• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Experimental investigation on the plasma morphology of ablative pulsed plasma thruster with tongue-shaped and flared electrodes

    2020-09-14 01:13:20JianjunWU吳建軍YuZHANG張宇YangOU歐陽andHuaZHANG張華
    Plasma Science and Technology 2020年9期
    關(guān)鍵詞:張宇張華建軍

    Jianjun WU (吳建軍),Yu ZHANG (張宇),Yang OU (歐陽) and Hua ZHANG (張華)

    1 College of Aerospace Science and Engineering,National University of Defense Technology,Changsha 410073,People’s Republic of China

    2 Jiuquan Satellite Launch Centre,Jiuquan 735000,People’s Republic of China

    3 Authors to whom any correspondence should be addressed.

    Abstract

    Keywords:pulsed plasma thruster,high-speed camera,optical emission spectrum,plume distribution

    1.Introduction

    Satellites have been widely used in remote sensing,communication,navigation and other fields in modern society.The satellite needs a propulsion system for station-keeping and orbit control [1].Carrying propellant results in an increased satellite mass,therefore,yields higher costs for the manufacturing and launch of the spacecraft.Compared with chemical propulsion,electric propulsion thrusters (EPTs) have the advantages of low-cost,low-mass,and high specific impulse[2].Recently,an increasing number of satellites have adopted EPTs for spacecraft orientation and propulsion[3,4].As a member of EPTs,the ablative pulsed plasma thruster(APPT) is considered as an attractive propulsion option for satellites with limited mass and power because of its low power requirements,simple design,robustness,and high specific impulse (~1000 s) [5-7].However,the drawback of low efficiency significantly limits its application [8].Recently,an APPT with tongue-shaped and flared electrodes has been proposed,which owned better performance [9].

    Figure 1 presents the schematic of APPT with tongueshaped and flared electrodes.In this APPT,the capacitor is fully charged before the spark plug ignites.After the ignition signal is sent,the voltage between the anode and cathode of the spark plug begins to increase.When the voltage exceeds the breakdown voltage of the spark plug,breakdown occurs and an initial plasma is generated.The discharge of the spark plug will trigger a breakdown between the APPT electrodes and generate a discharge arc.The discharge arc across the surface of the propellant will ablate a portion of the propellant,ionize it,and then accelerate it to generate thrust electromagnetically[7,10].The APPT’s propellant PTFE is a polymer containing several elements,hence the APPT plasmas have a complex composition with multiple species (CI,CII,CIII,FI,FII,FIII,etc).Otherwise,the working duration of APPT is about ten microseconds,and the internal physical mechanisms and interactions of APPT are very challenging to study.

    Figure 1.Schematic of the APPT with tongue-shaped and flared electrodes.(a) Front view,and (b) top view.

    Figure 2.Schematic of the experimental set-up.

    Many investigations have been carried out on the mechanisms of APPT.The effect of the propellant and electrodes on the performance of APPT has been studied by several researchers [10-12].Antropov et al [13]studied the effect of shape and angle of electrodes on APPT’s performance,and proposed that the efficiency of the APPT with tongue-shaped electrodes can increase about 10% compared with rectangular electrodes.Schonherr’s study further confirmed Antropov’s conclusion,and then proposed that the flared angle can also affect the APPT’s performance [14].Otherwise,several measuring methods have been proposed and used to investigate the plasma characteristics in the plume.The optical emission spectroscopy and Mach-Zehnder interferometry were applied to investigate the plasma properties of APPT,the velocity and temperature of plasmas were obtained [15,16].The ultra-high-speed camera and magnetic probe were used to obtain the plasma distribution and density[3,17-19].

    Most of these researches focused on the performance of APPTs and the characteristics of plumes.However,efforts about the plasma morphology between electrodes are somewhat limited.The variation of plasma morphology can present the arc forming process between electrodes,and then reveal the working process of APPT.Due to the short discharge time of a single pulse of APPT,the residence time of plasma between electrodes is very short,it is difficult to record the development of plasma morphology between electroplates.Therefore,this paper adopts a high-speed camera and optical emission spectrum (OES) to investigate the plasma morphology between the electrodes of the APPT.The plasma characteristics including the spatial distribution and composition evolution are experimentally studied,which is helpful to understand the physical mechanism of an APPT with tongue-shaped and flared electrodes.

    2.Experiment

    2.1.Experimental set-up

    The APPT used in experiments is shown in figure 1.The APPT contains a capacitor (capacitance of 10 μF,peak charged voltage of 2000 V),a couple of tongue-shaped electrodes (flared angle of 28°,inter-electrode space of 20 mm,length of 40 mm),and a solid propellant (PTFE).In our experiments,nine uniformly distributed positions between electrodes are chosen for measurement by the OES.With the center of PTFE surface as the origin of the coordinate,the corresponding coordinates of the nine positions are characterized as position 1 (5 mm,10 mm),position 2 (15 mm,10 mm),position 3 (25 mm,10 mm),position 4(5 mm,0),position 5(15 mm,0),position 6(25 mm,0),position 7 (5 mm,?10 mm),position 8 (15 mm,?10 mm),and position 9 (25 mm,?10 mm) respectively,as presented in figure 1.

    Figure 3.Comparison of plume images before and after pseudo-color processing.(a) Before,and (b) after.

    Figure 4.Discharge curves and shutter timings of the high-speed camera.

    In order to experimentally investigate the plasma morphology of APPT,both the high-speed camera and OES are simultaneously adopted in the experiments,as shown in figure 2.The high-speed camera (Model:XXRapidFrame) is produced by Stanford Computer Optics company,with 1360×1024 pixels,minimum shutter time of 0.2 ns,minimum exposure time of 1.2 ns.In these experiments,the exposure time was set to 50 ns which was short enough to freeze the motion of plume during imaging.The OES system consists of the following instruments:(1) the optical fiber(QP600-2-SR),which was used to transmit the optical signals emitted by the discharge between the electrodes to the spectrometer;(2) the spectrometer (Acton SP2300i),which was used to disperse and diffract optical signals;(3)the ICCD camera (PI-MAX2),which was used to collect and enhance the optical signals transmitted from the spectrometer;(4) the controller(ST-133),which was used to control the rotation of the grating and the shutting time of the camera.

    The APPT experiments were carried out in a vacuum chamber with a diameter of 2.4 m and a length of 3 m.The chamber is equipped with a booster pump (Z-300),two oil diffusion pumps (K-900C) and three oil-free claw pumps(4ZBWS-30).The base pressure was less than 5×10?3Pa before the experiments.It is noticeable that the size of the vacuum chamber in the experiments is much larger than the thruster,hence the change of base pressure caused by the thruster working can be ignored.

    2.2.Image processing method

    In our experiments,the images taken by the high-speed camera were gray.In order to improve the visibility of the images and reveal more details of the plasma distribution,the pseudo-color processing method was utilized to transform the gray images to color images.As one of the traditional image enhancement techniques,the pseudo-color processing method has been widely used to convert black-and-white images into color images.The mapping relationships between red,green,blue and gray can be expressed as Figure 3 shows the plume images before and after pseudocolor processing.It can be obviously observed that,the processed images which have better visibility can clearly display the plume morphology and the distribution characteristics of plasmas.

    Figure 5.Variation of plume images with time.(a)0.6 μs,(b)1.6 μs,(c)2.6 μs,(d)3.6 μs,(e)4.6 μs,(f)5.6 μs,(g)6.6 μs,and(h)7.6 μs.

    Figure 6.Spectrograms at positions 5 mm away from the ablation surface.(a) Position 1,(b) position 4,and (c) position 7.

    3.Results and discussion

    3.1.Spatial distribution of plasmas

    The discharge waveforms (voltage and current) and shutter timings are shown in figure 4.The discharge current is monitored with a current monitor(PEARSON Current Sensor 4997),and the discharge voltage is measured using a standard high-voltage probe (Tektronix P5100).The APPT can be assumed to be an RLC circuit,and the discharge waveform is an underdamped oscillation with a period of about 7 μs.During the discharge cycle,the discharge current increased to the maximum value of 12 000 A at 2 μs,and then decreased to 0 at 3.7 μs,afterward,the current increased to 8000 A in the reverse direction.

    Figure 7.Spectrograms at positions 15 mm away from the ablation surface.(a) Position 2,(b) position 5,and (c) position 8.

    In order to record the variation of plume images with time,the plume images between the electrodes of APPT are shown in figure 5,and the time interval between adjacent images is 1 μs.It can be seen in figure 5,the plasmas between the electrodes change periodically,and the plasmas generated at different positions experience different trajectories and states of motion.Once the discharge starts,a layer of plasmas with uniform thickness is formed nearby the ablation surface of the propellant,as shown in figure 5(a).Under the action of the discharge arc,the number of plasmas increases gradually,and the plasmas accelerate and expand with the interaction of the electromagnetic field and aerodynamic force.After that,the thickness of the plasma layer becomes uneven,and two clusters of plasmas are formed near the anode and cathode,meanwhile,the two clusters of plasmas present different velocities and directions,as shown in figure 5(b).The cluster of plasmas near the anode moves towards the cathode with an angle (α) from the horizontal direction,and the cluster of plasmas near the cathode moves towards the anode with an angle (β) from the horizontal direction.The angle α is obviously greater than β,hence the two clusters meet downstream,and the intersection is closer to the cathode,then a cavity is formed near the ablation surface of the propellant and the center of the discharge channel,as shown in figure 5(c).

    In addition,at each measuring position of figure 1,the spectral images are collected every 0.5 μs,and then all the spectral curves are superimposed together to obtain the spectral information of the whole period of each measuring position.Compared with the spectral lines of neutral molecules,the spectral lines of atoms and ions are thinner,and the intensities are higher [20].The spectral lines of atoms and ions can be distinguished more accurately,hence only the spectral lines of atoms and ions are obtained in this experiment.Figure 6 presents the spectra of the discharge width at positions 1,4,and 7 which are 5 mm away from the ablation surface of PTFE.According to the spectral database of the National Institute of Standards and Technology in America,it is found that the plume consists mainly of CI,CII,CII,FI,FII,CuII,and CuIII particles.CI,CII,CII,FI,and FII are generated by the ablation of PTFE,while CuII and CuIII are caused by the ablation of electrodes.By comparing the spectra of positions 1,4,and 7,it can be found that both the plasma species and density at position 1 are the largest,followed by position 4.It means that the plasmas are mainly concentrated on the anode side,and the average density gradually decreases from the anode to the cathode side.Meanwhile,there are many wideband spectral lines near the abode (position 1),which is caused by neutral molecules.This means the ablation of PTFE has mainly occurred near the anode side,which is confirmed by observing the ablation morphology of PTFE.However,there are also differences in the density distribution for different particles,for example,CIII is mainly distributed near the anode,while CII is concentrated in the middle area between the electrodes,and CuII is mainly distributed near the anode.Therefore,in order to improve the life of APPT,the anode needs to be anti-ablation treated.

    Figure 8.Spectrograms at positions 25 mm away from the ablation surface.(a) Position 3,(b) position 6,and (c) position 9.

    Figure 7 shows the spectra of the discharge width at positions 2,5,and 8 which are 15 mm away from the ablation surface of PTFE.Compared with figure 6,it can be seen from figure 7 that the plasma species and density near the anode,the middle position,and the cathode tend to be more uniform.The area at the midpoint between electrodes experiences the largest number of particles and the highest density,followed by the area near the cathode,while the plasma species and average plasma density are lowest in the area near the anode.It has been observed from figure 5 that the plasmas near the anode move towards the cathode with an angle (α),and the plasmas near the cathode move towards the anode with an angle (β).The motion of plasmas results in the difference of plasma species and density at different positions away from the ablation surface of PTFE.Moreover,the plasma clusters gradually expand and diffuse as plasmas move,hence the farther away from the ablation surface,the more uniform the plasmas distribute.

    The spectra of the discharge width at positions 3,6,and 9 which are 25 mm away from the ablation surface of PTFE are given in figure 8.The largest number of plasma species is concentrated at the area of the midpoint between electrodes,next to the cathode side,and the least near the anode.Compared with figures 6 and 7,the average density of plasma tends to be more uniform at the plane 25 mm away from the ablation surface.The average density of plasma at the midpoint between electrodes is slightly larger,and that near the anode and cathode is almost the same.In a word,with the increasing distance from the ablation surface of PTFE,the species of particles tend to be similar,and the average density of plasmas tends to be uniform.

    3.2.Time course of spectra

    Figure 9.Spectral variations at different positions.(a) Position 1,(b) position 2,(c) position 3,(d) position 4,(e) position 5,(f) position 6,(g) position 7,(h) position 8,(i) position 9,and (j) the trajectory of CuII.

    Figure 9 shows the time course of the spectra at different positions,meanwhile,the wavelength of the spectral line of CuII is also presented in the figure.It is found that the variation of spectral intensity at each position shows a certain periodicity,and the change cycles at different positions are approximately the same.However,the occurrence of spectral intensity and the time maximum spectral intensity at different positions is quite different,which is mainly caused by the uneven distribution and the diffusion of plasmas in the discharge channel.Otherwise,the maximum emission spectrum wavelengths are different at different positions,indicating that the compositions of plasma plume are also different at different positions.It can be seen from figure 9 that the ionization is mainly concentrated in the first discharge cycle.At the end of the discharge,both the intensity and the number of the spectral lines decrease significantly,which means the density of atoms and ions decreases.The composition of the plume and the proportion of each component are quite different at different stages of discharge,which is mainly due to the different ionization energy and time required by different particles in the discharge process.By comparing the spectrum evolution processes at different positions with the same distance from the ablation surface,it can be found that the time of occurrences of the spectrum and maximum spectral intensity is different,and the changing law of spectral lines of different wavelengths is also different.These results show that,in the discharge channel,the velocity distribution of plasma is not uniform,and different kinds of plasma particles have different velocities and distributions.

    In addition,during the working process of APPT,the ablation of electrodes is inevitable,which will reduce the life of thruster.Therefore,it is necessary to investigate the generation and distribution of Cu element to reduce the ablation of electrodes.The wavelength of the spectral line of CuII is presented in figure 9.The ablation of electrodes can be obtained by measuring the spectral strength at the intersection of the curve and the spectral lines at each time.At points 1,2 and 4,the CuII occurs at 2.6 μs.At point position 5,the CuII can be observed at both 2.6 μs and 3.6 μs.At point positions 6,8 and 9,the CuII can only be observed at 3.6 μs.At point positions 3 and 7,the CuII has not been observed.Therefore,it can be concluded that the CuII is caused by the ablation of the anode,and then it moves to the downstream of the thruster.Its trajectory can be drawn as shown in figure 9(j).

    4.Conclusions

    In this paper,we use the high-speed camera and optical emission spectroscopy to investigate the composition and spatial distribution of plasmas between the electrodes of APPT.According to the experimental results,the main conclusions are drawn.

    (1) The plasma density changes periodically in the discharge channel of the thruster,and the plasma generated at different positions experiences different trajectories and states of motion.At the beginning of discharge,a uniform plasma layer is formed near the surface of PTFE.As the discharge processing,the thickness of the plasma layer gradually becomes uneven,and two clusters of plasmas near the anode and cathode are formed,then the two clusters meet at a certain distance from the ablation surface.

    (2) The plume between the electrodes is mainly composed of CI,CII,CIII,FI,FII,CuI,CuII,and CuIII.In the plane 5 mm from the ablation surface,the plume near the anode has the largest average plasma density and most types of plasma particles.In the plane 15 mm from the ablation surface,the midpoint between electroplates experiences the largest average plasma density and most types of plasma particles.In the plane 25 mm from the ablation surface,the plasma species and average density are distributed uniform except for the slightly larger density at the midpoint.With the increase of the distance from the ablation surface,the differences of the kinds of particles in the plume become smaller,and the distribution of plasma density tends to be more uniform.

    The study of this paper gives a deeper understanding of the plasma characteristics between the electrodes of APPT,and the conclusion can be used to improve the design of APPT.However,further quantitative data such as the ionization rate,electron temperature,and various component densities are needed.These will possibly be obtained combining with other measuring means.

    Acknowledgments

    The authors would like to thank National Natural Science Foundation of China (No.11772354) for the financial assistance provided for this work.

    猜你喜歡
    張宇張華建軍
    冬天的風(fēng)在說什么
    慶祝建軍95周年
    Three-step self-calibrating generalized phase-shifting interferometry
    年輪
    娛樂圈神秘貴婦,拒絕劉德華后將丈夫捧成巨星
    Spatio-temporal evolution characteristics and pattern formation of a gas–liquid interfacial AC current argon discharge plasma with a deionized water electrode
    白衣天使
    風(fēng)
    無論等多久
    Investigation on plasma characteristics in a laser ablation pulsed plasma thruster by optical emission spectroscopy
    国产高清国产精品国产三级| 9热在线视频观看99| 一级黄色大片毛片| 精品人妻1区二区| 久久狼人影院| 美女高潮到喷水免费观看| 91av网站免费观看| 制服诱惑二区| 成人三级做爰电影| 啦啦啦中文免费视频观看日本| 欧美精品啪啪一区二区三区| 亚洲 国产 在线| 少妇精品久久久久久久| 天天添夜夜摸| 99精品久久久久人妻精品| 91麻豆av在线| 18禁美女被吸乳视频| 久久精品aⅴ一区二区三区四区| 精品少妇黑人巨大在线播放| a级毛片在线看网站| 久久免费观看电影| 男女高潮啪啪啪动态图| www日本在线高清视频| 久久婷婷成人综合色麻豆| 国产日韩欧美亚洲二区| 国产精品九九99| 精品免费久久久久久久清纯 | 亚洲精华国产精华精| 最黄视频免费看| 亚洲综合色网址| 啦啦啦在线免费观看视频4| 9热在线视频观看99| 狠狠精品人妻久久久久久综合| 欧美在线黄色| 亚洲av电影在线进入| a在线观看视频网站| 成年人黄色毛片网站| 国产单亲对白刺激| av天堂久久9| 无限看片的www在线观看| 久久精品国产a三级三级三级| 亚洲视频免费观看视频| 国产成人精品久久二区二区91| 美女主播在线视频| 久久人人爽av亚洲精品天堂| 国产精品亚洲一级av第二区| 午夜福利欧美成人| 99精国产麻豆久久婷婷| 777米奇影视久久| 啦啦啦在线免费观看视频4| 一级黄色大片毛片| 精品一品国产午夜福利视频| 一夜夜www| av福利片在线| 久久午夜综合久久蜜桃| 欧美亚洲日本最大视频资源| 国产免费av片在线观看野外av| 亚洲av日韩精品久久久久久密| 99riav亚洲国产免费| 欧美国产精品一级二级三级| 黄色视频在线播放观看不卡| 国产精品香港三级国产av潘金莲| 天天添夜夜摸| 女警被强在线播放| 亚洲情色 制服丝袜| 成人永久免费在线观看视频 | 最近最新免费中文字幕在线| 精品久久久久久电影网| 亚洲欧美一区二区三区久久| 不卡一级毛片| 亚洲久久久国产精品| av超薄肉色丝袜交足视频| 一区二区av电影网| 中文字幕av电影在线播放| 在线亚洲精品国产二区图片欧美| 捣出白浆h1v1| 亚洲一卡2卡3卡4卡5卡精品中文| 亚洲欧美日韩高清在线视频 | 麻豆av在线久日| 性少妇av在线| 少妇猛男粗大的猛烈进出视频| 麻豆乱淫一区二区| 免费在线观看完整版高清| 久久亚洲真实| 亚洲avbb在线观看| 两性午夜刺激爽爽歪歪视频在线观看 | 亚洲成人国产一区在线观看| 久久免费观看电影| 久久午夜综合久久蜜桃| 丰满饥渴人妻一区二区三| 国产淫语在线视频| 亚洲七黄色美女视频| 性少妇av在线| 99精品在免费线老司机午夜| 久久久久久人人人人人| 成年人免费黄色播放视频| 国产黄频视频在线观看| 91老司机精品| 精品少妇一区二区三区视频日本电影| 国产又色又爽无遮挡免费看| 大香蕉久久成人网| 成人18禁高潮啪啪吃奶动态图| 又紧又爽又黄一区二区| 免费看a级黄色片| 久久久久精品人妻al黑| 亚洲人成电影观看| 国产亚洲欧美精品永久| 99国产极品粉嫩在线观看| 夜夜夜夜夜久久久久| 久久久精品94久久精品| 免费在线观看视频国产中文字幕亚洲| netflix在线观看网站| 国产精品久久电影中文字幕 | 日韩三级视频一区二区三区| 一进一出好大好爽视频| 在线观看免费视频网站a站| 久热这里只有精品99| 国产不卡av网站在线观看| 人妻一区二区av| 亚洲精品国产精品久久久不卡| 成年人免费黄色播放视频| 日韩视频一区二区在线观看| 人人妻人人澡人人爽人人夜夜| 久久天堂一区二区三区四区| 免费在线观看完整版高清| 女人久久www免费人成看片| 欧美激情高清一区二区三区| 桃红色精品国产亚洲av| 精品国产一区二区久久| 成人国语在线视频| 国产区一区二久久| av天堂久久9| 咕卡用的链子| 丰满饥渴人妻一区二区三| av电影中文网址| 精品久久久精品久久久| 在线 av 中文字幕| av不卡在线播放| 亚洲欧美一区二区三区黑人| 久久久国产精品麻豆| 色94色欧美一区二区| 男女之事视频高清在线观看| 精品免费久久久久久久清纯 | 亚洲国产成人一精品久久久| tube8黄色片| 美女国产高潮福利片在线看| 色婷婷久久久亚洲欧美| 亚洲中文字幕日韩| av电影中文网址| 老司机在亚洲福利影院| 9热在线视频观看99| 一级黄色大片毛片| 亚洲欧美日韩另类电影网站| 悠悠久久av| 嫩草影视91久久| 美女视频免费永久观看网站| 亚洲自偷自拍图片 自拍| 色综合婷婷激情| 成年人午夜在线观看视频| 亚洲专区字幕在线| 欧美国产精品一级二级三级| 久久久久久亚洲精品国产蜜桃av| 国产成人av教育| 777米奇影视久久| 久久国产精品人妻蜜桃| 一级毛片精品| 国产精品久久久久成人av| 老司机在亚洲福利影院| 欧美日韩黄片免| 涩涩av久久男人的天堂| 久久精品国产亚洲av香蕉五月 | 久热爱精品视频在线9| 日韩一区二区三区影片| 女同久久另类99精品国产91| 国产高清国产精品国产三级| 一进一出抽搐动态| avwww免费| 欧美+亚洲+日韩+国产| 一本综合久久免费| 亚洲欧洲精品一区二区精品久久久| 又大又爽又粗| 51午夜福利影视在线观看| 亚洲国产精品一区二区三区在线| 久久精品人人爽人人爽视色| 亚洲中文av在线| 精品国产一区二区三区久久久樱花| 日韩人妻精品一区2区三区| 国产黄频视频在线观看| 无人区码免费观看不卡 | 成人av一区二区三区在线看| 亚洲第一青青草原| 亚洲黑人精品在线| e午夜精品久久久久久久| 国产精品欧美亚洲77777| 无人区码免费观看不卡 | 日本撒尿小便嘘嘘汇集6| 99久久精品国产亚洲精品| 亚洲人成电影观看| 交换朋友夫妻互换小说| 亚洲国产欧美一区二区综合| 精品国产乱码久久久久久小说| 777米奇影视久久| 丁香六月欧美| 国产精品免费视频内射| 色婷婷久久久亚洲欧美| 下体分泌物呈黄色| 亚洲自偷自拍图片 自拍| 日日爽夜夜爽网站| 国产aⅴ精品一区二区三区波| 国产精品免费大片| 黄色毛片三级朝国网站| 欧美国产精品va在线观看不卡| 999精品在线视频| 丁香欧美五月| 亚洲精品美女久久av网站| 欧美精品一区二区大全| 精品一区二区三区四区五区乱码| 男女高潮啪啪啪动态图| 高清欧美精品videossex| 老汉色∧v一级毛片| avwww免费| 极品教师在线免费播放| 99精品久久久久人妻精品| 中文字幕最新亚洲高清| 一本久久精品| 精品一区二区三区视频在线观看免费 | 宅男免费午夜| 精品亚洲成a人片在线观看| 无限看片的www在线观看| 大片免费播放器 马上看| 日本av手机在线免费观看| 久久 成人 亚洲| 国产亚洲精品久久久久5区| 十八禁网站网址无遮挡| 日本黄色日本黄色录像| 日韩欧美三级三区| 热99久久久久精品小说推荐| 亚洲精品在线观看二区| 国产男靠女视频免费网站| 午夜福利视频在线观看免费| 成人国产一区最新在线观看| 不卡一级毛片| 在线亚洲精品国产二区图片欧美| 国产成人欧美| 建设人人有责人人尽责人人享有的| 国产精品99久久99久久久不卡| 99九九在线精品视频| 在线观看舔阴道视频| 欧美 亚洲 国产 日韩一| 欧美成人午夜精品| 午夜91福利影院| 9色porny在线观看| 窝窝影院91人妻| 国产成人免费无遮挡视频| 国产免费视频播放在线视频| 黄色毛片三级朝国网站| 99九九在线精品视频| 国产成+人综合+亚洲专区| 国产成人精品久久二区二区免费| 一区二区三区乱码不卡18| 成人永久免费在线观看视频 | 人人妻人人澡人人看| 欧美人与性动交α欧美精品济南到| 久久性视频一级片| 成年人黄色毛片网站| cao死你这个sao货| 欧美精品人与动牲交sv欧美| 51午夜福利影视在线观看| 黑丝袜美女国产一区| 国产精品一区二区在线观看99| av欧美777| avwww免费| 少妇被粗大的猛进出69影院| 老汉色av国产亚洲站长工具| 露出奶头的视频| 黄频高清免费视频| 色精品久久人妻99蜜桃| 免费人妻精品一区二区三区视频| 精品久久久久久电影网| 精品久久蜜臀av无| 亚洲欧洲精品一区二区精品久久久| 91大片在线观看| 99国产精品99久久久久| a级毛片黄视频| 老司机在亚洲福利影院| 欧美 日韩 精品 国产| 一个人免费看片子| 狠狠精品人妻久久久久久综合| 在线观看人妻少妇| 久久国产精品男人的天堂亚洲| 久久天堂一区二区三区四区| 亚洲av电影在线进入| 久久中文字幕一级| 免费女性裸体啪啪无遮挡网站| 中文字幕人妻丝袜制服| 一边摸一边抽搐一进一小说 | 国产91精品成人一区二区三区 | 日韩中文字幕欧美一区二区| 动漫黄色视频在线观看| 久久人人97超碰香蕉20202| 精品乱码久久久久久99久播| 69av精品久久久久久 | 亚洲三区欧美一区| 少妇精品久久久久久久| 99精国产麻豆久久婷婷| 中文欧美无线码| 一级毛片电影观看| 在线观看66精品国产| 国产精品久久久人人做人人爽| 久久中文字幕一级| 亚洲免费av在线视频| 国产人伦9x9x在线观看| 久久婷婷成人综合色麻豆| 国产av精品麻豆| 国产精品秋霞免费鲁丝片| 精品高清国产在线一区| 日韩欧美国产一区二区入口| 国产三级黄色录像| 久久久国产成人免费| 大码成人一级视频| 中文字幕精品免费在线观看视频| 一个人免费看片子| 满18在线观看网站| 色婷婷av一区二区三区视频| 一区二区三区乱码不卡18| www.精华液| 国产精品99久久99久久久不卡| 国产不卡av网站在线观看| 他把我摸到了高潮在线观看 | 超碰成人久久| 精品一区二区三区视频在线观看免费 | 欧美另类亚洲清纯唯美| 黄色视频在线播放观看不卡| 宅男免费午夜| 久久久国产成人免费| 91精品国产国语对白视频| 国产一区二区三区视频了| 人妻一区二区av| a在线观看视频网站| 丰满迷人的少妇在线观看| 欧美亚洲日本最大视频资源| 性高湖久久久久久久久免费观看| 女警被强在线播放| 侵犯人妻中文字幕一二三四区| 日本精品一区二区三区蜜桃| 中文字幕人妻熟女乱码| 夜夜骑夜夜射夜夜干| 欧美黑人欧美精品刺激| 日本撒尿小便嘘嘘汇集6| 亚洲av片天天在线观看| 在线观看人妻少妇| av网站免费在线观看视频| 国产精品欧美亚洲77777| 日韩中文字幕欧美一区二区| 国产亚洲欧美在线一区二区| 最新在线观看一区二区三区| 欧美精品啪啪一区二区三区| h视频一区二区三区| 人成视频在线观看免费观看| 色尼玛亚洲综合影院| 欧美精品啪啪一区二区三区| 两个人免费观看高清视频| 51午夜福利影视在线观看| √禁漫天堂资源中文www| 亚洲熟女毛片儿| 极品教师在线免费播放| 国产亚洲欧美精品永久| 黑人巨大精品欧美一区二区mp4| 十八禁网站免费在线| 亚洲国产av影院在线观看| 亚洲专区字幕在线| 一区福利在线观看| 亚洲人成电影观看| 窝窝影院91人妻| 久久久国产欧美日韩av| 久久99一区二区三区| 丰满人妻熟妇乱又伦精品不卡| 日韩一区二区三区影片| 亚洲视频免费观看视频| 国产av精品麻豆| 成人18禁在线播放| 国产精品免费视频内射| 日韩视频在线欧美| 免费人妻精品一区二区三区视频| 啦啦啦视频在线资源免费观看| 国产精品久久久av美女十八| 免费观看av网站的网址| av一本久久久久| 999精品在线视频| 免费高清在线观看日韩| 国产精品欧美亚洲77777| 少妇粗大呻吟视频| 日韩欧美免费精品| 高清av免费在线| 999精品在线视频| 极品教师在线免费播放| www.精华液| 在线亚洲精品国产二区图片欧美| 国产一区二区三区在线臀色熟女 | 国产一区有黄有色的免费视频| 这个男人来自地球电影免费观看| xxxhd国产人妻xxx| www.自偷自拍.com| 国产精品久久久久久人妻精品电影 | 少妇猛男粗大的猛烈进出视频| 波多野结衣av一区二区av| 国产精品久久久久久人妻精品电影 | 久久久久网色| 人人妻人人爽人人添夜夜欢视频| 免费在线观看黄色视频的| 国产在视频线精品| 欧美黑人精品巨大| 亚洲熟女精品中文字幕| 香蕉久久夜色| 欧美午夜高清在线| 亚洲色图 男人天堂 中文字幕| 久久 成人 亚洲| 男女无遮挡免费网站观看| 国产成人影院久久av| 国产av国产精品国产| 久久狼人影院| 久久性视频一级片| 国产精品熟女久久久久浪| 亚洲第一青青草原| av片东京热男人的天堂| 国产精品1区2区在线观看. | 久久人人97超碰香蕉20202| 国产免费福利视频在线观看| 一级毛片电影观看| 亚洲全国av大片| 老鸭窝网址在线观看| 99精品在免费线老司机午夜| 国产淫语在线视频| tocl精华| 两性午夜刺激爽爽歪歪视频在线观看 | 黑人巨大精品欧美一区二区蜜桃| 交换朋友夫妻互换小说| 亚洲精品av麻豆狂野| av在线播放免费不卡| 亚洲一卡2卡3卡4卡5卡精品中文| 搡老熟女国产l中国老女人| av视频免费观看在线观看| bbb黄色大片| 一级黄色大片毛片| 久久国产精品大桥未久av| 夫妻午夜视频| 欧美+亚洲+日韩+国产| 交换朋友夫妻互换小说| 精品卡一卡二卡四卡免费| 欧美在线一区亚洲| 别揉我奶头~嗯~啊~动态视频| 国产高清videossex| 自线自在国产av| 69av精品久久久久久 | 免费在线观看完整版高清| 少妇的丰满在线观看| 丝袜在线中文字幕| 满18在线观看网站| 窝窝影院91人妻| 国产免费av片在线观看野外av| 中文字幕人妻熟女乱码| 欧美精品啪啪一区二区三区| 国产精品九九99| 高清在线国产一区| av天堂在线播放| 国产黄色免费在线视频| netflix在线观看网站| 日韩欧美一区二区三区在线观看 | 日本精品一区二区三区蜜桃| 国产精品亚洲av一区麻豆| 飞空精品影院首页| 日韩人妻精品一区2区三区| 黑人操中国人逼视频| 欧美激情 高清一区二区三区| 最黄视频免费看| 侵犯人妻中文字幕一二三四区| 91成年电影在线观看| 久久久精品94久久精品| 91字幕亚洲| 成人手机av| 777久久人妻少妇嫩草av网站| 日韩视频一区二区在线观看| 国产99久久九九免费精品| av在线播放免费不卡| 亚洲国产av新网站| 在线观看免费视频日本深夜| 欧美日韩亚洲综合一区二区三区_| 青青草视频在线视频观看| 在线观看一区二区三区激情| 久9热在线精品视频| 亚洲色图av天堂| 性高湖久久久久久久久免费观看| 大码成人一级视频| 在线观看免费视频日本深夜| 亚洲成av片中文字幕在线观看| 69精品国产乱码久久久| 啦啦啦中文免费视频观看日本| 男男h啪啪无遮挡| 97人妻天天添夜夜摸| 麻豆成人av在线观看| 亚洲精品中文字幕在线视频| 日本精品一区二区三区蜜桃| 女人精品久久久久毛片| 精品国产超薄肉色丝袜足j| 人成视频在线观看免费观看| 亚洲专区字幕在线| 亚洲熟妇熟女久久| av一本久久久久| tube8黄色片| 超色免费av| 一边摸一边做爽爽视频免费| 国产成人精品在线电影| 日本av手机在线免费观看| 精品人妻在线不人妻| 极品人妻少妇av视频| 久久久久久久大尺度免费视频| 嫁个100分男人电影在线观看| 老司机深夜福利视频在线观看| 国产成人精品在线电影| 精品国产乱子伦一区二区三区| 国产精品久久久人人做人人爽| 久久这里只有精品19| 国产精品亚洲一级av第二区| 高清黄色对白视频在线免费看| 91九色精品人成在线观看| 亚洲成av片中文字幕在线观看| www.熟女人妻精品国产| 国产在线观看jvid| 在线观看免费午夜福利视频| 国产精品1区2区在线观看. | 涩涩av久久男人的天堂| 国产欧美日韩综合在线一区二区| 欧美日韩av久久| 男女免费视频国产| 咕卡用的链子| 女人久久www免费人成看片| 午夜福利视频精品| 99在线人妻在线中文字幕 | av一本久久久久| 波多野结衣av一区二区av| 别揉我奶头~嗯~啊~动态视频| 亚洲精品中文字幕在线视频| 一夜夜www| 不卡av一区二区三区| 国产免费现黄频在线看| 日日摸夜夜添夜夜添小说| 十八禁网站免费在线| 精品一区二区三区av网在线观看 | 日韩人妻精品一区2区三区| 久久久久网色| 亚洲av日韩在线播放| 国产精品久久久久成人av| 91av网站免费观看| 丰满少妇做爰视频| 天天添夜夜摸| 大片免费播放器 马上看| 日本精品一区二区三区蜜桃| 国产日韩一区二区三区精品不卡| 午夜福利一区二区在线看| 精品欧美一区二区三区在线| 91成人精品电影| 最新在线观看一区二区三区| 免费看a级黄色片| 国产欧美日韩综合在线一区二区| 午夜精品国产一区二区电影| 欧美日韩一级在线毛片| 18禁观看日本| 国产欧美日韩一区二区精品| 美女视频免费永久观看网站| 男人操女人黄网站| 丝袜在线中文字幕| 中文字幕人妻熟女乱码| 每晚都被弄得嗷嗷叫到高潮| 亚洲色图 男人天堂 中文字幕| 999久久久精品免费观看国产| 欧美亚洲 丝袜 人妻 在线| 亚洲中文字幕日韩| 桃红色精品国产亚洲av| 亚洲三区欧美一区| 制服诱惑二区| 999久久久国产精品视频| 国产极品粉嫩免费观看在线| 亚洲av成人不卡在线观看播放网| 中文字幕人妻熟女乱码| 久久久久久久国产电影| 欧美日韩福利视频一区二区| 激情视频va一区二区三区| 制服诱惑二区| 午夜精品国产一区二区电影| 国产麻豆69| 国产野战对白在线观看| 欧美黄色淫秽网站| 天天影视国产精品| www.精华液| 欧美午夜高清在线| 最近最新中文字幕大全电影3 | 热99re8久久精品国产| 一二三四社区在线视频社区8| 两个人看的免费小视频| 日本精品一区二区三区蜜桃| 久久青草综合色| 美女高潮到喷水免费观看| 99久久99久久久精品蜜桃| 成人亚洲精品一区在线观看| 精品国产国语对白av| 俄罗斯特黄特色一大片| 国产精品熟女久久久久浪| 国产免费福利视频在线观看| 曰老女人黄片| 高清毛片免费观看视频网站 | 国产午夜精品久久久久久| 少妇猛男粗大的猛烈进出视频| 色94色欧美一区二区| 久久精品国产综合久久久| 黄频高清免费视频|