張 碩,武仲斌,陳 軍,李 臻,朱忠祥,宋正河,毛恩榮
·農(nóng)業(yè)裝備工程與機(jī)械化·
犁耕作業(yè)大馬力拖拉機(jī)驅(qū)動(dòng)輪滑轉(zhuǎn)率控制方法
張 碩1,武仲斌2,陳 軍1,李 臻2※,朱忠祥2,宋正河2,毛恩榮2
(1. 西北農(nóng)林科技大學(xué)機(jī)械與電子工程學(xué)院,楊凌 712100;2. 中國(guó)農(nóng)業(yè)大學(xué)工學(xué)院現(xiàn)代農(nóng)業(yè)裝備優(yōu)化設(shè)計(jì)北京市重點(diǎn)實(shí)驗(yàn)室,北京 100083)
針對(duì)犁耕作業(yè)時(shí)大馬力拖拉機(jī)驅(qū)動(dòng)輪易產(chǎn)生過(guò)度滑轉(zhuǎn)的問(wèn)題,該研究以大馬力拖拉機(jī)電液懸掛機(jī)組為研究對(duì)象,考慮“拖拉機(jī)-農(nóng)具-土壤”系統(tǒng)的強(qiáng)非線性特征,在建立大馬力拖拉機(jī)犁耕作業(yè)機(jī)組非線性系統(tǒng)動(dòng)力學(xué)模型的基礎(chǔ)上,提出基于滑模變結(jié)構(gòu)控制的大馬力拖拉機(jī)驅(qū)動(dòng)輪滑轉(zhuǎn)非線性控制方法;并以模糊PID控制為對(duì)比,采用Matlab/Simulink驗(yàn)證本文動(dòng)力學(xué)模型的正確性和控制算法的有效性;以Lovol-TG1254型大馬力拖拉機(jī)為載體,搭建犁耕作業(yè)大馬力拖拉機(jī)驅(qū)動(dòng)輪滑轉(zhuǎn)控制平臺(tái),開(kāi)展田間對(duì)比試驗(yàn),并分析不同控制方法下的滑轉(zhuǎn)控制效果,驗(yàn)證滑模變結(jié)構(gòu)控制算法的控制精度和穩(wěn)定性。試驗(yàn)結(jié)果表明:在2.17 m/s的犁耕作業(yè)工況下,與模糊PID控制算法相比,滑模變結(jié)構(gòu)控制算法將拖拉機(jī)驅(qū)動(dòng)輪滑轉(zhuǎn)率有效控制在最優(yōu)值0.2,平均絕對(duì)值偏差為0.008,減小了約27%,最大偏差為0.028,減小了約49%;耕深、液壓缸位移和水平牽引力調(diào)節(jié)變化量分別減小了27%、36%、42%。該研究提出的基于滑模變結(jié)構(gòu)的大馬力拖拉機(jī)驅(qū)動(dòng)輪滑轉(zhuǎn)控制方法可實(shí)現(xiàn)犁耕作業(yè)驅(qū)動(dòng)輪滑轉(zhuǎn)最優(yōu)目標(biāo)控制。
農(nóng)業(yè)機(jī)械;試驗(yàn);拖拉機(jī);犁耕作業(yè);滑轉(zhuǎn)控制;滑模變結(jié)構(gòu)控制
大馬力拖拉機(jī)電液懸掛機(jī)組的犁耕作業(yè)是北方大田作物田間生產(chǎn)的重要農(nóng)藝環(huán)節(jié),拖拉機(jī)驅(qū)動(dòng)輪的滑轉(zhuǎn)程度極大地影響作業(yè)機(jī)組的作業(yè)效率和耕地質(zhì)量[1-2]。隨著農(nóng)藝農(nóng)機(jī)融合對(duì)土壤保護(hù)要求和大中型拖拉機(jī)智能化程度的不斷提高[3-4],大馬力拖拉機(jī)田間作業(yè)的驅(qū)動(dòng)防滑逐漸成為電液懸掛作業(yè)機(jī)組自動(dòng)控制領(lǐng)域的研究熱點(diǎn)[5]。
目前,國(guó)內(nèi)外針對(duì)大馬力拖拉機(jī)電液懸掛自動(dòng)控制系統(tǒng)的研究主要涉及耕深或牽引力-耕深控制等[6-8],少部分研究引入滑轉(zhuǎn)率作為控制參量,采用PID[9]、模糊控制等方法[10-11],其本質(zhì)仍是依靠耕深調(diào)節(jié)實(shí)現(xiàn)將滑轉(zhuǎn)率限定在某一閾值或區(qū)間的等效控制。不同于汽車(chē)等道路行駛車(chē)輛,犁耕作業(yè)時(shí)拖拉機(jī)驅(qū)動(dòng)輪的過(guò)度滑轉(zhuǎn)主要來(lái)源于“拖拉機(jī)-農(nóng)具-土壤”系統(tǒng)的耦合作用,具有非常明顯的非線性特征[12-13]。鏵式犁等農(nóng)具在與土壤接觸、摩擦并發(fā)生剪切的過(guò)程中,受耕深變化和田間地面附著條件影響負(fù)載較大波動(dòng),加之地面附著條件不能產(chǎn)生足夠支撐驅(qū)動(dòng)輪前進(jìn)的附著力,驅(qū)動(dòng)輪就會(huì)發(fā)生過(guò)度滑轉(zhuǎn)。在現(xiàn)有研究中,大多以線性化方法近似描述拖拉機(jī)、電液懸掛系統(tǒng)或作業(yè)機(jī)組的非線性特征,部分涉及非線性建模的研究也做出了較多假設(shè)和簡(jiǎn)化,普遍適用性不夠[13-14]。也有部分研究建立作業(yè)機(jī)組數(shù)學(xué)模型以及應(yīng)用非線性控制方法開(kāi)展更為精確的驅(qū)動(dòng)輪滑轉(zhuǎn)控制,但是并沒(méi)有充分考慮大馬力拖拉機(jī)作業(yè)機(jī)組系統(tǒng)的強(qiáng)非線性特征,控制精度較低。
滑模變結(jié)構(gòu)控制(Sliding Mode Variable Structure Control,SMVSC)是現(xiàn)代控制理論中一種較為成熟的非線性控制方法[15-16],在農(nóng)業(yè)機(jī)械自動(dòng)控制領(lǐng)域已有效解決拖拉機(jī)主動(dòng)減振[17]、路徑跟蹤控制[18]和自動(dòng)導(dǎo)航[19]等非線性控制問(wèn)題,提高了系統(tǒng)抵抗不確定參數(shù)擾動(dòng)和外界激勵(lì)的魯棒性;也在電動(dòng)車(chē)輛[20]、月球車(chē)[21]和特種裝備[22]的驅(qū)動(dòng)防滑中得到了較為成熟的應(yīng)用。本文以“拖拉機(jī)-農(nóng)具-土壤”系統(tǒng)為研究對(duì)象,在建立作業(yè)機(jī)組非線性系統(tǒng)動(dòng)力學(xué)模型的基礎(chǔ)上,提出了一種基于滑模變結(jié)構(gòu)的大馬力拖拉機(jī)犁耕作業(yè)驅(qū)動(dòng)輪滑轉(zhuǎn)控制方法實(shí)現(xiàn)面向犁耕作業(yè)工況的拖拉機(jī)驅(qū)動(dòng)輪防滑控制,以提高大馬力拖拉機(jī)電液懸掛機(jī)組的作業(yè)效率和耕地質(zhì)量。
在大馬力拖拉機(jī)電液懸掛作業(yè)機(jī)組數(shù)學(xué)建模過(guò)程中,考慮拖拉機(jī)在田間作業(yè)多為直線運(yùn)動(dòng),且北方平原地區(qū)田間地勢(shì)相對(duì)平坦,將其簡(jiǎn)化為沿拖拉機(jī)前進(jìn)方向上的直線運(yùn)動(dòng),忽略拖拉機(jī)前進(jìn)過(guò)程中的側(cè)滑、側(cè)傾等側(cè)向運(yùn)動(dòng)。如圖1所示,以拖拉機(jī)后輪軸心點(diǎn)為坐標(biāo)原點(diǎn),建立拖拉機(jī)電液懸掛作業(yè)機(jī)組運(yùn)動(dòng)坐標(biāo)系O-O。將大馬力拖拉機(jī)電液懸掛作業(yè)機(jī)組的運(yùn)動(dòng)簡(jiǎn)化分解為2部分:一部分為拖拉機(jī)隨基點(diǎn)沿前進(jìn)方向上的平移運(yùn)動(dòng),另一部分為拖拉機(jī)懸掛機(jī)構(gòu)繞基點(diǎn)的轉(zhuǎn)動(dòng)運(yùn)動(dòng),并以拖拉機(jī)在水平地面行駛時(shí)的相對(duì)位置關(guān)系來(lái)表達(dá)拖拉機(jī)各主要點(diǎn)的相對(duì)位置。由剛體平面運(yùn)動(dòng)學(xué)的基本理論可知,對(duì)于拖拉機(jī)及其懸掛機(jī)構(gòu)桿件的各主要節(jié)點(diǎn),其速度可表達(dá)為該點(diǎn)與基點(diǎn)在連線方向上的速度投影分量,其加速度可表達(dá)為基點(diǎn)的加速度與該點(diǎn)繞點(diǎn)的轉(zhuǎn)動(dòng)加速度的矢量和。
分別對(duì)各主要節(jié)點(diǎn)進(jìn)行運(yùn)動(dòng)學(xué)分析,可得到拖拉機(jī)各主要節(jié)點(diǎn)的運(yùn)動(dòng)學(xué)關(guān)系。其中,后輪驅(qū)動(dòng)拖拉機(jī)的驅(qū)動(dòng)輪滑轉(zhuǎn)率K如式(1)所示。
式中Ot、O分別為驅(qū)動(dòng)輪沿水平前進(jìn)方向的理論速度和瞬時(shí)速度,m/s;O、K分別為驅(qū)動(dòng)輪的幾何半徑和動(dòng)力半徑,m;K為驅(qū)動(dòng)輪角速度,rad/s。
注:O-O為拖拉機(jī)運(yùn)動(dòng)坐標(biāo)系;為后輪軸心;1為前輪軸心;為提升液壓缸與拖拉機(jī)的鉸接點(diǎn),、分別為上、下拉桿與拖拉機(jī)的鉸接點(diǎn),為提升液壓缸活塞桿末端,、為提升桿的鉸接點(diǎn),為提升液壓缸的提升軸軸心,、為農(nóng)具的上下掛接點(diǎn),為五鏵犁的鏵尖,T為拖拉機(jī)的質(zhì)心,為農(nóng)具質(zhì)心;T為拖拉機(jī)俯仰角,rad;β為連線與垂直方向的夾角,rad;O1、O為前、后輪的幾何半徑,m;K1、K為前、后輪的動(dòng)力半徑,m;O1、O為垂直載荷引起的前、后輪著地點(diǎn)處土壤沉陷量,m;K1、K分別為前、后輪輪胎的彈簧剛度,N·mm-1;K1、K分別為前、后輪輪胎的阻尼系數(shù),N·(m·s-1)-1;T為拖拉機(jī)相對(duì)其質(zhì)心的轉(zhuǎn)動(dòng)慣量,N·m2;J為農(nóng)具相對(duì)其質(zhì)心的轉(zhuǎn)動(dòng)慣量,N·m2;T為拖拉機(jī)的重力,N;mg為農(nóng)具的重力,N;K、K、K1分別為后輪所受的垂直地面反作用力、水平滾動(dòng)阻力和驅(qū)動(dòng)力,N;K1、K1、K1分別為前輪所受的垂直地面反作用力、水平滾動(dòng)阻力和驅(qū)動(dòng)力,N;H、V分別為農(nóng)具在水平和豎直方向上所受的土壤阻力,N。
Note:O-Ois the tractor motion coordinate system;isthe axis of the rear wheel;1isthe axis of the front wheel;is the hinge point between the lifting hydraulic cylinder and the tractor;,is the hinge point between the upper and lower pull rods and the tractor;is the end of the piston rod of the lifting hydraulic cylinder;,is the hinge point of the lift lever;is the lifting shaft axis of the lifting hydraulic cylinder;,is the upper and lower contact of the plough;is the tip of the five-furrow plough;Tis the centroid of the tractor;is the center of mass of agricultural tools;Tis the pitching angle of tractor, rad;βis the angle betweenand the vertical direction, rad;O1,Oare the geometric radius of the front and rear wheels, m;K1,Kare the power radius of the front and rear wheels, m;O1,Oare the soil subsidencecaused by vertical loading at front and rear wheel locations,m;K1,Kare the spring stiffness of the front and rear tires respectively, N·mm-1;K1,Kare the damping coefficients of front and rear tires, N·(m·s-1)-1;Tis the moment of inertia of the tractor around the center of mass, N·m2;Jis the moment of inertia of the plough around the center of mass,N·m2;Tis the force of gravity on the tractor, N;is the force of gravity on the farm tools, N;K,K,Kare the vertical ground reaction force, horizontal rolling resistance and driving force of the rear wheel respectively, N;K1,K1,K1are the vertical ground reaction force, horizontal rolling resistance and driving force of the front wheel respectively, N;H,Vare soil resistance of farm tools in horizontal and vertical directions respectively, N.
圖1 拖拉機(jī)電液懸掛作業(yè)機(jī)組運(yùn)動(dòng)學(xué)及動(dòng)力學(xué)分析簡(jiǎn)圖
Fig.1 Simple diagram of kinematic and dynamic analysis for high-power tractor
在圖1中,對(duì)拖拉機(jī)電液懸掛作業(yè)機(jī)組進(jìn)行受力分析可知,拖拉機(jī)(包括懸掛機(jī)構(gòu))所受外力主要有:拖拉機(jī)的重力T(為重力加速度,m/s2),農(nóng)具的重力mg,前輪所受的垂直地面反作用力K1、水平滾動(dòng)阻力K1和驅(qū)動(dòng)力K1,后輪所受的垂直地面反作用力K、水平滾動(dòng)阻力K和驅(qū)動(dòng)力K,農(nóng)具所受的土壤阻力H和V,農(nóng)具對(duì)懸掛機(jī)構(gòu)在上、下懸掛點(diǎn)處的作用力F、Fx和Fy。因此,以后驅(qū)動(dòng)輪幾何中心為中心,可得到水平和垂直方向的力平衡方程和力矩平衡方程,如式(2)所示。
式中Tx、Ty分別為拖拉機(jī)俯仰角在水平和垂直方向上的分量,rad;Wx、Wy分別為農(nóng)具質(zhì)心加速度在水平和垂直方向上的分量,m·s-2;P、P分別為點(diǎn)到后輪軸心的水平和垂直距離,m;sV、sH為犁體受力點(diǎn)到點(diǎn)處的水平和豎直距離,m;O1、O1前輪軸心到后輪軸心的水平和垂直距離,m;T為拖拉機(jī)質(zhì)心到后輪軸心的水平距離,m;W、W為農(nóng)具質(zhì)心到后輪軸心在水平和垂直方向上的距離,m。
根據(jù)以上分析,并參考前期研究成果和建模方法[17,23],將拖拉機(jī)車(chē)體、車(chē)輪、懸掛機(jī)構(gòu)和農(nóng)具等各子系統(tǒng)方程帶入式(2),可得到大馬力拖拉機(jī)電液懸掛作業(yè)機(jī)組動(dòng)力學(xué)微分方程組,如式(3)所示。
在建立的大馬力拖拉機(jī)電液懸掛作業(yè)機(jī)組驅(qū)動(dòng)輪滑轉(zhuǎn)非線性系統(tǒng)動(dòng)力學(xué)模型中,存在部分難以準(zhǔn)確獲得的時(shí)變運(yùn)動(dòng)參數(shù)和不確定項(xiàng),且系統(tǒng)方程存在強(qiáng)非線性。當(dāng)以最優(yōu)滑轉(zhuǎn)率為控制目標(biāo),實(shí)現(xiàn)大馬力拖拉機(jī)犁耕作業(yè)驅(qū)動(dòng)輪滑轉(zhuǎn)自動(dòng)控制時(shí),需采用一種適應(yīng)強(qiáng)非線性特點(diǎn)、對(duì)外界擾動(dòng)不敏感的非線性控制方法。在運(yùn)動(dòng)控制系統(tǒng)的非線性控制方法中,滑模變結(jié)構(gòu)控制方法對(duì)模型的不確定性和外界隨機(jī)具較高的可靠性和魯棒性和[15-16]。如圖2所示,采用滑模變結(jié)構(gòu)控制方法設(shè)計(jì)了最優(yōu)目標(biāo)滑轉(zhuǎn)率控制系統(tǒng)。
圖2 基于滑模變結(jié)構(gòu)控制的驅(qū)動(dòng)輪滑轉(zhuǎn)控制原理簡(jiǎn)圖
在北方平原地區(qū)小麥、玉米等大田作物田間犁耕作業(yè)時(shí),在麥茬、玉米茬輪耕地塊土壤條件下,當(dāng)驅(qū)動(dòng)輪滑轉(zhuǎn)率維持在0.2附近時(shí),拖拉機(jī)作業(yè)機(jī)組工作效率和耕地質(zhì)量均能較好地滿足農(nóng)藝要求[24-25]。因此,本文以最優(yōu)滑轉(zhuǎn)率opt=0.2作為控制目標(biāo),定義控制系統(tǒng)輸出誤差如式(4)所示。
滑模變結(jié)構(gòu)控制方法是控制輸出誤差趨近0,由式(3)可知,滑轉(zhuǎn)控制系統(tǒng)動(dòng)力學(xué)模型為一階非線性系統(tǒng),將滑模變結(jié)構(gòu)控制關(guān)于時(shí)間的切換函數(shù)定義為
式中為滑模系數(shù),且>0,通過(guò)多次仿真確定=1。
在由滑轉(zhuǎn)率及其1階導(dǎo)數(shù)構(gòu)成的滑??刂葡嗥矫嬷?,切換線是以?為斜率,并且過(guò)(opt,0)的直線?;W兘Y(jié)構(gòu)控制可通過(guò)選取等效控制量,使得拖拉機(jī)在作業(yè)切換線滑動(dòng)趨近控制目標(biāo)(opt,0)。
對(duì)式(5)求導(dǎo),根據(jù)廣義滑模條件可知:
將式(3)中驅(qū)動(dòng)輪滑轉(zhuǎn)率的1階微分方程表達(dá)式代入式(6)可得:
控制系統(tǒng)從任意初始狀態(tài)不斷趨近滑模面時(shí),采用指數(shù)趨近律來(lái)改善趨近運(yùn)動(dòng)的動(dòng)態(tài)效果。同時(shí),在()持續(xù)接近0時(shí),引入等速趨近律,確定趨近速度為某一非0等速度,以保證控制系統(tǒng)以某一速度盡快到達(dá)滑模面。所采用的指數(shù)趨近律如式(8)所示。
式中表示系統(tǒng)的運(yùn)動(dòng)點(diǎn)的等速趨近律,且>0;表示指數(shù)趨近律,且>0;sgn(m())表示符號(hào)函數(shù)。
聯(lián)立式(7)和式(8),并選取提升液壓缸所需油腔內(nèi)活塞壓力LL作為等效控制量,可得到:
式中1、2、3、4、5、6、7為拖拉機(jī)結(jié)構(gòu)參數(shù)相關(guān)的系數(shù),其計(jì)算如式(11)所示。
根據(jù)指數(shù)趨近律即(8),采用正定函數(shù)作為L(zhǎng)yapunov函數(shù),具體可表達(dá)為
=2/2 (12)
式中表示滑??刂破鞯幕C?。
對(duì)式(12)求時(shí)間導(dǎo)數(shù)有:
式中為任意小的正整數(shù),>0。
根據(jù)Lyapunov穩(wěn)定性理論可知,在平衡點(diǎn)的鄰域內(nèi),Lyapunov函數(shù)為正定,且其時(shí)間導(dǎo)數(shù)為負(fù)定,則系統(tǒng)局部漸進(jìn)穩(wěn)定,所設(shè)計(jì)的控制系統(tǒng)是穩(wěn)定的。
當(dāng)系統(tǒng)進(jìn)入滑模運(yùn)動(dòng)并沿著滑模面不斷切換時(shí),為減少系統(tǒng)“抖動(dòng)”的影響,采用連續(xù)飽和函數(shù)sat(/)代替?zhèn)鹘y(tǒng)等速趨近率不連續(xù)的符號(hào)函數(shù)sgn(m()),其定義如式(14)所示。
式中表示邊界層厚度。
在滑模變結(jié)構(gòu)控制算法的設(shè)計(jì)過(guò)程中,推導(dǎo)了等效控制量LL的表達(dá)式。電液懸掛自動(dòng)控制系統(tǒng)的控制執(zhí)行機(jī)構(gòu)采用自行研發(fā)的螺紋插裝式比例控制閥(包括比例提升閥和比例下降閥,最高工作壓力25 MPa,額定流量為80 L/min),通過(guò)比例放大器(驅(qū)動(dòng)器)的驅(qū)動(dòng)電壓,實(shí)現(xiàn)閥芯開(kāi)度和流量調(diào)節(jié),最終達(dá)到等效控制量即提升液壓缸所需油腔活塞壓力的理想值。在室內(nèi)試驗(yàn)中,根據(jù)比例控制閥的動(dòng)靜態(tài)特性,調(diào)節(jié)連接比例控制閥出油口的比例溢流閥開(kāi)啟壓力來(lái)模擬負(fù)載變化,改變比例放大器(驅(qū)動(dòng)器)的輸入電壓,得到不同驅(qū)動(dòng)電壓下比例控制的穩(wěn)態(tài)流量。根據(jù)試驗(yàn)結(jié)果進(jìn)行回歸分析,可得到控制電壓與輸出流量的擬合關(guān)系如式(15)~(16)所示。
式中up為比例提升閥的驅(qū)動(dòng)電壓,V;down為比例下降閥的驅(qū)動(dòng)電壓,V;up為液壓缸提升過(guò)程中,從比例提升閥流進(jìn)液壓缸的液壓油流量,m3/s;down為液壓缸下降過(guò)程中,從液壓缸流入比例下降控制閥的流量,m3/s;Δ為比例換向閥兩端壓差,取值1.5 MPa;L為液壓缸負(fù)載壓力,Pa;0為回油壓力,取值0;為液壓油液的密度,kg/m3。
提升液壓缸的流量連續(xù)性方程如式(17)所示。
式中為油液的體積彈性模量,Pa;L為提升液壓缸油腔活塞的有效作用面積,m2;L為提升液壓缸油腔及油路中的油液容積,m3;tL為提升液壓缸的外泄漏系數(shù),m3/(Pa·s)。
聯(lián)立式(10)和式(16)求得L。提升閥開(kāi)啟時(shí)L=up();下降閥開(kāi)啟時(shí)L=?down()。綜合式(15)~(16),最終得到控制系統(tǒng)輸入信號(hào)即電液比例控制閥的控制電壓。
為了驗(yàn)證所建立的非線性動(dòng)力學(xué)模型的準(zhǔn)確性和所設(shè)計(jì)的控制算法的有效性,在Matlab/Simulink中建立犁耕作業(yè)大馬力拖拉機(jī)驅(qū)動(dòng)輪滑轉(zhuǎn)控制系統(tǒng)仿真模型,如圖3所示。在仿真模型中,根據(jù)北方平原地區(qū)小麥、玉米等大田土壤條件[24-25],采用濾波白噪聲法并根據(jù)拖拉機(jī)運(yùn)動(dòng)過(guò)程中前后輪的時(shí)間延遲關(guān)系,建立處于E級(jí)與F級(jí)標(biāo)準(zhǔn)路面之間的田間隨機(jī)路面激勵(lì)。
為了驗(yàn)證控制算法有效性,以最優(yōu)滑轉(zhuǎn)率opt=0.2為控制目標(biāo),分別采用SMVSC和模糊PID控制算法進(jìn)行仿真,分析滑轉(zhuǎn)控制系統(tǒng)對(duì)外界擾動(dòng)即土壤比阻輸入變化的消擾特性和動(dòng)態(tài)響應(yīng)特性。經(jīng)過(guò)多次調(diào)整,確定SMVSC相關(guān)控制參數(shù)為=1.2、=0.01、=0.01,模糊PID控制初始參數(shù)為P=12、I=0.5、D=1.5。仿真初始條件設(shè)置為拖拉機(jī)車(chē)速2.2 m/s,液壓缸活塞桿的初始位移量8.83 cm,初始耕深20 cm,仿真時(shí)間50 s。將土壤比阻的變化作為外界輸入擾動(dòng),設(shè)定土壤比阻穩(wěn)態(tài)值為30 000 N/m2[9,24]。仿真開(kāi)始時(shí),加入為幅值8 000 N/m2、周期10 s、占空比50%的土壤比阻擾動(dòng)脈沖信號(hào),仿真結(jié)果如圖4所示。
當(dāng)仿真開(kāi)始時(shí),土壤比阻從30 000 N/m2階躍變化到38 000 N/m2,隨后以10 s周期方波持續(xù)變化。由圖4a可知,采用模糊PID控制時(shí),當(dāng)土壤比阻每隔5 s階躍變化時(shí),系統(tǒng)響應(yīng)時(shí)間為1.5 s左右,雖然能將滑轉(zhuǎn)率控制在0.2附近,但滑轉(zhuǎn)率波動(dòng)較大,最大誤差達(dá)到0.02;SMVSC控制下的系統(tǒng)響應(yīng)時(shí)間約為0.5 s,在控制初期超調(diào)量幾乎為0,在0.5 s后能持續(xù)穩(wěn)定追蹤控制目標(biāo)0.2,能較好地抵抗土壤比阻擾動(dòng)變化的影響。另外,在土壤比阻處在30 000 N周期內(nèi)時(shí),由于加入幅值為8 000 N/m2的隨機(jī)路面土壤比阻激勵(lì)擾動(dòng),模糊PID控制根據(jù)偏差的大小時(shí)刻進(jìn)行調(diào)整,驅(qū)動(dòng)輪滑轉(zhuǎn)率的穩(wěn)態(tài)誤差達(dá)到0.015,最大超調(diào)量0.018;而SMVSC控制下的驅(qū)動(dòng)輪滑轉(zhuǎn)率始終在滑模面附近,穩(wěn)態(tài)誤差0.002,對(duì)外界擾動(dòng)的魯棒性較好,能持續(xù)穩(wěn)定在0.2,最大超調(diào)量0.008。
由圖4b、圖4c、圖4d可知,在SMVSC控制系統(tǒng)中,土壤比阻階躍變化時(shí),液壓缸活塞桿位移量由8.99 cm伸出至9.56 cm,耕深由21 cm減小至16.21 cm,通過(guò)減小耕深來(lái)抑制滑轉(zhuǎn)率增大的趨勢(shì),水平牽引力穩(wěn)定在7 056.54 N左右;模糊PID控制系統(tǒng)的液壓缸活塞桿位移瞬間增大,直接導(dǎo)致耕深變化和滑轉(zhuǎn)率控制的超調(diào)量均較大,響應(yīng)時(shí)間較長(zhǎng)。
圖3 大馬力拖拉機(jī)犁耕作業(yè)驅(qū)動(dòng)輪滑轉(zhuǎn)控制系統(tǒng)仿真模型
圖4 大馬力拖拉機(jī)犁耕作業(yè)驅(qū)動(dòng)輪滑轉(zhuǎn)控制仿真結(jié)果
由此可見(jiàn),在土壤條件發(fā)生改變時(shí),和模糊PID控制相比,滑模變結(jié)構(gòu)控制對(duì)外界擾動(dòng)的消擾特性較好,響應(yīng)相對(duì)較快,驗(yàn)證了其控制的有效性和優(yōu)越性。
綜合大馬力驅(qū)動(dòng)輪滑轉(zhuǎn)控制系統(tǒng)的實(shí)際應(yīng)用需求,以Lovol-TG1254型大馬力拖拉機(jī)為載體,掛接?xùn)|方紅1LH-535型五鏵犁搭建田間試驗(yàn)平臺(tái),如圖5所示。采用Radar III型地面多普勒雷達(dá)測(cè)量拖拉機(jī)實(shí)際前進(jìn)速度,脈沖計(jì)數(shù)式發(fā)動(dòng)機(jī)轉(zhuǎn)速傳感器測(cè)量理論車(chē)速,并通過(guò)計(jì)算得到驅(qū)動(dòng)輪實(shí)時(shí)滑轉(zhuǎn)率;采用Wittower RE-38型絕對(duì)值型角度傳感器測(cè)量提升臂轉(zhuǎn)角,依據(jù)懸掛機(jī)構(gòu)桿件關(guān)系計(jì)算得到耕深[9];將應(yīng)變片式牽引力傳感器阻安裝在兩側(cè)下拉桿與拖拉機(jī)的鉸接點(diǎn)處,測(cè)量農(nóng)具在水平和豎直方向上所受到的牽引阻力;采用文獻(xiàn)[24-25]的經(jīng)驗(yàn)公式,通過(guò)實(shí)時(shí)滑轉(zhuǎn)率估算驅(qū)動(dòng)力系數(shù)并計(jì)算驅(qū)動(dòng)力。
2019年5月,在中國(guó)農(nóng)業(yè)大學(xué)上莊試驗(yàn)站內(nèi)典型北方大田輪種地塊機(jī)型田間試驗(yàn)。試驗(yàn)地塊大小60 m× 350 m,地表以下20 cm土壤堅(jiān)實(shí)度平均約為130.5 kPa,拖拉機(jī)車(chē)速為B2擋、2.17 m/s。地塊土壤硬度變化較大且地表雜草較多,在播種期澆水后的犁耕作業(yè)過(guò)程中,拖拉機(jī)驅(qū)動(dòng)輪易產(chǎn)生過(guò)渡滑轉(zhuǎn)?;谒罱ǖ奶镩g試驗(yàn)平臺(tái),分別開(kāi)展SMVSC和模糊PID控制算法下的犁耕作業(yè)大馬力拖拉機(jī)驅(qū)動(dòng)輪滑轉(zhuǎn)控制對(duì)比試驗(yàn)。
1.多普勒雷達(dá) 2.發(fā)動(dòng)機(jī)轉(zhuǎn)速傳感器 3.上位機(jī)控制界面 4.控制器 5.供電系統(tǒng)和驅(qū)動(dòng)器 6.電液比例控制閥 7.耕深傳感器 8.牽引力傳感器
在試驗(yàn)過(guò)程中,首先由駕駛員操縱電液懸掛液壓輸出操縱桿,迫使犁具從地面以上以一定角度快速入土,在拖拉機(jī)作業(yè)機(jī)組開(kāi)始犁耕作業(yè)以后,打開(kāi)滑轉(zhuǎn)自動(dòng)控制系統(tǒng)。以0.2為最優(yōu)控制目標(biāo),分別開(kāi)展了基于SMVSC控制算法和模糊PID控制算法的驅(qū)動(dòng)輪滑轉(zhuǎn)控制對(duì)比試驗(yàn),試驗(yàn)結(jié)果如圖6所示。
由圖6a可知,SMVSC控制下的滑轉(zhuǎn)率平均值為0.2013,最大偏差為0.028,平均絕對(duì)值偏差為0.008,方差為0.000 1;模糊PID控制下的滑轉(zhuǎn)率平均值為0.2045,最大偏差為0.055,平均絕對(duì)值偏差為0.011,方差為0.002。SMVSC控制下的滑轉(zhuǎn)率平均絕對(duì)值偏差減小了27%,最大偏差減小約49%,滑轉(zhuǎn)率方差也顯著減小。雖然2種控制方法都能將滑轉(zhuǎn)率控制在最優(yōu)目標(biāo)0.2附近,但是SMVSC控制控制下的滑轉(zhuǎn)率波動(dòng)幅度和控制偏差均相對(duì)較小,穩(wěn)定性更好。
由圖6b、圖6c、圖6d可知,SMVSC控制下的耕深調(diào)節(jié)的變化量為5.26 cm,遠(yuǎn)小于模糊PID控制的7.21 cm,減小了約27%;液壓缸位移調(diào)節(jié)變化量為1.15 cm,小于模糊PID控制的1.8 cm,減小了約36%;水平牽引力的調(diào)節(jié)變化量為1 293.35N,小于模糊PID控制的2 217 N,減小了約42%。由此可見(jiàn),基于滑模變結(jié)構(gòu)的驅(qū)動(dòng)輪滑轉(zhuǎn)控制方法將滑轉(zhuǎn)率穩(wěn)定控制在0.2的同時(shí),拖拉機(jī)作業(yè)過(guò)程中的調(diào)整量更小,作業(yè)狀態(tài)更加平穩(wěn)。
圖6 大馬力拖拉機(jī)犁耕作業(yè)驅(qū)動(dòng)輪滑轉(zhuǎn)控制試驗(yàn)結(jié)果
對(duì)比仿真和試驗(yàn)結(jié)果可知,在耕深20 cm的田間犁耕作業(yè)工況下,采用本文所設(shè)計(jì)的基于滑模變結(jié)構(gòu)控制的大馬力拖拉機(jī)驅(qū)動(dòng)輪滑轉(zhuǎn)控制方法,能夠有效將拖拉機(jī)驅(qū)動(dòng)輪滑轉(zhuǎn)率控制在最優(yōu)目標(biāo)0.2。與模糊PID控制方法相比,控制超調(diào)量較小,達(dá)到穩(wěn)定狀態(tài)以后控制偏差較小,作業(yè)過(guò)程中的耕深調(diào)整量更小,控制精度和穩(wěn)定性更高。
1)面向犁耕作業(yè)工況,以大馬力拖拉機(jī)電液懸掛作業(yè)機(jī)組為研究對(duì)象,考慮“拖拉機(jī)-農(nóng)具-土壤”復(fù)雜系統(tǒng)的強(qiáng)非線性特征,建立了適用于的大馬力拖拉機(jī)驅(qū)動(dòng)輪滑轉(zhuǎn)的非線性系統(tǒng)動(dòng)力學(xué)模型;在對(duì)動(dòng)力學(xué)微分方程組和液壓系統(tǒng)進(jìn)行有效簡(jiǎn)化的基礎(chǔ)上,選取提升液壓缸油腔內(nèi)活塞壓力作為等效控制量,采用滑模變結(jié)構(gòu)控制理論設(shè)計(jì)了驅(qū)動(dòng)輪滑轉(zhuǎn)非線性控制算法。
2)以最優(yōu)滑轉(zhuǎn)率0.2為控制目標(biāo),以模糊PID控制作為對(duì)比算法,應(yīng)用Matlab/Simulink進(jìn)行土壤比阻階躍變化激勵(lì)下的仿真分析;并搭建了滑轉(zhuǎn)控制系統(tǒng)田間試驗(yàn)平臺(tái),開(kāi)展大馬力拖拉機(jī)犁耕作業(yè)驅(qū)動(dòng)輪滑轉(zhuǎn)控制田間對(duì)比試驗(yàn)。仿真和田間試驗(yàn)結(jié)果表明,基于滑模變結(jié)構(gòu)控制的驅(qū)動(dòng)輪滑轉(zhuǎn)控制方法的控制誤差更小,控制精度和穩(wěn)定性更高。
該文提出的基于滑模變結(jié)構(gòu)控制的大馬力拖拉機(jī)犁耕作業(yè)驅(qū)動(dòng)輪滑轉(zhuǎn)控制方法,在實(shí)現(xiàn)滑轉(zhuǎn)率最優(yōu)目標(biāo)穩(wěn)定控制的同時(shí),拖拉機(jī)電液懸掛系統(tǒng)調(diào)整幅度較小,作業(yè)過(guò)程更加平穩(wěn),對(duì)于提高田間犁耕作業(yè)質(zhì)量和作業(yè)效率具有一定的實(shí)際生產(chǎn)指導(dǎo)意義。
[1] 張向前,楊文飛,徐云姬.中國(guó)主要耕作方式對(duì)旱地土壤結(jié)構(gòu)及養(yǎng)分和微生態(tài)環(huán)境影響的研究綜述[J]. 生態(tài)環(huán)境學(xué)報(bào),2019,28(12):2464-2472.
Zhang Xiangqian, Yang Wenfei, Xu Yunji. Effects of main tillage methods on soil structure, nutrients and micro-ecological environment of upland in China: A review[J]. Ecology and Environmental Sciences, 2019, 28(12): 2464-2472. (in Chinese with English abstract)
[2] 關(guān)劼兮,陳素英,邵立威,等.華北典型區(qū)域土壤耕作方式對(duì)土壤特性和作物產(chǎn)量的影響[J]. 中國(guó)生態(tài)農(nóng)業(yè)學(xué)報(bào),2019,27(11):1663-1672.
Guan Jiexi, Chen Suying, Shao Liwei, et al. Soil tillage practices affecting the soil characteristics and yield of winter wheat and summer maize in North China[J]. Chinese Journal of Eco-Agriculture, 2019, 27(11): 1663-1672. (in Chinese with English abstract)
[3] 趙建軍. 重型拖拉機(jī)電液提升器比例控制閥設(shè)計(jì)與特性研究[D]. 北京:中國(guó)農(nóng)業(yè)大學(xué),2015.
Zhao Jianjun. The Design and Characteristics Research of Proportional Control Valve for the Electro-hydraulic Hitch of Heavy Tractor[D]. Beijing: China Agricultural University, 2015. (in Chinese with English abstract)
[4] 丁肇,李耀明,唐忠. 輪式和履帶式車(chē)輛行走對(duì)農(nóng)田土壤的壓實(shí)作用分析[J]. 農(nóng)業(yè)工程學(xué)報(bào),2020,36(5):10-18.
Ding Zhao, Li Yaoming, Tang Zhong. Compaction effects of wheeled vehicles and tracked on farmland soil[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2020, 36(5): 10-18. (in Chinese with English abstract)
[5] 倪向東,梅衛(wèi)江. 國(guó)外大功率拖拉機(jī)新技術(shù)新結(jié)構(gòu)和發(fā)展趨勢(shì)的研究[J]. 農(nóng)機(jī)化研究,倪向東,梅衛(wèi)江. 國(guó)外大功率拖拉機(jī)新技術(shù)新結(jié)構(gòu)和發(fā)展趨勢(shì)的研究[J]. 農(nóng)機(jī)化研究,2007,1:25-27.
Ni Xiangdong, Mei Weijing. Research on the new structure and technology of the development trend for the foreign large power tractor[J]. Journal of Agricultural Mechanization Research, 2007, 1: 25-27. (in Chinese with English abstract)
[6] 李立. 拖拉機(jī)后懸掛電液控制系統(tǒng)的研究[D]. 哈爾濱:哈爾濱工業(yè)大學(xué),2012.
Li Li. Research on the Electro-hydraulic System in Tractor Rear Suspension[D]. Harbin: Harbin Institute of Technology, 2012. (in Chinese with English abstract)
[7] 王會(huì)明,侯加林,趙耀華,等. 拖拉機(jī)液壓懸掛機(jī)構(gòu)自動(dòng)控制系統(tǒng)[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2006,37(10):42-45.
Wang Huiming, Hou Jialin, Zhao Yaohua, et al. Study on automatic control system for hydraulic hitch equipment of tractor[J]. Transactions of the Chinese Society for Agricultural Machinery, 2006, 37(10): 42-45. (in Chinese with English abstract)
[8] Chanchal Gupta, Tewari V K, Ashok Kumar A, et al. Automatic tractor slip-draft embedded control system[J]. Computers and Electronics in Agriculture, 2019, 165: 1-11.
[9] 張碩,杜岳峰,朱忠祥,等. 后輪驅(qū)動(dòng)大功率拖拉機(jī)牽引力-滑轉(zhuǎn)率聯(lián)合自動(dòng)控制方法[J]. 農(nóng)業(yè)工程學(xué)報(bào),2016,32(12):47-53.
Zhang Shuo, Du Yuefeng, Zhu Zhongxiang, et al. Integrated control method of traction & slip ratio for rear-driving high-power tractors[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2016, 32(12): 47-53. (in Chinese with English abstract)
[10] 白學(xué)峰,魯植雄,張廣慶,等. 基于滑轉(zhuǎn)率的拖拉機(jī)驅(qū)動(dòng)防滑模糊PID控制算法仿真分析[J]. 江西農(nóng)業(yè)學(xué)報(bào),2012,9:146-149,156.
Bai Xuefeng, Lu Zhixiong, Zhang Guangqing, et al. Simulative analysis of fuzzy PID control algorithm for antiskid driving system of tractor based on slip ratio[J]. Acta Agriculturae Jiangxi, 2012, 9: 146-149, 156. (in Chinese with English abstract)
[11] 殷新東,魯植雄. 基于滑轉(zhuǎn)率的四輪驅(qū)動(dòng)拖拉機(jī)防滑模糊控制算法仿真研究[J]. 農(nóng)業(yè)裝備與車(chē)輛工程,2010,12:6-10.
Yin Xindong, Lu Zhixiong. Simulation research on acceleration slip regulation system for four-wheel drive tractor using fuzzy control method[J]. Agricultural Equipment & Vehicle Engineering, 2010, 12: 6-10. (in Chinese with English abstract)
[12] Mirko Simikic, Nebojsa Dedovic, Lazar Savin, et al. Power delivery efficiency of a wheeled tractor at oblique drawbar force[J]. Soil & Tillage Research, 2014, 141:32-43.
[13] 高大水,余群,喻谷源. 驅(qū)動(dòng)輪滑轉(zhuǎn)沉陷及其對(duì)牽引性能的影響[J]. 北京農(nóng)業(yè)機(jī)械化學(xué)院學(xué)報(bào),1984(3):4-27.
Gao Dashui, Yu Qun, Yu Guyuan. Research of slip-sinkage of tractor driving wheels and its effect on tractor performance[J]. Journal of Beijing Agricultural Mechanization College, 1984(3): 4-27. (in Chinese with English abstract)
[14] Porte? P, Bauer F, ?upera J. Laboratory-experimental verification of calculation of force effects in tractor's three-point hitch acting on driving wheels[J]. Soil & Tillage Research, 2013, 128: 81-90.
[15] 劉金琨,孫富春. 滑模變結(jié)構(gòu)控制理論及其算法研究與進(jìn)展[J]. 控制理論與應(yīng)用,2007,24(3):407-418.
Liu Jinkun, Sun Fuchun. Research and development on theory and algorithms of sliding mode control[J]. Control Theory & Applications, 2007, 24(3): 407-418.
[16] 張豐. 滑模變結(jié)構(gòu)控制理論在非線性系統(tǒng)中的應(yīng)用[D]. 沈陽(yáng):沈陽(yáng)理工大學(xué),2013.
Zhang Feng. The Application of Sliding-Mode Variable Structure Control Theory in Nonlinear Systems[D]. Shenyang: Shenyang Ligong University, 2013. (in Chinese with English abstract)
[17] 承鑒,遲瑞娟,毛恩榮. 懸掛農(nóng)具對(duì)電液懸掛系統(tǒng)拖拉機(jī)振動(dòng)的影響[J]. 農(nóng)業(yè)工程學(xué)報(bào),2015,31(7):24-32.
Cheng Jian, Chi Ruijuan, Mao Enrong. Influence of hanging farm implement on vibration of tractor with electro-hydraulic hitch system[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2015, 31(7): 24-32. (in Chinese with English abstract)
[18] 牛雪梅,高國(guó)琴,鮑智達(dá),等. 基于滑模變結(jié)構(gòu)控制的溫室噴藥移動(dòng)機(jī)器人路徑跟蹤[J]. 農(nóng)業(yè)工程學(xué)報(bào),2013,29(2):9-16.
Niu Xuemei, Gao Guoqin, Bao Zhida, et al. Path tracking of mobile robots for greenhouse spraying controlled by sliding mode variable structure[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2013, 29(2): 9-16. (in Chinese with English abstract)
[19] 趙翾,楊玨,張文明,等. 農(nóng)用輪式鉸接車(chē)輛滑模軌跡跟蹤控制算法[J]. 農(nóng)業(yè)工程學(xué)報(bào),2015,31(10):198-203.
Zhao Xuan, Yang Jue, Zhang Wenming, et al. Sliding mode control algorithm for path tracking of articulated dump truck[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2015, 31(10): 198-203. (in Chinese with English abstract)
[20] 武仲斌,謝斌,遲瑞娟,等. 基于滑轉(zhuǎn)率的雙電機(jī)雙軸驅(qū)動(dòng)車(chē)輛轉(zhuǎn)矩協(xié)調(diào)分配[J]. 農(nóng)業(yè)工程學(xué)報(bào),2018,34(15):66-76.
Wu Zhongbin, Xie Bin, Chi Ruijuan, et al. Active modulation of torque distribution for dual-motor front and rear-axle drive type electric vehicle based on slip ratio[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(15): 66-76. (in Chinese with English abstract)
[21] 黃郁馨,王彤宇,林琳,等. 基于滑模變結(jié)構(gòu)控制的移動(dòng)系統(tǒng)滑轉(zhuǎn)率控制[J]. 兵工學(xué)報(bào),2014,35(10):1707-1715.
Huang Yuxin, Wang Tongyu, Lin Lin, et al. Slip ratio control of locomotion system based on sliding mode variable structure control[J]. Acta Armamentarii, 2014, 35(10): 1707-1715. (in Chinese with English abstract)
[22] 周兵,徐蒙,袁希文,等. 基于滑模極值搜索算法的車(chē)輛驅(qū)動(dòng)防滑控制策略[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2015,46(2):307-311.
Zhou Bing, Xu Meng, Yuan Xiwen, et al. Acceleration slip regulation based on extremum seeking control with sliding mode[J]. Transactions of the Chinese Society for Agricultural Machinery, 2015, 46(2): 307-311. (in Chinese with English abstract)
[23] 張碩. 基于滑模變結(jié)構(gòu)的重型拖拉機(jī)犁耕作業(yè)滑轉(zhuǎn)率控制方法研究[D]. 北京:中國(guó)農(nóng)業(yè)大學(xué),2018. Zhang Shuo. Study on Slip Rate Control of Heavy Tractor for Ploughing Based on Sliding Mode Variable Structure Control[D]. Beijing: China Agricultural University, 2018. (in Chinese with English abstract)
[24] 周志立,方在華. 拖拉機(jī)機(jī)組牽引動(dòng)力學(xué)[M]. 北京:科學(xué)出版社,2010.
[25] 吳起亞,高行方. 拖拉機(jī)與農(nóng)業(yè)機(jī)械牽引力學(xué)[M]. 北京:中國(guó)農(nóng)業(yè)機(jī)械出版社,1985.
Control method of driving wheel slip rate of high-power tractor for ploughing operation
Zhang Shuo1, Wu Zhongbin2, Chen Jun1, Li Zhen2※, Zhu Zhongxiang2, Song Zhenghe2, Mao Enrong2
(1.,712100,; 2.,,100083,)
In north China, the ploughing operation of high-power tractor based on electro-hydraulic suspension system is the most common and important agricultural process in the field agricultural production. Due to the complex field working environment, the change of tillage depth and the fluctuation of soil specific resistance, the working load of tractor unit fluctuates greatly during ploughing operation, which is easy to cause excessive sliding of driving wheel, and seriously affects the traction efficiency and traction of the operation unit. In order to solve the problem of excessive driving wheel slip of high-power tractor for ploughing, taking the high-power tractor ploughing unit with electro-hydraulic hitch system as the research object, a sliding rate control method based on sliding mode variable structure control was proposed.this paper. Firstly, in view of the strong nonlinear characteristics of the complex system of “tractor-farm tools-soil”, the nonlinear dynamics model of tractor driving wheel sliding for ploughing was established based on tractor motion characteristics and the theories of vehicle dynamics. Then, the exponential reaching law was used to design the sliding rate nonlinear control algorithm based on sliding mode variable structure control theory. Especially, taking the hydraulic pressure of hydraulic cylinder as the equivalent control quantity, the control law of sliding mode variable structure control was derived after simplifying the hydraulic system. Through MATLAB/Simulink simulation, the reliability of the nonlinear dynamic model and control algorithm in the step change of soil specific resistance was verified. According to the soil data obtained from a specific site, the soil specific resistance was set as pulse signal, and the stable value was 30 000 N/m2. At the beginning of the simulation, a soil specific resistance with an amplitude of 8 000 N/m2, a period of 10 s and a duty cycle of 50% was added to block the impulse signal. The results showed that the slip rate of the driving wheel was always near the sliding surface, the steady-state error was 0.002, and the control overshoot was 0.008. Furthermore, the field test platform for automatic slip rate control system was built on Lovol-TG1254 tractor, and the field comparison tests between SMVSC control and Fuzzy PID control were carried out under the tractor speed of 2.17 m/s. The test results showed that compared with the fuzzy PID control, the mean absolute deviation of slip rate under the SMVSC control decreased by 27%, the maximum deviation decreased by about 49%, and the fluctuation range and control deviation of slip rate were smaller. The change of depth was 5.26 cm, which decreased by about 27% compared with that of the fuzzy PID control, the change of hydraulic cylinder displacement was 1.15 cm, which decreased by about 36%, and the adjustment change of traction was 1 293.35 N, which decreased by about 42%. The control deviation of the driving wheel sliding control method proposed in this paper was small, it can provide theoretical basis and technical support for improving the quality of ploughing operation.
agricultural machinery; experiments; tractor; ploughing operation; slip control; sliding mode variable structure control
張碩,武仲斌,陳軍,等. 犁耕作業(yè)大馬力拖拉機(jī)驅(qū)動(dòng)輪滑轉(zhuǎn)率控制方法[J]. 農(nóng)業(yè)工程學(xué)報(bào),2020,36(15):47-55.doi:10.11975/j.issn.1002-6819.2020.15.006 http://www.tcsae.org
Zhang Shuo, Wu Zhongbin, Chen Jun, et al. Control method of driving wheel slip rate of high-power tractor for ploughing operation[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2020, 36(15): 47-55. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2020.15.006 http://www.tcsae.org
2020-04-16
2020-08-13
中國(guó)博士后基金面上項(xiàng)目(2019M653764);國(guó)家重點(diǎn)研發(fā)計(jì)劃項(xiàng)目(2017YFD0700403)
張碩,博士,講師,主要從事車(chē)輛智能控制、智能農(nóng)機(jī)裝備的相關(guān)研究。Email:zhangshuo@nwafu.edu.cn
李臻,博士,副教授,主要從事農(nóng)業(yè)機(jī)械的設(shè)計(jì)、仿真,以及自動(dòng)控制研究。Email:zhenli@cau.edu.cn
10.11975/j.issn.1002-6819.2020.15.006
S219.032.4; TP273+.2
A
1002-6819(2020)-15-0047-09