程香港,喬 偉,李 路,江傳文,倪 磊
(1.中國(guó)礦業(yè)大學(xué) 資源與地球科學(xué)學(xué)院,江蘇 徐州 221000; 2.上海勘測(cè)設(shè)計(jì)研究院有限公司,上海 200434; 3.安徽省水利水電勘測(cè)設(shè)計(jì)院研究總院有限公司,安徽 合肥 230088)
煤炭是我國(guó)主要能源之一,煤炭資源的開(kāi)采關(guān)系到國(guó)民經(jīng)濟(jì)的發(fā)展,礦井突水水害嚴(yán)重制約著我國(guó)煤炭安全高效生產(chǎn)[1]。據(jù)不完全統(tǒng)計(jì),自2000年至今,煤礦突水事故頻發(fā),突水事故高達(dá)814起,死亡人數(shù)高達(dá)4 000多人,經(jīng)濟(jì)損失高達(dá)到400多億人民幣[2]。煤礦突水不僅嚴(yán)重影響了礦井井巷開(kāi)拓和回采工作,造成重大的人身傷亡和經(jīng)濟(jì)損失,而且還對(duì)礦區(qū)水資源與環(huán)境造成巨大的破壞。礦井涌水量的預(yù)測(cè)是煤礦安全生產(chǎn)、防排水設(shè)計(jì)的重要依據(jù),因此,礦井涌水量的預(yù)測(cè)工作極為重要。
目前,我國(guó)在煤炭開(kāi)采過(guò)程中形成了大量礦井涌水量預(yù)測(cè)方法,如解析法、水文地質(zhì)比擬法、統(tǒng)計(jì)學(xué)法、數(shù)值法等[3]。杜敏銘等[4]概述了工程中常用的礦井涌水量預(yù)測(cè)方法,分析各方法的主要特點(diǎn)及適用性,提出了對(duì)礦井涌水量預(yù)測(cè)方法的展望。劉基等[5]運(yùn)用Visual Modflow軟件構(gòu)建葫蘆素煤礦地下水流數(shù)值模型,研究了礦井涌水量隨采掘進(jìn)度的動(dòng)態(tài)變化規(guī)律及回采期間礦井涌水量。黃歡[6]綜述了礦井涌水量的預(yù)測(cè)方法,并提出了礦井涌水量預(yù)測(cè)發(fā)展趨勢(shì),許多學(xué)者認(rèn)為結(jié)合數(shù)值模擬的耦合模型成為預(yù)測(cè)礦井涌水量的主要發(fā)展趨勢(shì)。因此,深入研究應(yīng)力-滲透耦合作用對(duì)礦井涌水量的預(yù)測(cè)有著重要的意義。
國(guó)內(nèi)外學(xué)者對(duì)應(yīng)力-滲流耦合已經(jīng)做了很多研究工作,BATCHELOR[7]從理論上推導(dǎo)出了牛頓流體在平行板裂縫中的運(yùn)動(dòng)公式,實(shí)現(xiàn)了單裂隙應(yīng)力-滲流耦合。張玉卓[8]、張金才等[9]基于孔隙彈性力學(xué)理論及修正的立方定律模型,推導(dǎo)出應(yīng)力與滲透率的方程,通過(guò)有限元軟件耦合應(yīng)力與滲流的聯(lián)系,研究了裂隙巖體的應(yīng)力變化與滲透性變化的關(guān)系特征。白國(guó)良等[10]基于立方定律,推導(dǎo)了以應(yīng)變?yōu)閰?shù)的采動(dòng)巖體等效滲透系數(shù),利用FLAC3D軟件建立了采動(dòng)巖體等效連續(xù)介質(zhì)流固耦合模型,研究了采動(dòng)巖體的滲流特征及普遍規(guī)律。孟召平等[11-12]通過(guò)室內(nèi)試驗(yàn)研究了不同巖石應(yīng)力應(yīng)變與滲透率的關(guān)系,建立采后應(yīng)力與滲透率的三維定量計(jì)算模型,研究了巖體應(yīng)力、滲透系數(shù)的動(dòng)態(tài)變化規(guī)律。朱紅光等[13]討論了立方定律的前提條件并指出立方定律的局限性,提出了一個(gè)粗糙巖體裂隙的離散等效幾何模型,為實(shí)際巖體裂隙中滲流行為的分析提供了新的手段。王志良等[14]基于格子Boltzmann方法,考慮了裂隙面粗糙度的因素,提出了立方定律在粗糙裂隙面滲流的修正公式,為研究復(fù)雜粗糙裂隙的水力特征奠定了一定的基礎(chǔ)。以往的礦井涌水量預(yù)測(cè)方法常用傳統(tǒng)的井流公式,由于勘探階段獲取的水文地質(zhì)參數(shù)為鉆孔數(shù)據(jù),數(shù)據(jù)較為離散,而且分布不均勻,未考慮采動(dòng)引起的覆巖裂隙滲透特性變化,預(yù)測(cè)結(jié)果與礦井實(shí)測(cè)涌水量相比誤差較大,精度較低。
筆者以陜西金源招賢煤礦首采區(qū)1307工作面為例,基于導(dǎo)水裂隙帶發(fā)育和正交實(shí)驗(yàn)設(shè)計(jì)基本原理,建立修正后的采動(dòng)裂隙應(yīng)力-滲透耦合計(jì)算模型,研究了1307工作面采動(dòng)滲透系數(shù)的動(dòng)態(tài)變化規(guī)律并進(jìn)行礦井涌水量的預(yù)計(jì)。結(jié)合實(shí)測(cè)涌水量,與不同的試驗(yàn)?zāi)P皖A(yù)計(jì)的涌水量進(jìn)行對(duì)比,探討出一種相對(duì)符合實(shí)際的間距及隙寬組合形式下試驗(yàn)?zāi)P停岢隽艘环N礦井涌水量預(yù)測(cè)新思路,為頂板水害防治提供了依據(jù)。
招賢煤礦一采區(qū)位于陜西省麟游縣招賢鎮(zhèn),1307工作面為一采區(qū)的首采工作面,位于招賢煤礦一采區(qū)東南翼,地面主要以丘陵和山地為主。1307工作面的含煤地層為侏羅系中統(tǒng)延安組,3號(hào)煤層厚度為2.45~28.67 m,均厚14.77 m,均采厚9.9 m,工作面起止標(biāo)高+760~+879 m,工作面走向?yàn)? 144 m,寬160 m。采用走向長(zhǎng)壁采煤法綜放開(kāi)采。頂板為深灰色泥巖、砂質(zhì)泥巖、粉細(xì)砂巖與灰白色中粗粒砂巖互層。研究區(qū)內(nèi)分布有麥里溝向斜和四郎溝向斜,兩向斜軸向西南,北翼傾角較陡,南翼傾角較緩,煤層平均傾角約為6°,采區(qū)內(nèi)無(wú)煤層露頭。煤層上覆巖層為中硬類巖層,其直接充水含水層為直羅組砂巖裂隙含水層和延安組煤層及頂板砂巖含水層。研究區(qū)內(nèi)地層由老至新依次有:侏羅系下統(tǒng)富縣組(J1f)、中統(tǒng)延安組(J2y)、直羅組(J2z)、安定組(J2a),白堊系下統(tǒng)宜君組(K1y)、洛河組(K1l),新近系(N)及第四系中—上更新統(tǒng)(Q2+3)、全新統(tǒng)(Q4),1307工作面地質(zhì)剖面圖如圖1所示。
圖1 1307工作面地質(zhì)剖面Fig.1 Geological section of 1307 working face
1307工作面水文地質(zhì)參數(shù)見(jiàn)表1,宜君組含水層鉆孔單位涌水量為0.006 1~0.037 7 L/(s·m),屬中等富水,但由于宜君組厚度為171~269 m,相對(duì)較厚,具有較大的頂板水害威脅,因此,判定其富水性為強(qiáng)富水。
表1 1307工作面水文地質(zhì)參數(shù)Table 1 Hydrogeological parameters of 1307 working face
國(guó)內(nèi)外許多學(xué)者研究表明,覆巖采動(dòng)裂隙隨著工作面的推進(jìn)而發(fā)生改變,頂板覆巖存在著3個(gè)不同的區(qū)域:垮落帶、裂隙帶和彎曲下沉帶[15]。
如圖2所示,在工作面直接頂?shù)乃輩^(qū)域,上覆巖體直接垮落至工作面,呈現(xiàn)出大小不同的不規(guī)則塊體。每個(gè)破碎巖層中的相鄰塊體在裂隙帶中完全或部分接觸,從裂隙帶的下部向上,垂向的裂隙數(shù)量逐漸減少,裂隙間間距增大,隙寬逐漸減小。在裂隙帶的上部是彎曲下沉帶,沒(méi)有形成貫穿巖層的垂向裂隙。裂隙帶范圍內(nèi)的天然巖體受采動(dòng)擾動(dòng)影響后,形成大量的裂隙面,這些裂隙面切割了巖體,形成了采動(dòng)裂隙網(wǎng)絡(luò)。
圖2 煤層開(kāi)采過(guò)層中覆巖運(yùn)動(dòng)區(qū)域Fig.2 Area of overlying strata movement in coal seam mining
在采動(dòng)裂隙網(wǎng)絡(luò)中,采動(dòng)裂隙分布雜亂,形態(tài)各異。但是,巖體采動(dòng)裂隙中垂向裂隙與橫向裂隙相對(duì)較為發(fā)育,其中垂向或者近垂直的裂隙主要為采動(dòng)巖層破斷所形成,而橫向裂隙大多為巖層層面裂隙,所以本文假設(shè)煤層開(kāi)采上覆巖層的采動(dòng)裂隙是具有三向相互垂直裂隙的正交裂隙網(wǎng)絡(luò),如圖3所示。
圖3 正交裂隙網(wǎng)絡(luò)Fig.3 Orthogonal fracture network
由于采動(dòng)裂隙導(dǎo)通含水層中的地下水均向采空區(qū)運(yùn)移,z方向上裂隙滲流變化的特征對(duì)涌水量的預(yù)測(cè)具有現(xiàn)實(shí)意義,因而,筆者基于建立的正交裂隙網(wǎng)絡(luò),結(jié)合公式,推導(dǎo)了z方向上采動(dòng)裂隙滲透系數(shù),用于礦井涌水量的計(jì)算。
綜上所述,筆者研究了煤層覆巖采動(dòng)粗糙裂隙面下應(yīng)力-滲流耦合特征,并探尋礦井涌水量預(yù)測(cè)更為精細(xì)的方法,研究工作具體流程如圖4所示。
圖4 流程Fig.4 Flow chart
煤層的開(kāi)采伴隨著覆巖運(yùn)動(dòng)的產(chǎn)生,導(dǎo)致采動(dòng)裂隙滲流網(wǎng)絡(luò)與巖土體應(yīng)力場(chǎng)發(fā)生改變,水體滲流運(yùn)動(dòng)與巖體應(yīng)力場(chǎng)相互作用。裂隙中滲流水運(yùn)動(dòng)遵循N-S方程,對(duì)于理想光滑平面板裂隙滲流,BATCHELOR[7]從理論上推導(dǎo)出了立方定律:
(1)
式中,q為裂隙水流的單寬流量;g為重力加速度;b為裂隙隙寬;μ為水的黏滯系數(shù);J為水力梯度。
由于在實(shí)際工程地質(zhì)條件中,天然裂隙面均為粗糙的,一些學(xué)者基于裂隙面的粗糙程度對(duì)立方定律進(jìn)行了修正。AMADEI等[16]以非經(jīng)驗(yàn)的方法深入研究了裂隙面粗糙度對(duì)立方定律的影響,將解析解和數(shù)值模擬相結(jié)合,得到了經(jīng)驗(yàn)公式:
(2)
王志良等[14]在此基礎(chǔ)上對(duì)式(2)進(jìn)行修正,得到層流狀態(tài)下粗糙裂隙面立方定律修正公式為
(3)
由式(3),根據(jù)Darcy定律可知
(4)
則在初始應(yīng)力場(chǎng)條件下,層流狀態(tài)下的裂隙水在粗糙裂隙面中滲透系數(shù)為
(5)
孔徑的變化影響滲透率的變化,孟召平等[11]在前人研究基礎(chǔ)上推導(dǎo)出兩組相互正交的裂隙滲流與隙寬變化方程,其方程可表示為
(6)
根據(jù)廣義胡克定律,如式(7)所示,迭代可得式(8):
(7)
(8)
同式(7),(8),則Δby可表示為
(9)
式中,Δutx為x方向上巖體變形總量;Δbrx為x方向上巖塊變形總量;Δεtx為x方向上巖體應(yīng)變;Δεrx為x方向上巖塊應(yīng)變;Δσ′x為x方向上應(yīng)力增量;Δσx為x方向上應(yīng)力變化量;Δσy為y方向上應(yīng)力變化量;Δσz為z方向上應(yīng)力變化量;ν為泊松比;Em為巖體楊氏模量;Er為巖塊楊氏模量。
由于巖體與巖塊的楊氏模量有
(10)
將式(8)~(10)代入式(6)中,可得
(11)
將式(5)代入式(11)中,可得修正后的三維裂隙應(yīng)力-滲流網(wǎng)絡(luò)計(jì)算模型:
(12)
同式(12),Kx,Ky可表示為
(13)
(14)
式中,knx,kny,knz分別為在x,y,z方向斷裂的法向剛度;Kx為x方向上滲透系數(shù);Ky為y方向上滲透系數(shù)。
巖體滲透系數(shù)的變化受相對(duì)粗糙度、隙寬、間距以及采動(dòng)巖體應(yīng)力增量的影響,由于在實(shí)際工程中相對(duì)粗糙度、隙寬、間距以及采動(dòng)巖體應(yīng)力增量測(cè)量較為困難,因而,筆者使用FLAC3D軟件模擬計(jì)算了采動(dòng)巖體的應(yīng)力增量,并結(jié)合實(shí)際工程情況,假設(shè)與討論了各影響因素的取值,代入式(11),(12)進(jìn)行分析采場(chǎng)覆巖變形破壞滲透特征。
根據(jù)招賢煤礦1307工作面實(shí)際地質(zhì)條件,建立如圖5所示的有限元三維數(shù)值模型,模型長(zhǎng)、寬、高為1 250 m×560 m×552 m,根據(jù)實(shí)際工程地質(zhì)條件,考慮到邊界條件的影響,結(jié)合礦山開(kāi)采沉陷理論,設(shè)置煤層開(kāi)挖高度為10 m,兩側(cè)留設(shè)足夠的煤柱來(lái)確保模型邊界在采動(dòng)影響之外,模型側(cè)面設(shè)置限制水平移動(dòng),模型底面限制水平移動(dòng),模型頂部施加垂向荷載模擬上覆巖層的自重。
圖5 數(shù)值模擬模型Fig.5 Numerical simulation model
模型上覆巖層巖性及煤的物理力學(xué)參數(shù)指標(biāo)見(jiàn)表2。
表2 上覆巖層巖性及煤的物理力學(xué)參數(shù)指標(biāo)Table 2 Overburden rock lithology and physical and mechanical parameters of coal
煤層開(kāi)采后,上覆巖層形成的垮落帶和裂隙帶會(huì)隨著煤層開(kāi)采推進(jìn)長(zhǎng)度的增加發(fā)育到最大值,而后趨于穩(wěn)定。工作面采動(dòng)塑性區(qū)如圖6所示,結(jié)果表明:采空區(qū)上方中部巖層主要為拉張破壞區(qū),而在開(kāi)切眼及煤壁前方出現(xiàn)剪應(yīng)力區(qū)。圖6中塑性區(qū)的范圍表明此處巖層已發(fā)生破壞,靠近采空區(qū)以拉張破壞為主的區(qū)域可視為垮落帶,覆巖彈性區(qū)和剪切破壞區(qū)的上限可視為導(dǎo)水裂隙帶的上限,由此得到導(dǎo)水裂隙帶發(fā)育的最大高度,測(cè)量可知此時(shí)導(dǎo)水裂隙帶的發(fā)育高度。
數(shù)值模擬分析表明:工作面開(kāi)采700 m時(shí),如圖6(b)所示,覆巖塑性區(qū)在縱向上高度發(fā)育至最大值,止于煤層頂板以上197.7 m,最終確定數(shù)值模擬裂隙帶發(fā)育最大高度為197.7 m。
為了清晰的觀測(cè)煤層開(kāi)采過(guò)程中,上覆巖層“兩帶”高度發(fā)育情況,根據(jù)上覆巖層地質(zhì)條件,結(jié)合相似模擬試驗(yàn)臺(tái)5 m×0.3 m×2.5 m(長(zhǎng)×寬×高),設(shè)計(jì)了工作面相似模擬試驗(yàn),煤層開(kāi)采高度為10 m,相似比為1∶300,相似模擬模型如圖7所示。
圖7 相似模擬模型示意Fig.7 Schematic diagram of similar simulation model
結(jié)合相似模擬實(shí)驗(yàn)對(duì)裂隙帶高度的研究結(jié)果,得到采動(dòng)對(duì)裂隙帶發(fā)育高度等影響及趨勢(shì),如表3和圖8所示。
表3 采動(dòng)不同長(zhǎng)度的裂隙帶發(fā)育高度值Table 3 Development height values of crack zones with different lengths m
圖8 工作面采動(dòng)裂隙帶發(fā)育趨勢(shì)Fig.8 Development trend of mining fracture zone
根據(jù)《煤礦防治水手冊(cè)》中垮落帶和導(dǎo)水裂隙帶高度經(jīng)驗(yàn)公式,結(jié)合現(xiàn)場(chǎng)實(shí)測(cè)數(shù)據(jù)、數(shù)值模擬結(jié)果以及相似模擬實(shí)驗(yàn)結(jié)果,得到采動(dòng)垮落帶和導(dǎo)水裂隙帶發(fā)育最大高度值,見(jiàn)表4。
表4 采動(dòng)垮落帶和導(dǎo)水裂隙帶發(fā)育最大高度平均值Table 4 Maximum height average of the development of the caving zone and the water guiding fracture zone m
由于工作面推進(jìn)至一定長(zhǎng)度后,導(dǎo)水裂隙帶發(fā)育高度不再發(fā)生改變,筆者根據(jù)表4采動(dòng)垮落帶和導(dǎo)水裂隙帶發(fā)育最大高度的平均值將工作面覆巖進(jìn)行分層計(jì)算,依此用于計(jì)算分層區(qū)域的垂直滲透率的變化比值,分層如下:層位I,從距頂板0 m開(kāi)始至50 m;層位Ⅱ,從距頂板50 m開(kāi)始至125 m;層位Ⅲ,從距頂板125 m開(kāi)始至195 m。
根據(jù)開(kāi)采過(guò)程中礦壓實(shí)時(shí)數(shù)據(jù),小周期來(lái)壓步距為10~20 m,初次來(lái)壓步距為30~50 m,大周期來(lái)壓步距為150~200 m,分析選取間距變量l以及隙寬b變量。假設(shè)層位I間距變量l1為10,15,20 m;層位Ⅱ間距變量l2為30,40,50 m;層位Ⅲ間距變量l3為150,175,200 m。隙寬b變量為0.05,0.01,0.005,0.001 m。
基于正交實(shí)驗(yàn)設(shè)計(jì)基本原理,筆者設(shè)計(jì)9種不同組合形式下的間距l(xiāng)及隙寬b試驗(yàn)?zāi)P?,?jiàn)表5,對(duì)不同試驗(yàn)?zāi)P拖聺B透率的變化進(jìn)行探討。
表5 裂隙正交網(wǎng)絡(luò)模型Table 5 Fracture orthogonal network model m
采用FLAC3D數(shù)值模擬軟件對(duì)覆巖采動(dòng)巖體變形破壞的應(yīng)力場(chǎng)進(jìn)行數(shù)值模擬,選擇y=280 m的垂直橫截面用于分析結(jié)果,開(kāi)采100,700 m時(shí)圍巖應(yīng)力場(chǎng)分布如圖9所示。
圖9 工作面開(kāi)采100,700 m時(shí)圍巖的應(yīng)力場(chǎng)分布(單位:MPa)Fig.9 Stress field distribution of surrounding rock when mining face is 100,700 m (unit:MPa)
煤層的開(kāi)采產(chǎn)生擾動(dòng),導(dǎo)致上覆巖層應(yīng)力場(chǎng)發(fā)生變化。隨著采動(dòng)長(zhǎng)度的增加,應(yīng)力場(chǎng)擾動(dòng)范圍增大,應(yīng)力變化速度逐漸降低。采空區(qū)兩側(cè)及直接頂范圍內(nèi),應(yīng)力變化大。采空區(qū)四周應(yīng)力較為集中,采空區(qū)中間范圍內(nèi)應(yīng)力較為松弛。
如圖9(a),(b)所示,x方向應(yīng)力場(chǎng)應(yīng)力分布集中區(qū)域在采空區(qū)的兩側(cè),在采空區(qū)的上方的巖層受到擠壓作用影響,出現(xiàn)“O”型閉合的應(yīng)力集中區(qū)。隨著采動(dòng)距離的增加,采空區(qū)的兩側(cè)由于受到拉伸作用的影響,應(yīng)力有所減小,而“O”型閉合應(yīng)力區(qū)向上傳遞;如圖9(c),(d)所示,y方向應(yīng)力場(chǎng)分布相對(duì)平緩,應(yīng)力集中區(qū)與x方向應(yīng)力場(chǎng)分布相同,采空區(qū)直接頂為應(yīng)力松弛區(qū)且隨著距采空區(qū)距離增大應(yīng)力逐漸恢復(fù)至初始應(yīng)力水平,在其上方出現(xiàn)“O”型閉合的應(yīng)力集中區(qū)。隨著采動(dòng)距離的增加,采空區(qū)的兩側(cè)應(yīng)力變化相對(duì)較緩,“O”型閉合應(yīng)力區(qū)向上移動(dòng)。如圖9(e),(f)所示,z方向應(yīng)力場(chǎng)分布較為簡(jiǎn)單,采空區(qū)兩側(cè)為應(yīng)力集中區(qū),采空區(qū)上方為應(yīng)力降低區(qū)且隨著距采空區(qū)距離增大應(yīng)力逐漸恢復(fù)至初始應(yīng)力水平。
根據(jù)上述裂隙正交網(wǎng)絡(luò)模型,筆者簡(jiǎn)化滲透系數(shù)的計(jì)算,假設(shè)巖石是均勻的各向同性的,即巖體的破裂參數(shù)在x,y和z方向上是一樣的,δ1=0.018 45,δ2=0.016 74,δ3=0.013 08,Er=21 GPa,knx=1 GPa/m,ν=0.23,μ=0.981,A=46.946,B=1.230 5。結(jié)合數(shù)值模擬工作面開(kāi)采700 m時(shí)得到的應(yīng)力增量(Δσx,Δσy和Δσz)代入式(11),(12),計(jì)算出煤層覆巖滲透系數(shù)及變化比值。
根據(jù)9組模型模擬垂向滲透性的變化,選取模型3垂向滲透系數(shù)的變化比值,結(jié)果如圖10所示。
圖10 工作面開(kāi)采700 m時(shí)垂向滲透系數(shù)的變化比值(Kz/Kz0)Fig.10 Ratio of change in vertical permeability coefficient when working face is mined at 700 m(Kz/Kz0)
由于采動(dòng)引起覆巖移動(dòng)、變形以及巖層裂隙形成,導(dǎo)致上覆巖層滲透率發(fā)生了改變。由圖10可以看出,部分巖層受到采動(dòng)的影響,導(dǎo)致滲透系數(shù)增加;存在部分巖層受到壓實(shí)作用的影響,導(dǎo)致滲透系數(shù)降低。巖層距離采掘工程越近,受到擾動(dòng)越大,滲透系數(shù)改變?cè)絼×?。巖層距離采掘工程越遠(yuǎn),擾動(dòng)影響越低,滲透系數(shù)變化越小。即:在垂向上,隨著巖層距采空區(qū)的距離越大,滲透系數(shù)的變化比值越小。
此外,滲透性變化的區(qū)域在垂直切片上呈拱形,且區(qū)域的范圍大于應(yīng)力變化的范圍。將工作面開(kāi)采700 m時(shí)垂向滲透系數(shù)的變化按照研究區(qū)區(qū)域含水層層位進(jìn)行劃分,統(tǒng)計(jì)了9組模型各含水層層內(nèi)垂向滲透系數(shù)變化,見(jiàn)表6。
表6 9組模型區(qū)域含水層垂向滲透系數(shù)變化統(tǒng)計(jì)Table 6 Statistical analysis of vertical permeability coeff-icient change of aquifers in 9 groups of model areas
由表6結(jié)果可知,延安組砂巖裂隙含水層垂向滲透系數(shù)變化范圍在1~15倍,直羅—安定組砂巖裂隙含水層垂向滲透系數(shù)變化范圍在1~12倍,宜君組砂礫巖孔隙裂隙含水層以及洛河組砂礫巖孔隙裂隙含水層垂向滲透系數(shù)變化較小,這是由于采動(dòng)形成的導(dǎo)水裂隙帶最大高度未至宜君組,宜君組與洛河組受到擾動(dòng)小,滲透率變化小。延安組砂巖裂隙含水層及直羅—安定組砂巖裂隙含水層的滲透率變化對(duì)工作面礦井涌水量預(yù)計(jì)極其重要。
據(jù)此,統(tǒng)計(jì)9組模型在延安組砂巖裂隙含水層及直羅—安定組砂巖裂隙含水層垂向滲透系數(shù)平均值,見(jiàn)表7。
表7 9組模型垂向滲透系數(shù)平均值統(tǒng)計(jì)Table 7 9 sets of models vertical permeability average statistics m/d
招賢煤礦1307工作面開(kāi)采3煤,根據(jù)圖6可知,導(dǎo)水裂隙帶未波及至宜君組砂礫巖孔隙裂隙含水層,因此預(yù)計(jì)工作面涌水量主要考慮延安組、直羅組—安定組含水層。含水層厚度采用各水文孔揭露的含水層厚度平均值;初始滲透系數(shù)采用相應(yīng)含水層段的滲透系數(shù)加權(quán)平均值;水位降深為各水文孔相應(yīng)含水層水柱高度的平均值,所選擇的水文地質(zhì)參數(shù)詳見(jiàn)表8。
表8 水文地質(zhì)參數(shù)平均值Table 8 Hydrogeological parameters average list
由于9組模型計(jì)算得到的垂向滲透系數(shù)為區(qū)域平均值,因此,采用集水廊道法較為合理。根據(jù)1307工作面水文地質(zhì)特征及采區(qū)工程地質(zhì)概況,采用水平集水廊道法計(jì)算工作面涌水量[17],有
(15)
式中,Q為礦井涌水量,m3/d;L為集水廊道法邊幫總長(zhǎng),m;H為水頭高度,m;R為影響半徑,m;M為含水層厚度,m。
根據(jù)圖8導(dǎo)水裂隙帶發(fā)育趨勢(shì),結(jié)合研究區(qū)工程地質(zhì)概況,將1307工作面頂板充水含水層劃分成3個(gè)不同涌水區(qū)段,分別為區(qū)段I,Ⅱ,Ⅲ,如圖11所示。
圖11 1307工作面頂板充水含水層分段Fig.11 1307 working face top water-filled aquifer segmentation
(1)區(qū)段I。從開(kāi)切眼開(kāi)始至120 m處,導(dǎo)水裂隙帶發(fā)育至延安組頂部,即將突破延安組砂巖裂隙含水層。
(2)區(qū)段Ⅱ。距開(kāi)切眼120~500 m,該段工作面推進(jìn)至500 m左右時(shí),導(dǎo)水裂隙帶高度發(fā)育緩慢。此時(shí),導(dǎo)水裂隙帶發(fā)育高度突破延安組煤層頂板砂巖含水層,但尚未突破至宜君組礫巖孔隙裂隙含水層。
(3)區(qū)段Ⅲ。距開(kāi)切眼500 m至終采線,導(dǎo)水裂隙帶高度發(fā)育穩(wěn)定。此時(shí),導(dǎo)水裂隙帶發(fā)育高度未突破至宜君組礫巖孔隙裂隙含水層。
工作面開(kāi)采時(shí),集水廊道法預(yù)測(cè)工作面涌水量區(qū)段I為采空區(qū)4側(cè)補(bǔ)給,區(qū)段Ⅱ與區(qū)段Ⅲ為3側(cè)補(bǔ)給,工作面總涌水量為各區(qū)段之和,根據(jù)表7各模型的滲透率平均值,通過(guò)計(jì)算,礦井涌水量預(yù)測(cè)結(jié)果見(jiàn)表9,預(yù)測(cè)涌水量與實(shí)測(cè)對(duì)比,如圖12所示。
表9 涌水量預(yù)測(cè)結(jié)果Table 9 Result of water inflow prediction m3/d
圖12 預(yù)測(cè)涌水量與實(shí)測(cè)對(duì)比Fig.12 Comparison of predicted water inflow and measured water inflow
由表9可知,采用集水廊道法計(jì)算得到1307工作面回采至120 m時(shí)涌水量為77.55~115.07 m3/d;回采至500 m時(shí)涌水量為700.87~1 353.68 m3/d;回采至終采線時(shí)涌水量為1 508.93~3 058.99 m3/d,模型1礦井涌水量預(yù)測(cè)結(jié)果最小,模型3礦井涌水量預(yù)測(cè)結(jié)果最大,模型2、模型4、模型6、模型7與模型9礦井涌水量預(yù)測(cè)結(jié)果較為接近。
在離散元軟件中建立裂隙滲流模型如圖13所示。在數(shù)值模型的頂部和底部分別設(shè)置了水壓3 MPa和0,四周設(shè)置為不透水邊界,假定流體不可壓縮,且滲流方向僅在z方向上,將滲流模型分層且按照模型一的間距組合及隙寬組合進(jìn)行設(shè)置,當(dāng)滲流穩(wěn)定時(shí),截取模型切片上滲流速度進(jìn)行分析,如圖14所示。
圖13 裂隙滲流模型Fig.13 Fracture seepage model
圖14 模型裂隙滲流速率結(jié)果切片F(xiàn)ig.14 Slice plot of model seepage rate results
由圖14可知,上覆巖層從上到下,隨著巖體破碎程度的增加,滲流路徑密度越高,滲流速率逐漸降低,這是由于層位高、水壓大、過(guò)水?dāng)嗝嫘∷鶎?dǎo)致的。當(dāng)滲流穩(wěn)定時(shí),z=1 m切片上平均裂隙滲流速率為0.001 327 5 m/d,z=60 m切片上平均裂隙滲流速率為0.012 168 m/d,與裂隙應(yīng)力-滲流耦合模型計(jì)算的結(jié)果基本相符,說(shuō)明了裂隙應(yīng)力-滲流耦合模型是較為可靠的。
(1)結(jié)合上覆巖層采動(dòng)變化特征,建立了覆巖裂隙網(wǎng)絡(luò),基于煤層覆巖采動(dòng)裂隙面的粗糙程度,對(duì)裂隙應(yīng)力-滲流耦合計(jì)算模型進(jìn)行了修正,提出了修正后的三維裂隙應(yīng)力-滲流網(wǎng)絡(luò)計(jì)算模型。
(2)對(duì)于煤層覆巖采動(dòng)應(yīng)力-滲流變化特征,通過(guò)模型分析,得到隨著采動(dòng)推進(jìn)長(zhǎng)度的增加,采空區(qū)四周應(yīng)力分布集中,頂部范圍內(nèi)應(yīng)力分布相對(duì)松散,應(yīng)力場(chǎng)和滲流場(chǎng)的擾動(dòng)范圍增大,且滲流場(chǎng)擾動(dòng)范圍大于應(yīng)力場(chǎng)擾動(dòng)范圍。此外,滲透系數(shù)的變化在不同方向上具有一定的差異,滲透系數(shù)在水平方向上的影響范圍明顯小于在垂向上的影響范圍,但在水平方向上的變化要大于垂直方向上的變化。
(3)基于導(dǎo)水裂隙帶發(fā)育規(guī)律和正交試驗(yàn)設(shè)計(jì)原理,設(shè)計(jì)了9種不同間距及隙寬組合形式下試驗(yàn)?zāi)P?,通過(guò)修正后的裂隙應(yīng)力-滲流網(wǎng)絡(luò)計(jì)算模型,分析了覆巖采動(dòng)滲透率變化規(guī)律。分析結(jié)果表明,受采動(dòng)的影響,上覆巖層滲透率發(fā)生了改變。在垂向上,巖層距離采掘工程越近,受到擾動(dòng)越大,滲透率改變最為劇烈。巖層距離采掘工程越遠(yuǎn),擾動(dòng)影響越低,滲透率變化越小。
(4)依據(jù)頂板導(dǎo)水裂隙帶發(fā)育對(duì)工作面分段,結(jié)合9種試驗(yàn)?zāi)P偷牟蓜?dòng)滲透系數(shù)計(jì)算結(jié)果,采用集水廊道法對(duì)礦井涌水量進(jìn)行了預(yù)計(jì),并與已有實(shí)測(cè)數(shù)據(jù)進(jìn)行了對(duì)比。通過(guò)對(duì)比表明,模型1的礦井涌水量預(yù)測(cè)結(jié)果與實(shí)測(cè)基本相符,說(shuō)明模型1間距及隙寬的組合形式相對(duì)較為符合研究區(qū)實(shí)際工程情況,對(duì)指導(dǎo)下一工作面及相似礦井涌水量具有一定的指導(dǎo)意義。
(5)基于離散元軟件裂隙滲流模型,結(jié)合模型1組合形式,對(duì)裂隙應(yīng)力-滲流耦合計(jì)算模型的可靠性進(jìn)行探討,結(jié)果表明,離散元軟件裂隙滲流模擬結(jié)果與裂隙應(yīng)力-滲流耦合模型計(jì)算的結(jié)果基本相符,說(shuō)明裂隙應(yīng)力-滲流耦合模型是較為可靠的。