(jié)果,美國(guó)農(nóng)業(yè)部土壤質(zhì)地三角形篩分土粒,進(jìn)行土壤顆粒劃分。
表2 模型參數(shù)求解結(jié)果
采用Penman-Monteith公式計(jì)算參考作物蒸騰量[22],公式如下:
式中ET0為參考作物蒸騰量,mm/d;R為作物表面凈輻射,MJ/(m2·d);為土壤熱通量,MJ/(m2·d);為平均空氣溫度,℃;2為2 m高度風(fēng)速,m/s;(e?e)為水汽壓差,kPa;為水汽壓-溫度關(guān)系曲線的斜率,kPa/℃;為濕度計(jì)常數(shù),kPa/℃;900為轉(zhuǎn)換系數(shù)。
作物潛在蒸散量采用單作物系數(shù)法計(jì)算,公式如下[22]:
ETc=KET0=T+E=ETc(1?e?0.6LAI)+ETce?0.6LAI(10)
式中ETc為作物潛在蒸散量,mm/d;K為實(shí)際作物系數(shù),根據(jù)文獻(xiàn)[2]確定,%;T單位為mm/h;E為土壤潛在蒸發(fā),mm/d;LAI為葉面積指數(shù),%。農(nóng)田耗水量計(jì)算采用水量平衡法計(jì)算,其中地下水補(bǔ)給量為0。
灌溉制度尋優(yōu)目標(biāo)函數(shù)如下:
式中DP為深層滲漏量,mm;WS為水分脅迫量,mm;為灌水時(shí)間間隔(=5,6,…,20),d;為灌水定額(=30,35,…,65),mm;為尋優(yōu)目標(biāo)函數(shù)值,值越小,灌溉制度越優(yōu)。
通常情況下,當(dāng)土壤含水率小于60%的田間持水量時(shí),會(huì)產(chǎn)生水分脅迫影響。核桃生育期內(nèi)水分總脅迫量計(jì)算公式如下[16]:
土壤體積含水率實(shí)測(cè)值與模擬值比較如圖2所示,2019年率定階段均方根誤差(Root Mean Square Error,RMSE)為0.016 cm3/cm3,2=83.03%;2018年驗(yàn)證階段RMSE為0.017 cm3/cm3,2=83.73%。率定階段與驗(yàn)證階段精度均較高,HYDRUS-2D模型模擬結(jié)果效果較好,表明模型可以用于土壤含水率模型。率定結(jié)果見(jiàn)表2。
圖2 土壤含水率模擬值與實(shí)測(cè)值對(duì)比
3.2.1 現(xiàn)行灌溉制度評(píng)價(jià)
通過(guò)表1灌溉制度下2018和2019年的實(shí)測(cè)數(shù)據(jù)(氣象數(shù)據(jù)、葉面積指數(shù)、土壤含水率、棵間土壤蒸發(fā)、根系分布數(shù)據(jù)和土壤基本參數(shù)等)與HYDRUS-2D模型對(duì)農(nóng)田水分通量模擬,可得到核桃耗水特性與田間水分通量(表3)。
表3 2018和2019年核桃耗水特性與田間水分通量
如表3所示,南疆成齡核桃2018年和2019年生育期耗水量為634.15~726.90 mm,日均耗水強(qiáng)度為5.51~6.29 mm/d,這與趙經(jīng)華等[2]通過(guò)不同微灌技術(shù)下成齡核桃生育期耗水總量在585.6~840.3 mm間變化結(jié)論基本一致。成齡核桃各生育期內(nèi)日均耗水強(qiáng)度由大到小分別為:油脂轉(zhuǎn)化期(6.87~7.64 mm/d)、硬核期(6.14~7.55 mm/d)、果實(shí)膨大期(5.29~5.93 mm/d)、開(kāi)花結(jié)果期(3.72~4.02 mm/d)。生育期內(nèi)水分總脅迫量為?25.57~?118.52 mm,深層滲漏量總量為11.02~109.75 mm,二者之和為總耗水量的19.96%~21.33%。
3.2.2 灌溉制度優(yōu)化
從4月30日開(kāi)始第1次灌水。在設(shè)定灌溉方案時(shí)參考當(dāng)?shù)睾颂倚杷縼?lái)確定灌溉制度范圍。本研究共設(shè)定8個(gè)灌水定額(30~65 mm)、16個(gè)灌水時(shí)間間隔(5~20 d),共計(jì)128種灌水定額和灌水時(shí)間間隔不同的灌溉制度(M1~M128,表4)。
表4 核桃灌溉制度集
將基于2019年數(shù)據(jù)率定獲得的土壤特性參數(shù)、基于式(9)計(jì)算出的蒸散量值、基于式(8)計(jì)算獲得的參數(shù)值輸入HYDRUS-2D模型,對(duì)128組灌溉制度進(jìn)行數(shù)值模擬,可獲得農(nóng)田耗水量、根系吸水量、深層滲漏量和水分脅迫量模擬值(圖3)。由圖3可知,農(nóng)田耗水量范圍在149.0~1 284.5 mm之間,深層滲漏量范圍在50.77~928.88 mm之間,當(dāng)?shù)氐叵滤疃瘸^(guò)6 m,不考慮地下水補(bǔ)給。各灌溉制度的農(nóng)田耗水量和深層滲漏量均隨灌水間隔增大而減小。根系吸水量在灌水定額和灌水時(shí)間間隔雙變量變化因素下,根系吸水量隨灌水時(shí)間間隔變化幅度逐漸減?。喝绻嗨~為30 mm時(shí),根系吸水量范圍為245.02~406.37 mm。而灌水定額為65 mm時(shí),根系吸水量范圍為307.80~400.09 mm。
模型模擬結(jié)果耗水量與深層滲漏量跨度較大,因此尋優(yōu)時(shí)剔除深層滲漏量和水分脅迫量大于作物耗水量1倍的灌溉制度。結(jié)合式(11)所得圖3可知,尋優(yōu)目標(biāo)函數(shù)值越接近零值線,則此灌溉制度灌溉水浪費(fèi)最少。通過(guò)對(duì)不同灌水定額條件下農(nóng)田中尋優(yōu)目標(biāo)函數(shù)值的比較,可以得出如表5所示的較佳的8種灌溉制度,其中以M34的尋優(yōu)目標(biāo)函數(shù)值最低,其次為M77,隨后為M94、M112、M51、M119、M60、M25。M34灌溉制度的尋優(yōu)目標(biāo)函數(shù)值為農(nóng)田耗水量的0.002倍,M77灌溉制度的尋優(yōu)目標(biāo)函數(shù)值為農(nóng)田耗水量的0.004倍。若考慮目標(biāo)函數(shù)值最小,則M34灌溉制度最優(yōu);若考慮農(nóng)戶田間工作量應(yīng)拉大灌溉時(shí)間,則M77灌溉制度更適宜。
圖3 各參數(shù)隨灌水間隔的變化
表5 核桃灌溉制度優(yōu)選
注:占比指尋優(yōu)目標(biāo)值與農(nóng)田耗水量的比值。
Note: Proportion refers to ratio of target value for optimization to farmland water consumption.
以2019年干旱年為例進(jìn)行模擬,優(yōu)化灌溉制度(M34和M77)下的農(nóng)田水分通量模擬結(jié)果如圖4所示,M34和M77灌溉制度下,干旱年水平下水分脅迫量和深層滲漏量均較小。綜上,推薦南疆地區(qū)成齡核桃滴灌灌溉定額350~385 mm,灌水定額35~50 mm,灌溉次數(shù)7~11次,灌水間隔9~14 d。
a. M34
b. M77
注:0指每年灌水開(kāi)始日期(04-30)。
Note: 0 refers to the date when irrigation starts (04-30).
圖4 核桃灌溉制度模擬尋優(yōu)結(jié)果
Fig.4 Optimization of irrigation scheme for walnut based simulation results
試驗(yàn)觀測(cè)與模擬期為2018年4月30日-2018年8月9日,2019年4月30日-2019年8月9日,生育期內(nèi)有效降雨及日均蒸騰速率如圖1所示,2018年與2019年2 a降雨量差異顯著,2018年觀測(cè)模擬期內(nèi)總降雨量為133.3 mm,而2019年阿克蘇地區(qū)雨季提前至4月觀測(cè)模擬期內(nèi)總降雨量只有24.8 mm。取降水量距平百分率[?10%, 10%]為正常年份,[10%, 30%]為偏濕年和[?30%, ?10%]為偏干年,大于30%為濕潤(rùn)年,小于?30%為干旱年;以阿克蘇河流域15世紀(jì)—20世紀(jì)平均值40 mm降雨量為標(biāo)準(zhǔn)[23],小于28 mm為干旱年,[28, 35] mm偏干年,(35, 44] mm是正常年,(44, 52] mm是偏濕年,大于52 mm是濕潤(rùn)年。可以判斷出2018年為濕潤(rùn)年,2019年為干旱年。模型率定采用干旱年數(shù)據(jù),而模型驗(yàn)證采用的是濕潤(rùn)年的數(shù)據(jù),2 a模型模擬精度都較高。這表明,不管是模擬干旱年還是濕潤(rùn)年,HYDRUS-2D模型模擬土壤水分狀況的可靠性均較高,因此,根據(jù)本文結(jié)果,基于HYDRUS-2D模型模擬和尋優(yōu)結(jié)果獲得的灌溉制度對(duì)干旱年和濕潤(rùn)年均具有適用性。這需要進(jìn)一步的試驗(yàn)驗(yàn)證。
HYDRUS-2D模型模擬精度高,能較好地模擬農(nóng)田土壤水分通量的動(dòng)態(tài)變化[24-26]。本文采用HYDRUS-2D模型模擬了不同灌溉情景方案下的深層滲漏量和水分脅迫量。而且,將模擬結(jié)果用于尋優(yōu)模型進(jìn)行灌溉制度優(yōu)化,為果園灌溉制度優(yōu)化提供了一種有效的方法。
成齡果樹根系分布較為復(fù)雜,且根系分布會(huì)隨時(shí)間變化。為提高灌溉制度模擬結(jié)果的可靠性,今后應(yīng)在各生育期均對(duì)根系取樣,建立隨時(shí)間變化的二維根系吸水模型,灌溉制度優(yōu)化設(shè)計(jì)時(shí)分不同生育階段進(jìn)行,以實(shí)現(xiàn)更加精準(zhǔn)的優(yōu)化灌溉制度。后續(xù)試驗(yàn)也可通過(guò)采用智能土壤墑情儀對(duì)土壤水分進(jìn)行實(shí)時(shí)監(jiān)測(cè),或結(jié)合優(yōu)化算法使灌溉制度優(yōu)化系統(tǒng)更加精準(zhǔn)。
1)基于田間試驗(yàn)數(shù)據(jù)驗(yàn)證HYDRUS-2D模型表明,模型對(duì)土壤含水率的模擬精度較高,2為83.03%~83.73%,均方根誤差在0.016~0.017 cm3/cm3范圍,表明HYDRUS-2D模型可用于滴灌核桃園土壤含水率的模擬。
2)基于模型模擬及尋優(yōu)模型結(jié)果,推薦南疆地區(qū)成齡核桃的滴灌制度為灌水定額35 mm,灌溉次數(shù)11次,灌水間隔9 d,灌溉定額385 mm或者灌水定額50 mm,灌溉次數(shù)7次,灌水間隔14 d,灌溉定額350 mm。
可見(jiàn),HYDRUS-2D模型結(jié)合尋優(yōu)方法用于灌溉制度優(yōu)化時(shí)具有潛在優(yōu)勢(shì),研究可為果樹灌溉制度優(yōu)化提供參考。
[1] 王軍,李久生,關(guān)紅杰. 北疆膜下滴灌棉花產(chǎn)量及水分生產(chǎn)率對(duì)灌水量響應(yīng)的模擬[J]. 農(nóng)業(yè)工程學(xué)報(bào),2016,32(3):62-68.
Wang Jun, Li Jiusheng, Guan Hongjie. Simulation of response of cotton yield and water productivity under mulch drip irrigation to irrigation amount in Northern Xinjiang[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2016, 32(3): 62-68. (in Chinese with English abstract)
[2] 趙經(jīng)華,洪明,馬英杰,等. 不同微灌灌水技術(shù)下成齡核桃耗水規(guī)律的研究[J]. 灌溉排水學(xué)報(bào),2010,29(5):94-97.
Zhao Jinghua, Hong Ming, Ma Yingjie, et al. Study on water consumption of mature walnut under different micro irrigation techniques [J]. Journal of Irrigation and Drainage, 2010, 29(5): 94-97. (in Chinese with English abstract)
[3] 衛(wèi)新東,汪星,汪有科,等. 黃土丘陵區(qū)紅棗經(jīng)濟(jì)林根系分布與土壤水分關(guān)系研究[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2015,46(4):88-97.
Wei Xindong, Wang Xing, Wang Youke, et al. Study on the relationship between root distribution and soil moisture of jujube economic forest in Loess Hilly Area[J]. Transactions of the Chinese Society for Agricultural Machinery, 2015, 46(4): 88-97. (in Chinese with English abstract)
[4] Dario Autovino, Giovanni Rallo, Giuseppe Provenzano. Predicting soil and plant water status dynamic in olive orchards under different irrigation institutions with HYDRUS-2D: Model performance and scenario analysis[J]. Agricultural Water Management, 2018, 203(4): 225-235.
[5] Matteau J P, Gumiere S J, Gallichand J, et al. Coupling of a nitrate production model with HYDRUS to predict nitrate leaching[J]. Agricultural Water Management, 2019, 213(3): 616-626.
[6] 李仙岳,陳寧,史海濱,等. 膜下滴灌玉米番茄間作農(nóng)田土壤水分分布特征模擬[J]. 農(nóng)業(yè)工程學(xué)報(bào),2019,35(10):50-59.
Li Xianyue, Chen Ning, Shi Haibin, et al. Simulation of soil water distribution characteristics of maize tomato inter cropping under mulch drip irrigation [J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2019, 35(10): 50-59. (in Chinese with English abstract)
[7] 郭復(fù)興,常天然,林瑒焱,等. 陜西不同區(qū)域蘋果林土壤水分動(dòng)態(tài)和水分生產(chǎn)力模擬[J]. 應(yīng)用生態(tài)學(xué)報(bào),2019,30(2):379-390.
Guo Fuxing, Chang Tianran, Lin Changyan, et al. Simulation of soil water dynamics and water productivity of apple trees in different regions of Shaanxi Province[J]. Journal of Applied Ecology, 2019, 30(2): 379-390. (in Chinese with English abstract)
[8] Fatemeh Karandwash, Ji?í ?im?nek. A comparison of the HYDRUS (2D/3D) and SALTMED models to investigate the influence of various water-saving irrigation strategies on the maize water footprint[J]. Agricultural Water Management, 2019, 213(3): 809-820.
[9] Serhat Tonkul, Alper Baba, Celalettin ?im?ek, et al. Groundwater recharge estimation using HYDRUS 1D model in Ala?ehir sub-basin of Gediz Basin in Turkey[J]. Environmental Monitoring and Assessment, 2019, 191(10):610-621.
[10] 范雷雷,史海濱,李瑞平,等. 河套灌區(qū)畦灌灌水質(zhì)量評(píng)價(jià)與優(yōu)化[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2019,50(6):315-321,337.
Fan Leilei, Shi Haibin, Li Ruiping, et al. Evaluation and optimization of border irrigation quality in Hetao Irrigation Area[J]. Transactions of the Chinese Society for Agricultural Machinery, 2019, 50(6): 315-321, 337. (in Chinese with English abstract)
[11] 魏光輝,馬亮. 干旱區(qū)不同地下水埋深與棉花膜下滴灌灌溉制度的響應(yīng)研究[J]. 灌溉排水學(xué)報(bào),2015,34(12):9-13.
Wei Guanghui, Ma Liang. Response of different groundwater depth and drip irrigation institution under cotton film in arid area[J]. Journal of Irrigation and Drainage, 2015, 34 (12): 9-13. (in Chinese with English abstract)
[12] 郝遠(yuǎn)遠(yuǎn),徐旭,任東陽(yáng),等. 河套灌區(qū)土壤水鹽和作物生長(zhǎng)的HYDRUS-EPIC模型分布式模擬[J]. 農(nóng)業(yè)工程學(xué)報(bào),2015,31(11):110-116.
Hao Yuanyuan, Xu Xu, Ren Dongyang, et al. Distributed simulation of hydrous-epic model for soil water, salt and crop growth in Hetao Irrigation Area[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2015, 31(11): 110-116. (in Chinese with English abstract)
[13] 孫林,羅毅,楊傳杰,等. 干旱區(qū)滴灌棉田灌水量與灌溉周期關(guān)系[J]. 資源科學(xué),2012,34(4):668-676.
Sun Lin, Luo Yi, Yang Chuanjie, et al. Relationship between irrigation amount and irrigation cycle of drip irrigation cotton field in arid area [J]. Resource Science, 2012, 34 (4): 668-676. (in Chinese with English abstract)
[14] 王鵬,宋獻(xiàn)方,袁瑞強(qiáng),等. 基于HYDRUS-1d模型的農(nóng)田SPAC系統(tǒng)水分通量估算:以山西省運(yùn)城市董村農(nóng)場(chǎng)為例[J]. 地理研究,2011,30(4):622-634.
Wang Peng, Song Xianfang, Yuan Ruiqiang, et al. Estimation of water flux in SPAC institution of farmland based on HYDRUS-1D model: A case study of Dongcun farm, Yuncheng City, Shanxi Province [J]. Geographic Research, 2011, 30(4): 622-634. (in Chinese with English abstract)
[15] 楊鵬年,吳彬,王水獻(xiàn),等. 干旱區(qū)不同地下水埋深膜下滴灌灌溉制度模擬研究[J]. 干旱地區(qū)農(nóng)業(yè)研究,2014,32(3):76-82.
Yang Pengnian, Wu Bin, Wang Shuixian, et al. Simulation study on drip irrigation institution under different underground water depths in arid areas[J]. Agricultural Research in Arid Areas, 2014, 32(3): 76-82. (in Chinese with English abstract)
[16] 蔣光昱,王忠靜,尚松浩,等. 基于觀測(cè)與模擬結(jié)合的疏勒河流域辣椒灌溉制度優(yōu)化[J]. 農(nóng)業(yè)工程學(xué)報(bào),2018,34(增刊1):207-213.
Jiang Guangyu, Wang Zhongjing, Shang Songhao, et al. Optimization of pepper irrigation institution in Shule River Basin Based on observation and simulation [J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(Supp.1): 207-213. (in Chinese with English abstract)
[17] 劉曉媛,徐紹輝,崔峻嶺,等. 基于水分供需關(guān)系的冬小麥夏玉米節(jié)水灌溉模式研究[J]. 中國(guó)生態(tài)農(nóng)業(yè)學(xué)報(bào),2013,21(8):951-958.
Liu Xiaoyuan, Xu Shaohui, Cui Junling, et al. Study on water saving irrigation model of winter wheat and summer maize based on water supply and demand [J]. Chinese Journal of Ecological Agriculture, 2013, 21(8): 951-958. (in Chinese with English abstract)
[18] 王在敏,何雨江,靳孟貴,等. 運(yùn)用土壤水鹽運(yùn)移模型優(yōu)化棉花微咸水膜下滴灌制度[J]. 農(nóng)業(yè)工程學(xué)報(bào),2012,28(17):63-70.
Wang Zaimin, He Yujiang, Jin Menggui, et al. Using soil water salt transport model to optimize drip irrigation institution under brackish water film[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2012, 28(17): 63-70. (in Chinese with English abstract)
[19] 李惠,梁杏,劉延鋒. 干旱區(qū)膜下滴灌棉田SPAC系統(tǒng)水分通量模擬[J]. 水文地質(zhì)工程地質(zhì),2018,45(2):21-28.
Li Hui, Liang Xing, Liu Yanfeng. Simulation of water flux in SPAC institution of drip irrigation cotton field under film in arid area [J]. Hydrogeology and Engineering Geology, 2018, 45(2): 21-28. (in Chinese with English abstract)
[20] 彭致功,張寶忠,劉鈺,等. 華北典型區(qū)冬小麥區(qū)域耗水模擬與灌溉制度優(yōu)化[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2017,48(11):238-246.
Peng Zhigong, Zhang Baozhong, Liu Yu, et al. Simulation of winter wheat regional water consumption and optimization of irrigation institution in typical areas of North China[J]. Transactions of the Chinese Society for Agricultural Machinery, 2017, 48(11): 238-246. (in Chinese with English abstract)
[21] Feddes R A, Kowalik P J, Zaradny H. Simulation of field water use and crop yield[R]. Wageningem: Center for Agricultural Publishing and Documentation, 1978: 189.
[22] 郭向紅,孫西歡,馬娟娟,等. 冬小麥不同深度灌水條件下土壤水分運(yùn)動(dòng)數(shù)值模擬[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2018,49(8):237-244,209.
Guo Xianghong, Sun Xihuan, Ma Juanjuan, et al. Numerical simulation of soil water movement under different depth irrigation of winter wheat[J]. Transactions of the Chinese Society for Agricultural Machinery, 2018, 49(8): 237-244, 209. (in Chinese with English abstract)
[23] 張瑞波,魏文壽,袁玉江,等. 1396-2005年天山南坡阿克蘇河流域降水序列重建與分析[J]. 冰川凍土,2009,31(1):27-33.
Zhang Ruibo, Wei Wenshou, Yuan Yujiang, et al. Reconstruction and analysis of precipitation sequence in Aksu River Basin on the south slope of Tianshan Mountains from 1396 to 2005[J]. Glacial Permafrost, 2009, 31(1): 27-33. (in Chinese with English abstract)
[24] 虎膽·吐馬爾白,王一民,牟洪臣,等. 膜下滴灌棉花根系吸水模型研究[J]. 干旱地區(qū)農(nóng)業(yè)研究,2012,30(1):66-70.
Hudan Tumarday, Wang Yimin, Mu Hongchen, et al. Study on water absorption model of cotton roots under mulch drip irrigation[J]. Agricultural Research in Arid Areas, 2012, 30(1): 66-70. (in Chinese with English abstract)
[25] 余根堅(jiān),黃介生,高占義. 基于HYDRUS模型不同灌水模式下土壤水鹽運(yùn)移模擬[J]. 水利學(xué)報(bào),2013,44(7):826-834.
Yu Genjian, Huang Jiesheng, Gao Zhanyi. Simulation of soil water and salt transport under different irrigation modes based on hydras model[J]. Journal of Hydraulic Engineering, 2013, 44(7): 826-834. (in Chinese with English abstract)
[26] 吳元芝,黃明斌. 基于Hydrus-1D模型的玉米根系吸水影響因素分析[J]. 農(nóng)業(yè)工程學(xué)報(bào),2011,27(增刊2):66-73.
Wu Yuanzhi, Huang Mingbin. Analysis of factors affecting water absorption of maize root institution based on HYDRUS-1D model [J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2011, 27(Supp.2): 66-73. (in Chinese with English abstract)
Optimization of drip irrigation scheme for mature walnut in arid areas of Xinjiang, China
Hudan Tumarday, Jiao Ping, Milixiati Minadola
(830052)
Scientific and reasonable irrigation schedules are the keys to improve the efficiency of irrigation utilization. In this study, the reliability of HYDRUS model combined with optimization model proposed used for irrigation scheme optimization was investigated. The arid area of southern Xinjiang, China was taken as the research area. In this area, the groundwater depth was target than 6 m. The soil dry bulk density was 1.39 g/cm3. The experimental data in 2018 and 2019 were used for model calibration and verification, respectively. In the experiments of both years, the irrigation quota was same as 45 mm and the irrigation norm was 360 mm. The irrigation stages were same. The walnut tree was eleven years old. It was drip irrigated every year. It started new growth period in April and was harvested in August. The soil water content was measured. In addition, the leaf area index was calculated and root-related indexes were determined. Meteorological parameter values were obtained. In this study, the rainfall amounts in 2018 and 2019 during the whole walnut growth stage were 133.3 and 24.8 mm, respectively. The years of 2019 and 2018 were respectively dry and wet years based on multi-year rainfall data. A total of 128 irrigation schedules were designed and they included eight irrigation quota (30-65 mm) and 16 irrigation intervals (5-20 d). The deep leakage and water stress under the 128 irrigation scheme were simulated by using HYDRUS-2D model. An optimization model was proposed. In this model, the target value for optimization was the difference between the amount of deep leakage and absolute of crop water stress. The values of amount of deep leakage and crop water stress both could be obtained by model simulation. By simulation, the irrigation scheme with small target value for optimization were considered to be optimal. The model calibration and verification results showed that the model accuracy was high with root mean square error of 0.016-0.017 cm3/cm3and2of 83.03%-83.73%, which indicated that the model was well in simulating soil water content in the field of walnut of Xinjiang regardless of wet or dry years. Under the condition of the irrigation quota 45 mm and irrigation intervals of 8-20 days, the water consumption and the daily average water consumption intensity of mature walnut during its whole growing stage in Southern Xinjiang were 634.15 mm and 5.51 mm/d. The daily average water consumption intensity was the highest during the oil transformation stage (6.87 mm), followed by the hard core stage (6.14 mm), fruit expanding stage (5.29 mm), and flowering-fruiting stage (3.72 mm). During the whole growth stage, the total water stress was -25.57 mm, and the total deep leakage was 109.75 mm. It accounted for 21.33% of the total water consumption and exceeded the 20% of the total water consumption. Soil water flux in different irrigation scheme of mature walnut under drip irrigation was simulated by using the HYDRUS-2D model. Then, the optimal irrigation scheme was screened by using the optimization model. By the optimization model, the lowest target value for optimization indicated small water loss. Thus, two irrigation scheme were recommended: 1) the irrigation quota was 35 mm, irrigation intervals was 9 days, the irrigation times were 11 and the irrigation norm was 385 mm; 2) the irrigation quota was 50 mm, irrigation intervals was 14 days, the irrigation times were 7 and the irrigation norm was 350 mm. This study provided an effective way to formulate irrigation scheme of mature walnut under drip irrigation in Southern Xinjiang.
irrigation; optimization; Xinjiang; arid area; walnut; drip irrigation scheme; HYDRUS-2D
虎膽·吐馬爾白,焦萍,米力夏提·米那多拉. 新疆干旱區(qū)成齡核桃滴灌制度優(yōu)化[J]. 農(nóng)業(yè)工程學(xué)報(bào),2020,36(15):134-141.doi:10.11975/j.issn.1002-6819.2020.15.017 http://www.tcsae.org
Hudan Tumarday, Jiao Ping, Milixiati Minadola. Optimization of drip irrigation scheme for mature walnut in arid areas of Xinjiang, China[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2020, 36(15): 134-141. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2020.15.017 http://www.tcsae.org
2019-11-01
2020-05-10
國(guó)家重點(diǎn)實(shí)驗(yàn)室資助項(xiàng)目(2018nkms02);國(guó)家自然科學(xué)基金(51469033);塔里木河流域阿克蘇管理局資助項(xiàng)目(TGJAKS-SKS-2019-001)
虎膽·吐馬爾白,教授,博士生導(dǎo)師,主要從事土壤水鹽運(yùn)移理論及節(jié)水灌溉技術(shù)研究。Email:hudant@hotmail.com.
10.11975/j.issn.1002-6819.2020.15.017
S274.1
A
1002-6819(2020)-15-0134-08