• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    NEW OSCILLATION CRITERIA FOR THIRD-ORDER HALF-LINEAR ADVANCED DIFFERENTIAL EQUATIONS??

    2020-09-14 10:51:16JianliYaoXiaopingZhangJiangboYu
    Annals of Applied Mathematics 2020年3期

    Jianli Yao,Xiaoping Zhang,Jiangbo Yu

    (School of Science,Shandong Jianzhu University,Ji’nan 250101,Shandong,PR China)

    Abstract

    Keywords third-order differential equation;advanced argument;oscillation;asymptotic behavior;noncanonical operators

    1 Introduction

    In 2019,Chatzarakis([1])o ff ered sufficient conditions for the oscillation and asymptotic behavior of second-order half-linear differential equations with advanced argument of the form

    In 2018,D?urina([2])presented new oscillation criteria for third-order delay differential equations with noncanonical operators of the form

    In this paper,we consider the oscillatory and asymptotic behavior of solutions to the third-order half-linear advanced differential equations of the form

    Throughout the whole paper,we assume that

    (H1)α,βandγare quotients of odd positive integers;

    (H2)the functionsr1,r2∈C([t0,∞),(0,∞))are of noncanonical type(see Trench[2]),that is,

    (H3)q∈C([t0,∞),[0,∞))does not vanish eventually;

    (H4)σ∈C1([t0,∞),(0,∞)),σ(t)≥t,σ′(t)≥0 for allt≥t0.

    By a solution of equation(1.1),we mean a nontrivial real valued functiony∈C([Tx,∞),R),Tx≥t0,which has the property thaty,are continuous and differentiable for allt∈[Tx,∞),and satisfy(1.1)on[Tx,∞).We only need to consider those solutions of(1.1)which exist on some half-line[Tx,∞)and satisfy the condition

    for anyT≥Tx.In the sequel,we assume that(1.1)possesses such solutions.

    As is customary,a solutiony(t)of(1.1)is called oscillatory if it has arbitrary large zeros on[Tx,∞).Otherwise,it is called nonoscillatory.Equation(1.1)is said to be oscillatory if all its solutions oscillate.

    Following classical results of Kiguradze and Kondrat’ev[3],we say that(1.1)has property A if any solutionyof(1.1)is either oscillatory or satisfieswhich is also called that equation(1.1)is almost oscillatory.

    For brevity,we define operators

    Also,we use the symbols↑and↓to indicate whether the function is nondecreasing and nonincreasing,respectively.

    2 Main Results

    As usual,all functional inequalities considered in this paper are supposed to hold eventually,that is,they are satisfied for alltlarge enough.

    Without loss of generality,we need only to consider eventually positive solutions of(1.1),since ifysatisfies(1.1),so does?y.

    The following lemma on the structure of possible nonoscillatory solutions of(1.1)plays a crucial role in the proofs of the main results.

    Lemma 2.1Assume(H1)-(H4),and that y is an eventually positive solution of equation(1.1).Then there exists a t1∈[t0,∞)such that y eventually belongs to one of the following classes:

    for t≥t1.

    The proof is straightforward and hence is omitted.

    Now,we will establish one-condition criteria of property A of(1.1).

    Theorem 2.1Assume(H1)-(H4).If

    then(1.1)has property A.

    ProofFirst of all,it is important to note that if(H2)and(2.1)hold,then

    that is,

    Now,suppose on the contrary thatyis a nonoscillatory solution of(1.1)on[t0,∞).Without loss of generality,we may assume thatt1≥t0such thaty(t)>0 andy(σ(t))>0 fort≥t1.Using Lemma 2.1,we know thatyeventually belongs to one of the four classes in Lemma 2.1.We will consider each of them separately.

    Assumey∈S1.Then fromL1y<0,that is,r1(y′)α<0,we see thaty′<0 andyis decreasing.On the other words,there exists a finite constant?≥0 such thatObviously,,too.

    We claim that?=0.Assume on the contrary that?>0.Then there exists at2≥t1such thaty(t)≥y(σ(t))≥?fort≥t2.Thus,

    fort≥t2.Integrating(2.4)fromt2tot,we have

    Therefore,

    Integrating(2.5)again fromt2tot,we have

    that is,

    Integrating(2.6)fromt2tot,and taking account of(2.1),we have

    ast→ ∞,which contradicts the positivity ofy.Thus,

    Assumey∈S2.Proceeding the same steps as above,we arrive at(2.4).Integrating(2.4)fromt2tot,we have

    where we used(2.3).This contradicts the positivity ofL2yand thus.

    Assumey∈S3.We define a function

    Obviously,w(t)is positive fort≥t2.Using(1.1),we obtain

    Integrating the above inequality fromt2tot,and taking(2.3)into account,we have

    This contradicts the positivity ofw.Hence,S3=?.

    Assumey∈S4.Considering thatyis increasing,and integrating(1.1)fromt2tot,we obtain

    that is,

    wherek:=yγ(σ(t2)).Integrating(2.8)fromt2totand using(2.2),we have

    This contradicts the positivity ofL1y.Thus,S4=?.The proof is complete.

    Remark 2.1It is clear that any nonoscillatory solution in Theorem 2.1 eventually belongs to eitherS1orS2in Lemma 2.1,that is,S3=S4=?.

    Next,we formulate some additional information about the monotonicity of solutions inS2orS1.

    Lemma 2.2Assume(H1)-(H4).Let y∈S2in Lemma2.1on[t1,∞)for some t1≥t0,and define a function

    If

    then there exists a t2≥t1such that

    for t≥t2.

    ProofLety∈S2in Lemma 2.1 on[t1,∞)for somet1≥t0.First,we prove that(2.11)implies

    Using I’Hospital rule,we obtain

    Taking the decrease ofL2y(t)into account,there exists a finite constant?≥0 such thatWe claim that?=0.If not,thenL2y(t)≥?>0,andeventually,fort≥t2andt2∈[t1,∞).Using this relation in(1.1),we obtain

    Integrating the above inequality fromt2tot,we have

    which is a contradiction.Thus(2.13)holds and consequently,also

    due to the decreasing properties ofπ(t)andπ2(t),respectively.Considering the monotonicity ofL2ytogether with(2.14)yields

    hence,there exists at3≥t2such that

    Therefore,there exists at4≥t3such that

    and we conclude thaty/πis decreasing on[t4,∞).Hence,(2.12)holds.The proof is complete.

    Corollary 2.1Assume(H1)-(H4).Let y∈S2in Lemma2.1on[t1,∞)for some t1≥t0,and a function π(t)be defined by(2.10).If(2.11)holds,then there exists a t2≥t1such that

    for every constant k>0and t≥t2.

    Lemma 2.3Assume(H1)-(H4).Let y∈S1in Lemma2.1on[t1,∞)for some t1≥t0.If(2.11)holds,then there exists a t2≥t1such that

    for t≥t2.

    ProofLety∈S1in Lemma 2.1 on[t1,∞)for somet1≥t0.It follows from the monotonicity ofL1ythat,for?≥t,

    Letting?to∞,we have

    From(2.17),we conclude thaty/π1is nondecreasing,since

    The proof is complete.

    Theorem 2.2Assume(H1)-(H4).If

    then(1.1)has property A.

    ProofSuppose on the contrary and assume thatyis a nonoscillatory solution of(1.1)on[t0,∞).Without loss of generality,we may assume thaty(t)>0 andy(σ(t))>0 fort∈[t1,∞)?[t0,∞).Then we obtain thatyeventually belongs to one of the four classes in Lemma 2.1.We will consider each of them separately.

    Assumey∈S1.Note that(2.3)and(2.11)are necessary for(2.19)to be valid.In fact,since the functiondsis unbounded due to(H2)andπ′<0,(2.3)and(2.11)must hold.Furthermore,by(2.19),we see that(2.1)holds,and we also obtain

    Then using Lemma 2.3,it follows from(2.16)that there existc>0 andt2≥t1such thaty(t)≥cπ1(t)fort≥t2.Substituting this inequality into(1.1),we obtain

    Integrating(2.21)fromt2tot,we have

    that is,

    Integrating the above inequality fromt2tot,we have

    that is,

    Integrating(2.22)fromt2tot,and taking(2.20)into account,we have

    which contradicts the positivity ofy.Thus,S1=?.

    Assumey∈S2.Noting(2.1)is necessary for the validity of(2.20),we have.

    Finally,noting(2.3)and(2.2)are necessary for the validity of(2.19),it follows immediately from Remark 2.1 thatS3=S4=?.The proof is complete.

    Theorem 2.3Assume(H1)-(H4).If

    for any t1≥t0,and γ=αβ,then(1.1)has property A.

    ProofOn the contrary,suppose thatyis a nonoscillatory solution of(1.1)on[t0,∞).Without loss of generality,we may assume thaty(t)>0 andy(σ(t))>0 fort∈[t1,∞)?[t0,∞).Then we obtain thatyeventually belongs to one of the four classes in Lemma 2.1.We will consider each of them separately.

    First,note that(2.23)along with(H2)implies(2.3)and(2.2).Then,using Theorem 2.1,we getS3=S4=?.Moreover,ify∈S2,then.

    Next,we consider the classS1.Assumey∈S1.Integrating(1.1)fromt1totand using the decrease ofy,we have

    that is,

    Integrating the above inequality fromt1tot,we have

    Similar to the proof of Lemma 2.3,we obtain(2.17),which along with(2.26)leads to

    Takingγ=αβinto account,the above inequality becomes

    which results in a contradiction

    Thus,S1=?.The proof is complete.

    Theorem 2.4Assume(H1)-(H4)and suppose that(2.1)holds.If

    and γ=αβ,then(1.1)has property A.

    ProofUsing Theorem 2.1,we haveS3=S4=?,and ify∈S2,then.

    Now,we only need to consider the classS1.Assumey∈S1.Similar to the proof of Theorem 2.3,we arrive at

    fort≥t2.Thus,fort≥t2,we have

    Integrating the above inequality fromt2tot,we have

    There also exists at3>t2such that

    fort≥t3.Thus,fort≥t3,we obtain

    The rest of proof is similar and hence we omit it.Finally,we obtainS1=?.The proof is complete.

    Next,we will establish various oscillation criteria for(1.1).

    Theorem 2.5Assume(H1)-(H4).If

    and

    hold,and moreover,αβ=γ,then(1.1)is oscillatory.

    ProofSuppose thatyis a nonoscillatory solution of(1.1)on[t0,∞).Without loss of generality,we may assume thatt1≥t0such thaty(t)>0 andy(σ(t))>0 fort≥t1.Then we obtain thatyeventually belongs to one of the four classes in Lemma 2.1.In following,we consider each of these classes separately.

    Assumey∈S1.Similar to the proof of Theorem 2.3,we arrive at(2.26),that is

    Usingαβ=γ,the above inequality becomes

    However,it is well-known(see,e.g.,[5,Theorem 2.4.1])that condition(2.28)implies the oscillation of(2.30).Thus,it contradicts our initial assumption.ThenS1=?.

    Assumey∈S2.Integrating(1.1)fromttou(t

    that is,

    Integrating the above inequality fromttou,we have

    that is,

    Takingγ=αβinto account,we have

    Settingu=σ(t)in(2.31),we get

    that is,

    However,condition(2.29)implies the oscillation of(2.32),(see,e.g.,[5,Theorem 2.4.1]).It means that(1.1)cannot have a positive solutionyin the classS2,which is a contradiction.Thus,S2=?.

    Finally,noting that(2.1)is necessary for the validity of(2.28),it follows immediately from Remark 2.1 thatS3=S4=?.The proof is complete.

    The following results are simple consequences of the above theorem and Corollary 2.1.

    Theorem 2.6Assume(H1)-(H4).If γ=αβ,(2.11)and(2.28)hold,then all positive solutions of(1.1)satisfy(2.15)for any k>0and t large enough.

    Theorem 2.7Assume(H1)-(H4).If γ=αβ,(2.19)and(2.29)hold,then(1.1)is oscillatory.

    Remark 2.2If

    holds,we have the validity of(2.29).Thus,the conclusions of Theorems 2.5 and 2.7 remain valid if condition(2.29)is replaced by(2.33).

    Theorem 2.8Assume(H1)-(H4).If γ=αβ,(2.23)and(2.33)hold,then(1.1)is oscillatory.

    Theorem 2.9Assume(H1)-(H4).If γ=αβ,(2.1),(2.27)and(2.33)hold,then(1.1)is oscillatory.

    In order to prove the following conclusions,we recall an auxiliary result which is taken from Wu et al.[6,Lemma2.3].

    Lemma 2.4[6,Lemma2.3]Let,where B>0,A andC are constants,and α is a quotient of odd positive numbers.Then g attains itsmaximum value onRatand

    for t≥t2.

    Theorem 2.10Assume(H1)-(H4)and γ=αβ.If(2.3)and(2.33)hold,and also there exists a function ρ∈C1([t0,∞),(0,∞))such that

    for any T∈[t0,∞),then(1.1)is oscillatory.

    ProofOn the contrary,suppose thatyis a nonoscillatory solution of(1.1)on[t0,∞).Without loss of generality,we may assume thaty(t)>0 andy(σ(t))>0 fort∈[t1,∞)?[t0,∞).Then we know thatyeventually belongs to one of the four classes in Lemma 2.1.We will consider each of them separately.

    Assumey∈S1.Define the generalized Riccati substitution

    Taking(2.17)into account,we see thatw≥0 on[t1,∞).Differentiating(2.36),we arrive at

    Similar to the proof of Theorem 2.3,we arrive at(2.25).Using(2.16)in(2.25),we deduce that the inequality

    holds fort≥t2,wheret2∈[t1,∞)is large enough.Considering(2.37)and(2.38),it follows that

    Let

    Using(2.34)with the above inequality,we have

    Integrating(2.39)fromt2tot,we obtain

    Taking the definition ofwinto account,we get

    On the other hand,using(2.17),it follows that

    Substituting the above estimate into(2.40),we get

    Multiplying(2.41)byand taking the limsup on both sides of the resulting inequality,we obtain a contradiction with(2.35).Thus,S1=?.

    Assumey∈S2.Similar to the proof of Theorem 2.5,one arrives at a contradiction with(2.33).Thus,S2=?.

    In following,we showS3=S4=?.Since(2.3)holds due to(H2),then the function

    is unbounded,and so(2.2)holds.The rest of proof proceeds in the same manner as that of Theorem 2.1.The proof is complete.

    Depending on the appropriate choice of the functionρ,we can use Theorem 2.10 in a wide range of applications for studying the oscillation of(1.1).Thus,by choosing,ρ(t)=π1(t)andρ(t)=1,we obtain the following results,respectively.

    Corollary 2.2Assume(H1)-(H4)and γ=αβ.Moreover,assume that(2.3)and(2.33)hold.If

    for any T∈[t0,∞),then(1.1)is oscillatory.

    Corollary 2.3Assume(H1)-(H4)and γ=αβ.Moreover,assume that(2.3)and(2.33)hold.If

    for any T∈[t0,∞),then(1.1)is oscillatory.

    Corollary 2.4Assume(H1)-(H4)and γ=αβ.Moreover,assume that(2.3)and(2.33)hold.If

    for any T∈[t0,∞),then(1.1)is oscillatory.

    Remark 2.3The conclusions of Theorem 2.10 and Corollaries 2.2-2.4 remain valid if condition(2.3)is replaced by(2.1).

    Lemma 2.5Assume(H1)-(H4)and γ=αβ.Furthermore,assume that(2.1)holds.Suppose that(1.1)has a positive solution y∈S1on[t1,∞)?[t0,∞)and that λ andμare constants satisfying

    and

    Then there exists a t?∈[t1,∞)such that

    and

    on[t?,∞).

    ProofAssumey∈S1.Similar to the proof of Theorem 2.3,we arrive at(2.25).Considering(1.1),(2.17)and(2.37),we see that

    It is easy to verify that

    and thus,we get

    Therefore,

    Next,we will prove the last monotonicity.Similar to the proof of Theorem 2.3,we arrive at(2.26),that is

    Using(2.16)with the above inequality,we have

    that is,

    fort≥t2,wheret2≥t1.Using the above relation in the equality

    and taking the condition(2.47)into account,we get

    Theorem 2.11Assume(H1)-(H4)and γ=αβ.Furthermore,suppose that(2.33)holds and λ andμare constants satisfying(2.45)-(2.47).If

    for any t1≥t0,then(1.1)is oscillatory.

    Proof Suppose on the contrary thatyis a nonoscillatory solution of(1.1)on[t0,∞).Without loss of generality,we may assume thaty(t)>0 andy(σ(t))>0 fort∈[t1,∞)?[t0,∞).Then we know thatyeventually belongs to one of the four classes in Lemma 2.1.We will consider each of them separately.

    Before proceeding further,note that(2.11)and

    are necessary for(2.19)to be valid.To verify this,it suffices to see that(H2)implies

    From the above inequality,we conclude that the function

    and consequently

    must be unbounded.

    Assumey∈S1.Similar to the proof of Theorem 2.3,we arrive at(2.26),that is

    Using the conclusions of Lemma 2.5 thatis nonincreasing andis nondecreasing,we obtain

    Using(2.52)in the above inequality,we have

    that is,

    Taking the limsup on both sides of the above inequality,we reach a contradiction with(2.53).Thus,S1=?.

    Accounting to Remark 2.2 with(2.33),we haveS2=?.Also,using Theorem 2.1,we arrive atS3=S4=?.The proof is complete.

    Theorem 2.12Assume(H1)-(H4)and γ=αβ.Furthermore,suppose that(2.3)and(2.33)hold,and λ∈[0,α)is a constant satisfying(2.46).If there exists a function ρ∈C1([t0,∞),(0,∞))and T∈[t0,∞)such that

    then(1.1)is oscillatory.

    ProofFor the proof of this theorem,it suffices to use(2.48)instead of(2.16)in(2.25)in the proof of Theorem 2.10.

    Corollary 2.5Assume(H1)-(H4)and γ=αβ.Furthermore,suppose that(2.3)and(2.33)hold and λ∈[0,α)is a constant satisfying(2.46).If

    for any T∈[t0,∞),then(1.1)is oscillatory.

    3 Examples

    In this section,we illustrate the strength of our results using two Euler-type differential equations,as two examples.

    Example 3.1Consider the third-order advanced differential equation

    It is easy to verify that condition(2.1)is satisfied.Using Theorem 2.1,we obtain that equation(3.1)has property A.

    Example 3.2Consider the third-order advanced differential equation

    wherem>1,,q0>0 andδ≥1 .

    Clearly,r1(t)=tm,r2(t)=tn,α=1,,σ(t)=δt,and

    From Theorem 2.1(On the asymptotic properties of nonoscillatory solutions),it is easy to verify that condition(2.1)holds.Thus,any nonoscillatory,say positive solution of equation(3.2)converges to zero ast→∞,without any additional requirement.

    In following,we consider the oscillation of equation(3.2).

    After some computations,we note that conditions(2.23),(2.28)and(2.33)reduce to

    and

    respectively.

    Theorem 2.5 and Remark 2.2 imply if both(3.4)and(3.5)hold,then equation(3.2)is oscillatory.

    Since condition(2.19)is not satisfied,the related result from Theorem 2.7 can not be applied.

    Theorems 2.8 and 2.9 can deduce that oscillation of equation(3.2)is guaranteed by conditions(3.3)and(3.5).

    4 Summary

    In this paper,we studied the third-order differential equation(1.1)with noncanonical operators.First,we established one-condition criteria for property A of(1.1).Next,we presented various two-condition criteria ensuring oscillation of all solutions of(1.1).Finally,our results are applicable on Euler-type equations of the forms(3.1)and(3.2).It remains open how to generalize these results for higher-order noncanonical equations with deviating arguments.

    Acknowledgements The authors would like to express their highly appreciation to the editors and the referees for their valuable comments.

    av在线老鸭窝| 韩国av在线不卡| 亚洲乱码一区二区免费版| 国产精品人妻久久久久久| 少妇熟女欧美另类| 女人十人毛片免费观看3o分钟| 永久网站在线| 精品久久久久久成人av| 亚洲七黄色美女视频| 国产精品国产三级国产av玫瑰| 国内少妇人妻偷人精品xxx网站| 国产大屁股一区二区在线视频| 久久久国产成人免费| 三级男女做爰猛烈吃奶摸视频| 99久国产av精品国产电影| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 亚洲av中文av极速乱| 大又大粗又爽又黄少妇毛片口| 美女xxoo啪啪120秒动态图| 久久久色成人| 久久综合国产亚洲精品| 国产精品三级大全| 在线天堂最新版资源| 国产免费一级a男人的天堂| 国产美女午夜福利| 菩萨蛮人人尽说江南好唐韦庄 | 亚洲电影在线观看av| 亚洲国产高清在线一区二区三| 99精品在免费线老司机午夜| 精品无人区乱码1区二区| 国产精品久久久久久久久免| 国产精品一二三区在线看| 99热6这里只有精品| 噜噜噜噜噜久久久久久91| АⅤ资源中文在线天堂| 免费不卡的大黄色大毛片视频在线观看 | 国产男人的电影天堂91| 日韩精品有码人妻一区| 久久久久久九九精品二区国产| 欧美变态另类bdsm刘玥| 国产在视频线在精品| 高清毛片免费看| 人妻少妇偷人精品九色| 狂野欧美白嫩少妇大欣赏| 日日摸夜夜添夜夜爱| 中文字幕熟女人妻在线| av又黄又爽大尺度在线免费看 | 精品一区二区三区视频在线| 午夜亚洲福利在线播放| 狂野欧美激情性xxxx在线观看| 日韩制服骚丝袜av| 久久精品国产自在天天线| 国产av在哪里看| 日本黄色视频三级网站网址| 免费看光身美女| 婷婷亚洲欧美| 国产精品野战在线观看| 99久久精品一区二区三区| 精品久久久噜噜| 欧美丝袜亚洲另类| 激情 狠狠 欧美| 国产成人福利小说| 亚洲自偷自拍三级| 久久精品国产自在天天线| 精品人妻视频免费看| 亚洲色图av天堂| 亚洲,欧美,日韩| 伊人久久精品亚洲午夜| 国产成人午夜福利电影在线观看| 麻豆乱淫一区二区| 老司机影院成人| 欧美性猛交╳xxx乱大交人| 色吧在线观看| 久久久久久久久大av| 五月伊人婷婷丁香| 亚洲真实伦在线观看| 亚洲精品自拍成人| 边亲边吃奶的免费视频| 三级国产精品欧美在线观看| 在线观看66精品国产| 国产黄片美女视频| 免费av观看视频| 极品教师在线视频| 韩国av在线不卡| 成人av在线播放网站| 亚洲精品久久国产高清桃花| 2021天堂中文幕一二区在线观| 伦理电影大哥的女人| 大香蕉久久网| 亚洲色图av天堂| 99久久精品一区二区三区| 国产av一区在线观看免费| 热99re8久久精品国产| 久久国产乱子免费精品| 韩国av在线不卡| 日韩一本色道免费dvd| 国产精品三级大全| 亚洲精品乱码久久久v下载方式| 97超视频在线观看视频| 嘟嘟电影网在线观看| 亚洲欧美成人综合另类久久久 | 99热这里只有精品一区| 欧美成人精品欧美一级黄| 久久久久久国产a免费观看| 99久久九九国产精品国产免费| 亚洲av免费高清在线观看| 在线观看66精品国产| 精品日产1卡2卡| 国产av一区在线观看免费| av在线亚洲专区| 久久精品国产亚洲av天美| 中国国产av一级| 国产麻豆成人av免费视频| 日本与韩国留学比较| 日本黄色视频三级网站网址| 国产黄片美女视频| 成人综合一区亚洲| 久久午夜福利片| 日本欧美国产在线视频| 欧美成人a在线观看| 狠狠狠狠99中文字幕| 婷婷色综合大香蕉| 国产一区二区亚洲精品在线观看| 亚洲精品久久久久久婷婷小说 | 日日干狠狠操夜夜爽| 午夜老司机福利剧场| 亚洲国产日韩欧美精品在线观看| 一本久久精品| 亚洲五月天丁香| 国产精品电影一区二区三区| 久久精品国产亚洲网站| 久久久国产成人精品二区| 国产精品嫩草影院av在线观看| 亚洲综合色惰| 色综合亚洲欧美另类图片| 神马国产精品三级电影在线观看| 久久久久久久久中文| 久久这里有精品视频免费| 国内久久婷婷六月综合欲色啪| 久久精品国产鲁丝片午夜精品| 亚洲精品456在线播放app| 卡戴珊不雅视频在线播放| 国产高清有码在线观看视频| 噜噜噜噜噜久久久久久91| 丰满乱子伦码专区| 欧美性感艳星| 国产精品精品国产色婷婷| 久久午夜亚洲精品久久| 一个人观看的视频www高清免费观看| 丰满乱子伦码专区| 日韩av在线大香蕉| 欧美色视频一区免费| 亚洲av免费高清在线观看| 国产淫片久久久久久久久| 亚洲不卡免费看| 中文字幕精品亚洲无线码一区| 69人妻影院| 18禁在线无遮挡免费观看视频| 国产精品精品国产色婷婷| 亚洲最大成人手机在线| 久久久色成人| 久久草成人影院| 久久久久久久亚洲中文字幕| 免费av观看视频| 伊人久久精品亚洲午夜| 内射极品少妇av片p| 女同久久另类99精品国产91| 1000部很黄的大片| 亚洲精品乱码久久久久久按摩| 亚洲国产精品合色在线| 91精品一卡2卡3卡4卡| 成年女人看的毛片在线观看| 亚洲电影在线观看av| 国产极品天堂在线| av免费在线看不卡| 日韩三级伦理在线观看| 最近视频中文字幕2019在线8| 国产高清不卡午夜福利| 女同久久另类99精品国产91| 国产一区二区三区av在线 | 青春草视频在线免费观看| 午夜福利在线在线| 久久久久九九精品影院| 91精品一卡2卡3卡4卡| 国产精品av视频在线免费观看| 69av精品久久久久久| 午夜精品一区二区三区免费看| 91午夜精品亚洲一区二区三区| 成人漫画全彩无遮挡| 国产91av在线免费观看| 国产精品.久久久| 日韩精品有码人妻一区| 国产白丝娇喘喷水9色精品| 搞女人的毛片| 精品一区二区免费观看| 又爽又黄无遮挡网站| av.在线天堂| 久久综合国产亚洲精品| 99热精品在线国产| 久久久久久伊人网av| 国产黄色视频一区二区在线观看 | 在线播放无遮挡| 欧美成人免费av一区二区三区| 中出人妻视频一区二区| 狂野欧美白嫩少妇大欣赏| 精品一区二区三区视频在线| 国产精品不卡视频一区二区| 国产成年人精品一区二区| 欧美丝袜亚洲另类| 成人一区二区视频在线观看| 麻豆久久精品国产亚洲av| 国产亚洲5aaaaa淫片| 久久精品夜夜夜夜夜久久蜜豆| 国产午夜福利久久久久久| 丝袜喷水一区| 婷婷亚洲欧美| 黑人高潮一二区| 最后的刺客免费高清国语| 午夜精品国产一区二区电影 | 国产精品久久久久久精品电影小说 | 午夜福利成人在线免费观看| 看免费成人av毛片| 久久99热这里只有精品18| 日韩av在线大香蕉| 99久久成人亚洲精品观看| 在线观看免费视频日本深夜| 国产成人精品婷婷| 亚洲欧美中文字幕日韩二区| 日本一本二区三区精品| 亚洲一区二区三区色噜噜| 中文欧美无线码| 高清在线视频一区二区三区 | 偷拍熟女少妇极品色| 国产精华一区二区三区| 99热这里只有精品一区| 亚洲自拍偷在线| 午夜福利视频1000在线观看| 国语自产精品视频在线第100页| 亚洲欧洲国产日韩| 久久久久九九精品影院| 亚洲精品456在线播放app| 亚洲图色成人| 少妇的逼水好多| 中文亚洲av片在线观看爽| 色综合站精品国产| 99久国产av精品国产电影| 国产69精品久久久久777片| 精品久久久噜噜| 亚洲av中文av极速乱| 国产成人影院久久av| 亚洲欧美成人精品一区二区| 2021天堂中文幕一二区在线观| 夜夜看夜夜爽夜夜摸| 亚洲美女视频黄频| 午夜爱爱视频在线播放| 免费av观看视频| 欧美最新免费一区二区三区| 国产女主播在线喷水免费视频网站 | 九九久久精品国产亚洲av麻豆| 天堂√8在线中文| 亚洲欧洲国产日韩| 国产成人福利小说| 欧美zozozo另类| 99久国产av精品国产电影| 国产真实乱freesex| 中文字幕人妻熟人妻熟丝袜美| 亚洲精华国产精华液的使用体验 | 亚洲精品粉嫩美女一区| 亚洲精品影视一区二区三区av| 可以在线观看的亚洲视频| 嫩草影院新地址| 成年免费大片在线观看| 国产欧美日韩精品一区二区| 国产精品不卡视频一区二区| 1000部很黄的大片| 中文精品一卡2卡3卡4更新| 亚洲国产精品成人综合色| 亚洲国产精品国产精品| 国产又黄又爽又无遮挡在线| 男人的好看免费观看在线视频| 久久亚洲精品不卡| 我要看日韩黄色一级片| 美女 人体艺术 gogo| 国产伦精品一区二区三区四那| 国产精品一区二区性色av| 久久午夜福利片| 国产伦一二天堂av在线观看| 精华霜和精华液先用哪个| 69av精品久久久久久| 日日干狠狠操夜夜爽| 久久99热6这里只有精品| 伊人久久精品亚洲午夜| 美女大奶头视频| 最近手机中文字幕大全| 免费观看精品视频网站| 国产午夜精品久久久久久一区二区三区| 噜噜噜噜噜久久久久久91| 国产视频内射| 国内精品一区二区在线观看| 欧美日本亚洲视频在线播放| 亚洲人成网站在线播| 国产精品麻豆人妻色哟哟久久 | 国产成人91sexporn| 一本久久中文字幕| 成人美女网站在线观看视频| 寂寞人妻少妇视频99o| 我要看日韩黄色一级片| 欧洲精品卡2卡3卡4卡5卡区| 成人特级黄色片久久久久久久| 精华霜和精华液先用哪个| 午夜老司机福利剧场| 啦啦啦啦在线视频资源| 成人欧美大片| 2021天堂中文幕一二区在线观| 亚洲av免费高清在线观看| 国产老妇女一区| 91在线精品国自产拍蜜月| 尾随美女入室| 我要看日韩黄色一级片| 日日摸夜夜添夜夜添av毛片| 丰满人妻一区二区三区视频av| 亚洲婷婷狠狠爱综合网| 成人美女网站在线观看视频| 男女那种视频在线观看| 啦啦啦观看免费观看视频高清| 在线天堂最新版资源| 舔av片在线| 可以在线观看毛片的网站| 日韩欧美三级三区| 国产成人精品一,二区 | 老师上课跳d突然被开到最大视频| 午夜福利在线在线| 国模一区二区三区四区视频| 久久久久久久亚洲中文字幕| 一个人看视频在线观看www免费| 一区二区三区高清视频在线| 国产高清有码在线观看视频| 国内精品一区二区在线观看| 卡戴珊不雅视频在线播放| 久久鲁丝午夜福利片| 免费观看人在逋| 久久亚洲国产成人精品v| 欧美性猛交黑人性爽| 国产欧美日韩精品一区二区| 成人特级av手机在线观看| 真实男女啪啪啪动态图| 亚洲自偷自拍三级| 啦啦啦观看免费观看视频高清| 日日撸夜夜添| 亚洲精品乱码久久久v下载方式| 村上凉子中文字幕在线| 欧美丝袜亚洲另类| 国产精品无大码| a级毛色黄片| 国产精品久久久久久亚洲av鲁大| 日韩 亚洲 欧美在线| 久久久久久九九精品二区国产| 午夜免费激情av| 成人亚洲欧美一区二区av| 好男人视频免费观看在线| 少妇高潮的动态图| 嫩草影院入口| 中文亚洲av片在线观看爽| 久久久久九九精品影院| 三级国产精品欧美在线观看| 久99久视频精品免费| 一个人看的www免费观看视频| 天堂√8在线中文| 精品免费久久久久久久清纯| 中出人妻视频一区二区| 国产熟女欧美一区二区| 男女视频在线观看网站免费| av天堂中文字幕网| 一个人免费在线观看电影| 联通29元200g的流量卡| 亚洲乱码一区二区免费版| 国产高清视频在线观看网站| 亚洲四区av| 青春草视频在线免费观看| 哪个播放器可以免费观看大片| 99在线视频只有这里精品首页| 一级黄色大片毛片| 美女内射精品一级片tv| 亚洲电影在线观看av| 给我免费播放毛片高清在线观看| 国语自产精品视频在线第100页| 免费看美女性在线毛片视频| 亚洲人成网站在线观看播放| 美女黄网站色视频| 一级av片app| 国产白丝娇喘喷水9色精品| 最新中文字幕久久久久| 麻豆精品久久久久久蜜桃| 亚洲精品久久久久久婷婷小说 | 毛片女人毛片| 午夜福利高清视频| 人妻系列 视频| 免费看a级黄色片| 女人被狂操c到高潮| 日韩中字成人| 久久精品国产鲁丝片午夜精品| 国产精品av视频在线免费观看| 免费看日本二区| 国产不卡一卡二| 亚洲精品乱码久久久v下载方式| 一区福利在线观看| 欧美成人精品欧美一级黄| 亚洲欧洲国产日韩| 国产高清三级在线| 国产男人的电影天堂91| 欧美一级a爱片免费观看看| 天堂√8在线中文| 免费一级毛片在线播放高清视频| 欧美性猛交黑人性爽| 中国美白少妇内射xxxbb| 欧美一区二区亚洲| 成人高潮视频无遮挡免费网站| 日韩强制内射视频| 欧美变态另类bdsm刘玥| 久久人人爽人人爽人人片va| 精品人妻一区二区三区麻豆| 欧美三级亚洲精品| 听说在线观看完整版免费高清| 亚洲av不卡在线观看| 国产极品天堂在线| 亚洲国产色片| 全区人妻精品视频| 嫩草影院入口| 免费无遮挡裸体视频| 少妇的逼好多水| 精品国内亚洲2022精品成人| 亚洲精品亚洲一区二区| 美女内射精品一级片tv| 欧美高清成人免费视频www| 菩萨蛮人人尽说江南好唐韦庄 | 美女xxoo啪啪120秒动态图| 老女人水多毛片| 国产伦精品一区二区三区视频9| 国产精品嫩草影院av在线观看| 尾随美女入室| 国产精品三级大全| 久久精品国产鲁丝片午夜精品| 亚洲精品亚洲一区二区| 99久国产av精品国产电影| 少妇高潮的动态图| 观看美女的网站| 国模一区二区三区四区视频| 久久久欧美国产精品| 校园人妻丝袜中文字幕| 国产精品.久久久| 一边摸一边抽搐一进一小说| 99久久久亚洲精品蜜臀av| 99热全是精品| 国产不卡一卡二| 国产又黄又爽又无遮挡在线| 国产一区二区激情短视频| 国产伦一二天堂av在线观看| 校园人妻丝袜中文字幕| 色5月婷婷丁香| 国产一区二区三区在线臀色熟女| 国产在线精品亚洲第一网站| 少妇人妻一区二区三区视频| 最近的中文字幕免费完整| 我的老师免费观看完整版| 国产成人影院久久av| 国产高清不卡午夜福利| 69av精品久久久久久| 久久久久国产网址| 日韩av在线大香蕉| 成年版毛片免费区| 99国产精品一区二区蜜桃av| 国产免费男女视频| 国产一区二区三区在线臀色熟女| 又爽又黄无遮挡网站| 男女啪啪激烈高潮av片| 国产成人aa在线观看| 男人舔奶头视频| 国产精品蜜桃在线观看 | 1024手机看黄色片| 亚洲乱码一区二区免费版| 日本三级黄在线观看| 国产精品人妻久久久影院| 在线国产一区二区在线| 国产精品久久久久久av不卡| 欧美一区二区精品小视频在线| 亚洲成人久久爱视频| 亚洲激情五月婷婷啪啪| 国产精品久久久久久精品电影小说 | 国产精品女同一区二区软件| 欧美变态另类bdsm刘玥| 国产高清视频在线观看网站| 黄色欧美视频在线观看| 免费不卡的大黄色大毛片视频在线观看 | 好男人视频免费观看在线| 99久久久亚洲精品蜜臀av| 欧美3d第一页| 精品国产三级普通话版| 成人一区二区视频在线观看| 校园人妻丝袜中文字幕| 一个人看视频在线观看www免费| 欧美性感艳星| 精品少妇黑人巨大在线播放 | 在线观看免费视频日本深夜| 国产精品久久久久久精品电影| 99久国产av精品| 精品人妻视频免费看| 欧美另类亚洲清纯唯美| 伦理电影大哥的女人| 一级毛片我不卡| 久久精品国产鲁丝片午夜精品| 亚洲成人精品中文字幕电影| 又爽又黄无遮挡网站| 成人三级黄色视频| 特大巨黑吊av在线直播| 熟妇人妻久久中文字幕3abv| 国产精品久久久久久av不卡| 欧美日韩一区二区视频在线观看视频在线 | 国产精品乱码一区二三区的特点| 嫩草影院新地址| 在线观看66精品国产| 一边摸一边抽搐一进一小说| 又爽又黄a免费视频| 免费电影在线观看免费观看| 国产精品麻豆人妻色哟哟久久 | 一级黄色大片毛片| 亚洲国产欧美人成| 成人欧美大片| 99九九线精品视频在线观看视频| 久久亚洲国产成人精品v| 成人午夜高清在线视频| 99视频精品全部免费 在线| 久久久国产成人免费| 最好的美女福利视频网| 成年av动漫网址| 在线免费观看的www视频| 亚洲国产精品国产精品| 国产精品一区二区三区四区久久| 精品久久久久久久久久免费视频| 色吧在线观看| 青春草视频在线免费观看| 欧美性猛交╳xxx乱大交人| 色综合色国产| 少妇猛男粗大的猛烈进出视频 | 久久久久久久久久黄片| 欧美潮喷喷水| 亚洲最大成人av| 大香蕉久久网| 高清毛片免费观看视频网站| 日本黄大片高清| 乱系列少妇在线播放| 久久人人精品亚洲av| 国内久久婷婷六月综合欲色啪| av免费在线看不卡| 少妇的逼水好多| 欧美激情在线99| 国产极品精品免费视频能看的| 在线免费十八禁| 最好的美女福利视频网| 亚洲精品乱码久久久v下载方式| 亚洲av男天堂| 日韩视频在线欧美| av在线天堂中文字幕| 少妇高潮的动态图| 亚洲va在线va天堂va国产| 国产极品精品免费视频能看的| 午夜福利视频1000在线观看| 男女啪啪激烈高潮av片| 一级av片app| 久久这里只有精品中国| 中文字幕人妻熟人妻熟丝袜美| 亚洲国产欧洲综合997久久,| 久久久久久久久中文| 蜜臀久久99精品久久宅男| 又爽又黄无遮挡网站| 午夜a级毛片| 女人被狂操c到高潮| 99热网站在线观看| a级一级毛片免费在线观看| 观看美女的网站| 波野结衣二区三区在线| av女优亚洲男人天堂| 国产精品无大码| 乱码一卡2卡4卡精品| 97在线视频观看| 国产精品国产高清国产av| 男插女下体视频免费在线播放| 精品熟女少妇av免费看| 51国产日韩欧美| 男女下面进入的视频免费午夜| 欧美xxxx性猛交bbbb| 亚洲欧美精品自产自拍| 亚洲最大成人手机在线| 此物有八面人人有两片| 给我免费播放毛片高清在线观看| 亚洲成av人片在线播放无| 深爱激情五月婷婷| 欧美激情久久久久久爽电影| 最近视频中文字幕2019在线8| 国内精品一区二区在线观看| 日韩亚洲欧美综合| 日韩欧美精品v在线| 久久久a久久爽久久v久久| 亚洲精品色激情综合| 国产伦精品一区二区三区四那| 免费看美女性在线毛片视频| 看十八女毛片水多多多| 99久国产av精品国产电影| 日产精品乱码卡一卡2卡三| 欧美另类亚洲清纯唯美| 国产一区亚洲一区在线观看| 啦啦啦韩国在线观看视频| 免费观看人在逋| 日本黄色视频三级网站网址| 男人的好看免费观看在线视频| 欧美精品一区二区大全|