• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Experimental investigation on the plasma morphology of ablative pulsed plasma thruster with tongue-shaped and flared electrodes

    2020-09-14 01:13:20JianjunWU吳建軍YuZHANG張宇YangOU歐陽andHuaZHANG張華
    Plasma Science and Technology 2020年9期
    關(guān)鍵詞:張宇張華建軍

    Jianjun WU (吳建軍),Yu ZHANG (張宇),Yang OU (歐陽) and Hua ZHANG (張華)

    1 College of Aerospace Science and Engineering,National University of Defense Technology,Changsha 410073,People’s Republic of China

    2 Jiuquan Satellite Launch Centre,Jiuquan 735000,People’s Republic of China

    3 Authors to whom any correspondence should be addressed.

    Abstract

    Keywords:pulsed plasma thruster,high-speed camera,optical emission spectrum,plume distribution

    1.Introduction

    Satellites have been widely used in remote sensing,communication,navigation and other fields in modern society.The satellite needs a propulsion system for station-keeping and orbit control [1].Carrying propellant results in an increased satellite mass,therefore,yields higher costs for the manufacturing and launch of the spacecraft.Compared with chemical propulsion,electric propulsion thrusters (EPTs) have the advantages of low-cost,low-mass,and high specific impulse[2].Recently,an increasing number of satellites have adopted EPTs for spacecraft orientation and propulsion[3,4].As a member of EPTs,the ablative pulsed plasma thruster(APPT) is considered as an attractive propulsion option for satellites with limited mass and power because of its low power requirements,simple design,robustness,and high specific impulse (~1000 s) [5-7].However,the drawback of low efficiency significantly limits its application [8].Recently,an APPT with tongue-shaped and flared electrodes has been proposed,which owned better performance [9].

    Figure 1 presents the schematic of APPT with tongueshaped and flared electrodes.In this APPT,the capacitor is fully charged before the spark plug ignites.After the ignition signal is sent,the voltage between the anode and cathode of the spark plug begins to increase.When the voltage exceeds the breakdown voltage of the spark plug,breakdown occurs and an initial plasma is generated.The discharge of the spark plug will trigger a breakdown between the APPT electrodes and generate a discharge arc.The discharge arc across the surface of the propellant will ablate a portion of the propellant,ionize it,and then accelerate it to generate thrust electromagnetically[7,10].The APPT’s propellant PTFE is a polymer containing several elements,hence the APPT plasmas have a complex composition with multiple species (CI,CII,CIII,FI,FII,FIII,etc).Otherwise,the working duration of APPT is about ten microseconds,and the internal physical mechanisms and interactions of APPT are very challenging to study.

    Figure 1.Schematic of the APPT with tongue-shaped and flared electrodes.(a) Front view,and (b) top view.

    Figure 2.Schematic of the experimental set-up.

    Many investigations have been carried out on the mechanisms of APPT.The effect of the propellant and electrodes on the performance of APPT has been studied by several researchers [10-12].Antropov et al [13]studied the effect of shape and angle of electrodes on APPT’s performance,and proposed that the efficiency of the APPT with tongue-shaped electrodes can increase about 10% compared with rectangular electrodes.Schonherr’s study further confirmed Antropov’s conclusion,and then proposed that the flared angle can also affect the APPT’s performance [14].Otherwise,several measuring methods have been proposed and used to investigate the plasma characteristics in the plume.The optical emission spectroscopy and Mach-Zehnder interferometry were applied to investigate the plasma properties of APPT,the velocity and temperature of plasmas were obtained [15,16].The ultra-high-speed camera and magnetic probe were used to obtain the plasma distribution and density[3,17-19].

    Most of these researches focused on the performance of APPTs and the characteristics of plumes.However,efforts about the plasma morphology between electrodes are somewhat limited.The variation of plasma morphology can present the arc forming process between electrodes,and then reveal the working process of APPT.Due to the short discharge time of a single pulse of APPT,the residence time of plasma between electrodes is very short,it is difficult to record the development of plasma morphology between electroplates.Therefore,this paper adopts a high-speed camera and optical emission spectrum (OES) to investigate the plasma morphology between the electrodes of the APPT.The plasma characteristics including the spatial distribution and composition evolution are experimentally studied,which is helpful to understand the physical mechanism of an APPT with tongue-shaped and flared electrodes.

    2.Experiment

    2.1.Experimental set-up

    The APPT used in experiments is shown in figure 1.The APPT contains a capacitor (capacitance of 10 μF,peak charged voltage of 2000 V),a couple of tongue-shaped electrodes (flared angle of 28°,inter-electrode space of 20 mm,length of 40 mm),and a solid propellant (PTFE).In our experiments,nine uniformly distributed positions between electrodes are chosen for measurement by the OES.With the center of PTFE surface as the origin of the coordinate,the corresponding coordinates of the nine positions are characterized as position 1 (5 mm,10 mm),position 2 (15 mm,10 mm),position 3 (25 mm,10 mm),position 4(5 mm,0),position 5(15 mm,0),position 6(25 mm,0),position 7 (5 mm,?10 mm),position 8 (15 mm,?10 mm),and position 9 (25 mm,?10 mm) respectively,as presented in figure 1.

    Figure 3.Comparison of plume images before and after pseudo-color processing.(a) Before,and (b) after.

    Figure 4.Discharge curves and shutter timings of the high-speed camera.

    In order to experimentally investigate the plasma morphology of APPT,both the high-speed camera and OES are simultaneously adopted in the experiments,as shown in figure 2.The high-speed camera (Model:XXRapidFrame) is produced by Stanford Computer Optics company,with 1360×1024 pixels,minimum shutter time of 0.2 ns,minimum exposure time of 1.2 ns.In these experiments,the exposure time was set to 50 ns which was short enough to freeze the motion of plume during imaging.The OES system consists of the following instruments:(1) the optical fiber(QP600-2-SR),which was used to transmit the optical signals emitted by the discharge between the electrodes to the spectrometer;(2) the spectrometer (Acton SP2300i),which was used to disperse and diffract optical signals;(3)the ICCD camera (PI-MAX2),which was used to collect and enhance the optical signals transmitted from the spectrometer;(4) the controller(ST-133),which was used to control the rotation of the grating and the shutting time of the camera.

    The APPT experiments were carried out in a vacuum chamber with a diameter of 2.4 m and a length of 3 m.The chamber is equipped with a booster pump (Z-300),two oil diffusion pumps (K-900C) and three oil-free claw pumps(4ZBWS-30).The base pressure was less than 5×10?3Pa before the experiments.It is noticeable that the size of the vacuum chamber in the experiments is much larger than the thruster,hence the change of base pressure caused by the thruster working can be ignored.

    2.2.Image processing method

    In our experiments,the images taken by the high-speed camera were gray.In order to improve the visibility of the images and reveal more details of the plasma distribution,the pseudo-color processing method was utilized to transform the gray images to color images.As one of the traditional image enhancement techniques,the pseudo-color processing method has been widely used to convert black-and-white images into color images.The mapping relationships between red,green,blue and gray can be expressed as Figure 3 shows the plume images before and after pseudocolor processing.It can be obviously observed that,the processed images which have better visibility can clearly display the plume morphology and the distribution characteristics of plasmas.

    Figure 5.Variation of plume images with time.(a)0.6 μs,(b)1.6 μs,(c)2.6 μs,(d)3.6 μs,(e)4.6 μs,(f)5.6 μs,(g)6.6 μs,and(h)7.6 μs.

    Figure 6.Spectrograms at positions 5 mm away from the ablation surface.(a) Position 1,(b) position 4,and (c) position 7.

    3.Results and discussion

    3.1.Spatial distribution of plasmas

    The discharge waveforms (voltage and current) and shutter timings are shown in figure 4.The discharge current is monitored with a current monitor(PEARSON Current Sensor 4997),and the discharge voltage is measured using a standard high-voltage probe (Tektronix P5100).The APPT can be assumed to be an RLC circuit,and the discharge waveform is an underdamped oscillation with a period of about 7 μs.During the discharge cycle,the discharge current increased to the maximum value of 12 000 A at 2 μs,and then decreased to 0 at 3.7 μs,afterward,the current increased to 8000 A in the reverse direction.

    Figure 7.Spectrograms at positions 15 mm away from the ablation surface.(a) Position 2,(b) position 5,and (c) position 8.

    In order to record the variation of plume images with time,the plume images between the electrodes of APPT are shown in figure 5,and the time interval between adjacent images is 1 μs.It can be seen in figure 5,the plasmas between the electrodes change periodically,and the plasmas generated at different positions experience different trajectories and states of motion.Once the discharge starts,a layer of plasmas with uniform thickness is formed nearby the ablation surface of the propellant,as shown in figure 5(a).Under the action of the discharge arc,the number of plasmas increases gradually,and the plasmas accelerate and expand with the interaction of the electromagnetic field and aerodynamic force.After that,the thickness of the plasma layer becomes uneven,and two clusters of plasmas are formed near the anode and cathode,meanwhile,the two clusters of plasmas present different velocities and directions,as shown in figure 5(b).The cluster of plasmas near the anode moves towards the cathode with an angle (α) from the horizontal direction,and the cluster of plasmas near the cathode moves towards the anode with an angle (β) from the horizontal direction.The angle α is obviously greater than β,hence the two clusters meet downstream,and the intersection is closer to the cathode,then a cavity is formed near the ablation surface of the propellant and the center of the discharge channel,as shown in figure 5(c).

    In addition,at each measuring position of figure 1,the spectral images are collected every 0.5 μs,and then all the spectral curves are superimposed together to obtain the spectral information of the whole period of each measuring position.Compared with the spectral lines of neutral molecules,the spectral lines of atoms and ions are thinner,and the intensities are higher [20].The spectral lines of atoms and ions can be distinguished more accurately,hence only the spectral lines of atoms and ions are obtained in this experiment.Figure 6 presents the spectra of the discharge width at positions 1,4,and 7 which are 5 mm away from the ablation surface of PTFE.According to the spectral database of the National Institute of Standards and Technology in America,it is found that the plume consists mainly of CI,CII,CII,FI,FII,CuII,and CuIII particles.CI,CII,CII,FI,and FII are generated by the ablation of PTFE,while CuII and CuIII are caused by the ablation of electrodes.By comparing the spectra of positions 1,4,and 7,it can be found that both the plasma species and density at position 1 are the largest,followed by position 4.It means that the plasmas are mainly concentrated on the anode side,and the average density gradually decreases from the anode to the cathode side.Meanwhile,there are many wideband spectral lines near the abode (position 1),which is caused by neutral molecules.This means the ablation of PTFE has mainly occurred near the anode side,which is confirmed by observing the ablation morphology of PTFE.However,there are also differences in the density distribution for different particles,for example,CIII is mainly distributed near the anode,while CII is concentrated in the middle area between the electrodes,and CuII is mainly distributed near the anode.Therefore,in order to improve the life of APPT,the anode needs to be anti-ablation treated.

    Figure 8.Spectrograms at positions 25 mm away from the ablation surface.(a) Position 3,(b) position 6,and (c) position 9.

    Figure 7 shows the spectra of the discharge width at positions 2,5,and 8 which are 15 mm away from the ablation surface of PTFE.Compared with figure 6,it can be seen from figure 7 that the plasma species and density near the anode,the middle position,and the cathode tend to be more uniform.The area at the midpoint between electrodes experiences the largest number of particles and the highest density,followed by the area near the cathode,while the plasma species and average plasma density are lowest in the area near the anode.It has been observed from figure 5 that the plasmas near the anode move towards the cathode with an angle (α),and the plasmas near the cathode move towards the anode with an angle (β).The motion of plasmas results in the difference of plasma species and density at different positions away from the ablation surface of PTFE.Moreover,the plasma clusters gradually expand and diffuse as plasmas move,hence the farther away from the ablation surface,the more uniform the plasmas distribute.

    The spectra of the discharge width at positions 3,6,and 9 which are 25 mm away from the ablation surface of PTFE are given in figure 8.The largest number of plasma species is concentrated at the area of the midpoint between electrodes,next to the cathode side,and the least near the anode.Compared with figures 6 and 7,the average density of plasma tends to be more uniform at the plane 25 mm away from the ablation surface.The average density of plasma at the midpoint between electrodes is slightly larger,and that near the anode and cathode is almost the same.In a word,with the increasing distance from the ablation surface of PTFE,the species of particles tend to be similar,and the average density of plasmas tends to be uniform.

    3.2.Time course of spectra

    Figure 9.Spectral variations at different positions.(a) Position 1,(b) position 2,(c) position 3,(d) position 4,(e) position 5,(f) position 6,(g) position 7,(h) position 8,(i) position 9,and (j) the trajectory of CuII.

    Figure 9 shows the time course of the spectra at different positions,meanwhile,the wavelength of the spectral line of CuII is also presented in the figure.It is found that the variation of spectral intensity at each position shows a certain periodicity,and the change cycles at different positions are approximately the same.However,the occurrence of spectral intensity and the time maximum spectral intensity at different positions is quite different,which is mainly caused by the uneven distribution and the diffusion of plasmas in the discharge channel.Otherwise,the maximum emission spectrum wavelengths are different at different positions,indicating that the compositions of plasma plume are also different at different positions.It can be seen from figure 9 that the ionization is mainly concentrated in the first discharge cycle.At the end of the discharge,both the intensity and the number of the spectral lines decrease significantly,which means the density of atoms and ions decreases.The composition of the plume and the proportion of each component are quite different at different stages of discharge,which is mainly due to the different ionization energy and time required by different particles in the discharge process.By comparing the spectrum evolution processes at different positions with the same distance from the ablation surface,it can be found that the time of occurrences of the spectrum and maximum spectral intensity is different,and the changing law of spectral lines of different wavelengths is also different.These results show that,in the discharge channel,the velocity distribution of plasma is not uniform,and different kinds of plasma particles have different velocities and distributions.

    In addition,during the working process of APPT,the ablation of electrodes is inevitable,which will reduce the life of thruster.Therefore,it is necessary to investigate the generation and distribution of Cu element to reduce the ablation of electrodes.The wavelength of the spectral line of CuII is presented in figure 9.The ablation of electrodes can be obtained by measuring the spectral strength at the intersection of the curve and the spectral lines at each time.At points 1,2 and 4,the CuII occurs at 2.6 μs.At point position 5,the CuII can be observed at both 2.6 μs and 3.6 μs.At point positions 6,8 and 9,the CuII can only be observed at 3.6 μs.At point positions 3 and 7,the CuII has not been observed.Therefore,it can be concluded that the CuII is caused by the ablation of the anode,and then it moves to the downstream of the thruster.Its trajectory can be drawn as shown in figure 9(j).

    4.Conclusions

    In this paper,we use the high-speed camera and optical emission spectroscopy to investigate the composition and spatial distribution of plasmas between the electrodes of APPT.According to the experimental results,the main conclusions are drawn.

    (1) The plasma density changes periodically in the discharge channel of the thruster,and the plasma generated at different positions experiences different trajectories and states of motion.At the beginning of discharge,a uniform plasma layer is formed near the surface of PTFE.As the discharge processing,the thickness of the plasma layer gradually becomes uneven,and two clusters of plasmas near the anode and cathode are formed,then the two clusters meet at a certain distance from the ablation surface.

    (2) The plume between the electrodes is mainly composed of CI,CII,CIII,FI,FII,CuI,CuII,and CuIII.In the plane 5 mm from the ablation surface,the plume near the anode has the largest average plasma density and most types of plasma particles.In the plane 15 mm from the ablation surface,the midpoint between electroplates experiences the largest average plasma density and most types of plasma particles.In the plane 25 mm from the ablation surface,the plasma species and average density are distributed uniform except for the slightly larger density at the midpoint.With the increase of the distance from the ablation surface,the differences of the kinds of particles in the plume become smaller,and the distribution of plasma density tends to be more uniform.

    The study of this paper gives a deeper understanding of the plasma characteristics between the electrodes of APPT,and the conclusion can be used to improve the design of APPT.However,further quantitative data such as the ionization rate,electron temperature,and various component densities are needed.These will possibly be obtained combining with other measuring means.

    Acknowledgments

    The authors would like to thank National Natural Science Foundation of China (No.11772354) for the financial assistance provided for this work.

    猜你喜歡
    張宇張華建軍
    冬天的風(fēng)在說什么
    慶祝建軍95周年
    Three-step self-calibrating generalized phase-shifting interferometry
    年輪
    娛樂圈神秘貴婦,拒絕劉德華后將丈夫捧成巨星
    Spatio-temporal evolution characteristics and pattern formation of a gas–liquid interfacial AC current argon discharge plasma with a deionized water electrode
    白衣天使
    風(fēng)
    無論等多久
    Investigation on plasma characteristics in a laser ablation pulsed plasma thruster by optical emission spectroscopy
    精品久久久久久久毛片微露脸| 国产精品香港三级国产av潘金莲| 精品国产美女av久久久久小说| 黄色女人牲交| cao死你这个sao货| 免费在线观看亚洲国产| 啦啦啦韩国在线观看视频| 国产乱人伦免费视频| 久久精品人妻少妇| 久久婷婷人人爽人人干人人爱| av在线天堂中文字幕| 1024手机看黄色片| 夜夜躁狠狠躁天天躁| 特级一级黄色大片| 国产精品久久久久久亚洲av鲁大| 久久久久性生活片| 亚洲国产色片| 欧美一级a爱片免费观看看| 亚洲色图av天堂| 午夜福利在线在线| 国产黄a三级三级三级人| 成人无遮挡网站| 国产v大片淫在线免费观看| 免费一级毛片在线播放高清视频| 一区二区三区高清视频在线| 色噜噜av男人的天堂激情| 精品久久久久久久毛片微露脸| 两性夫妻黄色片| 精品日产1卡2卡| 天堂av国产一区二区熟女人妻| 激情在线观看视频在线高清| 亚洲国产精品sss在线观看| 国产一区二区在线av高清观看| 99riav亚洲国产免费| 狂野欧美激情性xxxx| 午夜日韩欧美国产| 国产精品久久久久久亚洲av鲁大| 舔av片在线| 99在线视频只有这里精品首页| 高清在线国产一区| 一级黄色大片毛片| av国产免费在线观看| 俄罗斯特黄特色一大片| 国产精品亚洲av一区麻豆| 国产av麻豆久久久久久久| 国产亚洲精品久久久久久毛片| 99re在线观看精品视频| 日韩av在线大香蕉| 亚洲人成伊人成综合网2020| 国产午夜精品论理片| 国内少妇人妻偷人精品xxx网站 | 精品久久久久久久久久久久久| 日本三级黄在线观看| 国产精品永久免费网站| 欧美最黄视频在线播放免费| 中文字幕av在线有码专区| 色综合婷婷激情| 国产亚洲精品av在线| 国产熟女xx| 国产亚洲精品一区二区www| 91九色精品人成在线观看| 香蕉久久夜色| 黑人巨大精品欧美一区二区mp4| 亚洲中文字幕日韩| av天堂在线播放| 久久国产乱子伦精品免费另类| 搡老岳熟女国产| 日本 av在线| 在线免费观看的www视频| 国产欧美日韩精品亚洲av| 麻豆国产97在线/欧美| 最近视频中文字幕2019在线8| 欧美一区二区国产精品久久精品| а√天堂www在线а√下载| 欧美色欧美亚洲另类二区| 亚洲av片天天在线观看| 一级a爱片免费观看的视频| 性色av乱码一区二区三区2| www国产在线视频色| 成人永久免费在线观看视频| 午夜a级毛片| 久久久久久久精品吃奶| 成人三级做爰电影| 亚洲色图av天堂| 久久99热这里只有精品18| 日本 欧美在线| 日本在线视频免费播放| 午夜福利在线观看免费完整高清在 | 精品久久久久久久毛片微露脸| 精品一区二区三区四区五区乱码| 少妇熟女aⅴ在线视频| 精品久久久久久,| 日韩欧美免费精品| 久久草成人影院| 欧美日韩瑟瑟在线播放| 1024香蕉在线观看| 亚洲五月婷婷丁香| 可以在线观看毛片的网站| 老熟妇仑乱视频hdxx| 19禁男女啪啪无遮挡网站| 熟女人妻精品中文字幕| 人人妻人人看人人澡| 91字幕亚洲| 国产精品爽爽va在线观看网站| 久久这里只有精品19| 亚洲中文日韩欧美视频| 18禁黄网站禁片免费观看直播| 国产成人精品无人区| 日韩欧美在线二视频| 一级黄色大片毛片| 久久久久久久午夜电影| 狂野欧美激情性xxxx| 婷婷亚洲欧美| АⅤ资源中文在线天堂| 又爽又黄无遮挡网站| 亚洲va日本ⅴa欧美va伊人久久| 18禁黄网站禁片免费观看直播| 亚洲aⅴ乱码一区二区在线播放| 欧美极品一区二区三区四区| 亚洲精品一卡2卡三卡4卡5卡| 美女黄网站色视频| aaaaa片日本免费| 日韩国内少妇激情av| 久久精品aⅴ一区二区三区四区| 色精品久久人妻99蜜桃| 999久久久精品免费观看国产| 国产免费av片在线观看野外av| 男插女下体视频免费在线播放| 中文字幕久久专区| 人人妻人人澡欧美一区二区| 久久精品91无色码中文字幕| 国产伦精品一区二区三区四那| 91字幕亚洲| 偷拍熟女少妇极品色| 亚洲精品456在线播放app | 青草久久国产| 国产探花在线观看一区二区| 国产av在哪里看| 亚洲av第一区精品v没综合| 国产成人啪精品午夜网站| 久久香蕉精品热| 亚洲熟妇熟女久久| 一卡2卡三卡四卡精品乱码亚洲| av福利片在线观看| 久久久久久久午夜电影| 法律面前人人平等表现在哪些方面| 国产精品亚洲一级av第二区| 国产一区二区三区在线臀色熟女| 久久伊人香网站| 亚洲精品在线美女| 日本免费a在线| 欧美中文综合在线视频| 久久久久久九九精品二区国产| 久久中文字幕一级| 日韩欧美国产在线观看| 午夜影院日韩av| 99国产精品一区二区蜜桃av| 精品国内亚洲2022精品成人| 亚洲自拍偷在线| 男女视频在线观看网站免费| 啦啦啦观看免费观看视频高清| 成人国产一区最新在线观看| 欧美在线一区亚洲| 国产精品电影一区二区三区| av欧美777| 久久性视频一级片| 又黄又粗又硬又大视频| 岛国视频午夜一区免费看| 国产成人aa在线观看| 国产成+人综合+亚洲专区| 热99在线观看视频| 黄色片一级片一级黄色片| 国产伦在线观看视频一区| 亚洲成人精品中文字幕电影| 一本一本综合久久| 国产精品一区二区三区四区免费观看 | 97超视频在线观看视频| 成人性生交大片免费视频hd| 老司机深夜福利视频在线观看| 久久这里只有精品中国| 国产欧美日韩一区二区精品| 婷婷亚洲欧美| 亚洲狠狠婷婷综合久久图片| 日韩欧美在线二视频| 成人av一区二区三区在线看| 日本 欧美在线| 精品国内亚洲2022精品成人| 日韩成人在线观看一区二区三区| 成年人黄色毛片网站| 国产亚洲精品综合一区在线观看| 国产精品免费一区二区三区在线| 国产成人欧美在线观看| 动漫黄色视频在线观看| 日日干狠狠操夜夜爽| 真实男女啪啪啪动态图| 巨乳人妻的诱惑在线观看| 免费观看的影片在线观看| 可以在线观看毛片的网站| 巨乳人妻的诱惑在线观看| 毛片女人毛片| 在线十欧美十亚洲十日本专区| 亚洲激情在线av| 国产成人一区二区三区免费视频网站| 欧美日韩精品网址| 国产一区二区激情短视频| 欧美成人免费av一区二区三区| 亚洲电影在线观看av| 欧美性猛交╳xxx乱大交人| 欧洲精品卡2卡3卡4卡5卡区| 女人高潮潮喷娇喘18禁视频| 久久午夜亚洲精品久久| 亚洲色图av天堂| 亚洲精品国产精品久久久不卡| 99久国产av精品| 亚洲电影在线观看av| 国产精品女同一区二区软件 | 亚洲熟妇中文字幕五十中出| 日韩欧美在线二视频| 国内少妇人妻偷人精品xxx网站 | 日韩精品青青久久久久久| 亚洲黑人精品在线| 亚洲午夜理论影院| www.999成人在线观看| 久久精品国产99精品国产亚洲性色| 中文亚洲av片在线观看爽| 久久久精品欧美日韩精品| 99久国产av精品| 两个人的视频大全免费| 亚洲精华国产精华精| 在线国产一区二区在线| 亚洲18禁久久av| 99久久综合精品五月天人人| 伊人久久大香线蕉亚洲五| 国产精品久久久久久人妻精品电影| 99热精品在线国产| 丰满的人妻完整版| 久久久久国产一级毛片高清牌| 夜夜看夜夜爽夜夜摸| 叶爱在线成人免费视频播放| 国产 一区 欧美 日韩| 亚洲色图av天堂| 久久精品夜夜夜夜夜久久蜜豆| 91在线精品国自产拍蜜月 | 成人18禁在线播放| av天堂中文字幕网| 男女床上黄色一级片免费看| 国产成人aa在线观看| 成人欧美大片| 久久人人精品亚洲av| 偷拍熟女少妇极品色| 桃色一区二区三区在线观看| 欧美绝顶高潮抽搐喷水| 在线视频色国产色| 国产精品久久视频播放| 国产aⅴ精品一区二区三区波| av福利片在线观看| 日韩三级视频一区二区三区| 国产97色在线日韩免费| 成年版毛片免费区| 一进一出好大好爽视频| 操出白浆在线播放| 亚洲av成人一区二区三| 99re在线观看精品视频| 午夜激情欧美在线| 12—13女人毛片做爰片一| 国产精品久久视频播放| 熟妇人妻久久中文字幕3abv| 综合色av麻豆| 亚洲成a人片在线一区二区| 国产精品久久久久久久电影 | 午夜福利成人在线免费观看| 男人舔奶头视频| 亚洲五月婷婷丁香| 手机成人av网站| 听说在线观看完整版免费高清| 夜夜躁狠狠躁天天躁| 草草在线视频免费看| bbb黄色大片| 亚洲电影在线观看av| 色播亚洲综合网| 国产1区2区3区精品| 国产蜜桃级精品一区二区三区| 国产亚洲欧美98| 午夜福利高清视频| 在线观看日韩欧美| 亚洲成人免费电影在线观看| 18美女黄网站色大片免费观看| 特级一级黄色大片| 免费观看人在逋| 国产成人精品久久二区二区免费| 国产一区二区激情短视频| 久久国产精品人妻蜜桃| 真人做人爱边吃奶动态| 老司机午夜福利在线观看视频| 久久久久久九九精品二区国产| 一本久久中文字幕| 亚洲中文字幕日韩| 嫁个100分男人电影在线观看| 亚洲午夜精品一区,二区,三区| 国产精品自产拍在线观看55亚洲| 免费在线观看日本一区| 日韩欧美三级三区| 制服人妻中文乱码| 日本 av在线| 国产v大片淫在线免费观看| av天堂在线播放| 精品熟女少妇八av免费久了| 精品电影一区二区在线| 18禁黄网站禁片午夜丰满| 999精品在线视频| 嫁个100分男人电影在线观看| 精品福利观看| 男女之事视频高清在线观看| 超碰成人久久| 成人午夜高清在线视频| 色老头精品视频在线观看| 在线观看美女被高潮喷水网站 | 麻豆av在线久日| 99国产精品一区二区三区| 嫩草影院精品99| 亚洲 欧美一区二区三区| 深夜精品福利| 午夜久久久久精精品| 99re在线观看精品视频| 99热这里只有精品一区 | 日本撒尿小便嘘嘘汇集6| 精品电影一区二区在线| 国产成人av教育| 麻豆久久精品国产亚洲av| 禁无遮挡网站| 精品一区二区三区视频在线观看免费| 黄片大片在线免费观看| 全区人妻精品视频| 性色avwww在线观看| 免费无遮挡裸体视频| 亚洲av熟女| 少妇熟女aⅴ在线视频| 少妇裸体淫交视频免费看高清| 99久久99久久久精品蜜桃| 视频区欧美日本亚洲| 国产av麻豆久久久久久久| АⅤ资源中文在线天堂| 一级毛片精品| or卡值多少钱| 国产午夜精品论理片| av在线天堂中文字幕| netflix在线观看网站| 欧美性猛交黑人性爽| 国产精品电影一区二区三区| 变态另类丝袜制服| 午夜精品一区二区三区免费看| 丰满人妻一区二区三区视频av | 9191精品国产免费久久| 黄色视频,在线免费观看| 亚洲成av人片在线播放无| 噜噜噜噜噜久久久久久91| 国产1区2区3区精品| 亚洲国产欧美人成| netflix在线观看网站| 亚洲av电影在线进入| 久久久久久久久中文| 成年女人永久免费观看视频| 99久久99久久久精品蜜桃| 噜噜噜噜噜久久久久久91| 日韩欧美在线乱码| 香蕉丝袜av| 特级一级黄色大片| 亚洲国产精品成人综合色| 老熟妇乱子伦视频在线观看| 日韩av在线大香蕉| 国产精品亚洲一级av第二区| 久久久色成人| 久久精品人妻少妇| 欧美丝袜亚洲另类 | 特大巨黑吊av在线直播| 日韩 欧美 亚洲 中文字幕| 人妻久久中文字幕网| 99re在线观看精品视频| 国产av一区在线观看免费| 他把我摸到了高潮在线观看| 精品一区二区三区av网在线观看| 国产一区二区激情短视频| 一区二区三区国产精品乱码| 偷拍熟女少妇极品色| 国产精品99久久久久久久久| 日本免费a在线| 亚洲va日本ⅴa欧美va伊人久久| 亚洲精品中文字幕一二三四区| 757午夜福利合集在线观看| 久久久久久久精品吃奶| 婷婷精品国产亚洲av| 亚洲精品久久国产高清桃花| 999久久久精品免费观看国产| 最近在线观看免费完整版| 久久久久久人人人人人| 99久久精品国产亚洲精品| 久久久国产欧美日韩av| 欧美中文综合在线视频| 亚洲av美国av| 国产精品野战在线观看| 中文字幕熟女人妻在线| 成人永久免费在线观看视频| 啪啪无遮挡十八禁网站| 午夜两性在线视频| 久9热在线精品视频| 成人国产一区最新在线观看| 国产成人欧美在线观看| 婷婷六月久久综合丁香| 国产综合懂色| 国产三级黄色录像| 国产伦在线观看视频一区| 两个人视频免费观看高清| 欧美日韩精品网址| 久久午夜亚洲精品久久| 日韩免费av在线播放| 在线免费观看不下载黄p国产 | 国产高清视频在线播放一区| 亚洲七黄色美女视频| 在线十欧美十亚洲十日本专区| 天天躁日日操中文字幕| 亚洲av五月六月丁香网| 一本久久中文字幕| 91字幕亚洲| 色视频www国产| 天堂影院成人在线观看| 一个人看视频在线观看www免费 | 在线观看免费午夜福利视频| 日本与韩国留学比较| 精品人妻1区二区| 久久午夜综合久久蜜桃| 国产精品久久久久久亚洲av鲁大| 成年人黄色毛片网站| 亚洲欧美精品综合一区二区三区| 欧美性猛交黑人性爽| 中文在线观看免费www的网站| 久久久国产欧美日韩av| 久久久色成人| 亚洲专区国产一区二区| 日本免费a在线| 99精品在免费线老司机午夜| 亚洲 欧美一区二区三区| 国产成人啪精品午夜网站| 日本与韩国留学比较| bbb黄色大片| 国产午夜福利久久久久久| 亚洲黑人精品在线| 免费看光身美女| 最近视频中文字幕2019在线8| 日日夜夜操网爽| 欧美黑人欧美精品刺激| svipshipincom国产片| 亚洲国产精品999在线| 18禁黄网站禁片午夜丰满| 我的老师免费观看完整版| 久久久久九九精品影院| 精品福利观看| 欧美zozozo另类| 日韩国内少妇激情av| 亚洲九九香蕉| 亚洲av中文字字幕乱码综合| 宅男免费午夜| 国产激情久久老熟女| www日本黄色视频网| 国产麻豆成人av免费视频| 99视频精品全部免费 在线 | 国产精品久久久久久久电影 | 波多野结衣巨乳人妻| 在线观看美女被高潮喷水网站 | 久久午夜综合久久蜜桃| 视频区欧美日本亚洲| 在线十欧美十亚洲十日本专区| 日韩高清综合在线| 久久久久久九九精品二区国产| 亚洲一区高清亚洲精品| 欧美午夜高清在线| 亚洲中文日韩欧美视频| 国产精品久久久久久人妻精品电影| 一区二区三区激情视频| 在线观看免费午夜福利视频| av国产免费在线观看| 久久国产精品人妻蜜桃| 最近视频中文字幕2019在线8| 亚洲av五月六月丁香网| 午夜精品久久久久久毛片777| 午夜影院日韩av| 亚洲第一电影网av| 国产精品九九99| 日韩国内少妇激情av| 性色avwww在线观看| 国产乱人视频| 熟女少妇亚洲综合色aaa.| 99热只有精品国产| 9191精品国产免费久久| 久久精品91无色码中文字幕| 大型黄色视频在线免费观看| 熟女少妇亚洲综合色aaa.| 国产高清视频在线观看网站| 韩国av一区二区三区四区| 最近最新免费中文字幕在线| 亚洲专区中文字幕在线| www.精华液| 国产一区二区在线av高清观看| 免费看光身美女| av女优亚洲男人天堂 | 久久久久精品国产欧美久久久| 国产黄a三级三级三级人| 一个人看视频在线观看www免费 | 看免费av毛片| 免费观看人在逋| 亚洲中文字幕日韩| 国产97色在线日韩免费| 日韩欧美三级三区| 国产精品亚洲美女久久久| 国产成人影院久久av| 99国产极品粉嫩在线观看| 欧美国产日韩亚洲一区| 色综合站精品国产| 国产精品一区二区精品视频观看| 亚洲成人久久爱视频| 国产又色又爽无遮挡免费看| 亚洲 欧美一区二区三区| 亚洲性夜色夜夜综合| 99久久99久久久精品蜜桃| 久久天躁狠狠躁夜夜2o2o| 欧美+亚洲+日韩+国产| 午夜成年电影在线免费观看| 成人特级av手机在线观看| 国产精品99久久99久久久不卡| 女警被强在线播放| avwww免费| 国产激情偷乱视频一区二区| 性色av乱码一区二区三区2| 国产极品精品免费视频能看的| xxxwww97欧美| 97超视频在线观看视频| 欧美绝顶高潮抽搐喷水| 麻豆国产av国片精品| 美女免费视频网站| 欧美最黄视频在线播放免费| 欧美在线一区亚洲| 91字幕亚洲| 成人18禁在线播放| 亚洲性夜色夜夜综合| 全区人妻精品视频| 国产成人欧美在线观看| 一二三四社区在线视频社区8| 在线十欧美十亚洲十日本专区| 精品一区二区三区视频在线 | 51午夜福利影视在线观看| 成人特级黄色片久久久久久久| 夜夜夜夜夜久久久久| 亚洲av免费在线观看| 国产免费男女视频| 久久久国产成人免费| 国产精品香港三级国产av潘金莲| 精品久久久久久久人妻蜜臀av| 男女视频在线观看网站免费| 欧美又色又爽又黄视频| 亚洲天堂国产精品一区在线| 欧美日韩乱码在线| 12—13女人毛片做爰片一| 狂野欧美激情性xxxx| 哪里可以看免费的av片| 网址你懂的国产日韩在线| 真人一进一出gif抽搐免费| 啦啦啦免费观看视频1| 日日夜夜操网爽| 最近最新免费中文字幕在线| 亚洲真实伦在线观看| 国产高清三级在线| 男女之事视频高清在线观看| 久久久久久人人人人人| 亚洲第一电影网av| 精品国产乱码久久久久久男人| 色哟哟哟哟哟哟| 欧美另类亚洲清纯唯美| 淫秽高清视频在线观看| 久久精品91蜜桃| 老司机福利观看| 日本 av在线| 91在线观看av| 一本一本综合久久| 日本 av在线| 在线观看舔阴道视频| 美女cb高潮喷水在线观看 | 夜夜躁狠狠躁天天躁| 欧美在线一区亚洲| av天堂在线播放| 夜夜躁狠狠躁天天躁| 亚洲黑人精品在线| 免费看a级黄色片| 午夜精品一区二区三区免费看| 亚洲黑人精品在线| 亚洲精品一区av在线观看| 国内精品久久久久精免费| 男女视频在线观看网站免费| 人人妻人人澡欧美一区二区| 日韩大尺度精品在线看网址| 男女视频在线观看网站免费| 国产野战对白在线观看| 日日夜夜操网爽| www.www免费av| 精品久久久久久,| 丁香六月欧美| 一个人观看的视频www高清免费观看 | 亚洲精品色激情综合| 亚洲午夜精品一区,二区,三区| 免费在线观看亚洲国产| 亚洲精品美女久久久久99蜜臀| 亚洲精品一卡2卡三卡4卡5卡| 国产69精品久久久久777片 | 欧美日韩瑟瑟在线播放| 国内精品久久久久久久电影| 亚洲国产欧洲综合997久久,| 免费无遮挡裸体视频|