• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Design, Synthesis, and Biological Activity of Novel Aromatic Amide Derivatives Containing Sulfide and Sulfone Substructures

    2020-09-12 03:22:54XuewenHuNnnnLiuShZhouLeileiZhngHoYinGuiqingWngZhijinFnYi
    Engineering 2020年5期

    Xuewen Hu*, Nnnn Liu Sh Zhou, Leilei Zhng Ho Yin Guiqing Wng Zhijin Fn, Yi M

    a College of Agronomy, Liaocheng University, Liaocheng 252000, China

    b Collaborative Innovation Center of Zhejiang Province for Green Pesticide, School of Forestry and Bio-technology, Zhejiang A&F University, Hangzhou 311300, China

    c State Key Laboratory of Elemento-Organic Chemistry, Tianjin Collaborative Innovation Center of Chemical Science and Engineering, Nankai University, Tianjin 300071, China

    Keywords:Synthesis Nematicidal activity Fungicidal activity Molecular docking

    A B S T R A C T In recent years, the damage caused by soil nematodes has become increasingly serious; however, the varieties and structures of the nematicides available on the market are deficient.Fluopyram,a succinate dehydrogenase inhibitor (SDHI) fungicide developed by Bayer AG in Germany, has been widely used in the prevention and control of soil nematodes due to its high efficiency and novel mechanism of action.In this paper, two series of novel target compounds were designed and synthesized with nematicidal and fungicidal fluopyram as the molecular skeleton in order to introduce sulfide and sulfone substructures. The structures were identified and characterized by 1H nuclear magnetic resonance (NMR), 13C NMR, and high-resolution mass spectrometer (HRMS). The bioassays revealed that most of the compounds showed excellent nematicidal activities at 200 μg·mL-1 in comparison with fluopyram, while the nematode mortality rate dropped sharply at 100 μg·mL-1, except for compounds I-11 and II-6. In terms of fungicidal activity, compound I-9 was discovered to have an excellent inhibitory rate, and a molecular docking simulation was performed that can provide important guidance for the design and exploration of efficient fungicidal lead compounds.

    1. Introduction

    In recent years,the harm caused by soil nematodes has become increasingly serious. In particular, there have been outbreaks of damage from root-knot nematodes in some areas [1,2]. The chemical control agents that are widely available on the market are mainly fosthiazate and avermectin B2a (Fig. 1). Traditional highly toxic or virulent nematicides, such as the carbamates aldicarb, carbofuran, and oxamyl, the organophosphates fenamiphos,cadusafos, fensulfothion, and so forth, have been banned or restricted in China. Early fumigants such as methyl bromide have also been phased out due to the destruction of the ozone layer.

    Research on new nematicides is extremely significant in the prevention and control of soil nematodes. At present, nematicidal active ingredients are generally developed by screening existing insecticides, herbicides, or fungicides; however, this process results in the slow development of new nematicides and insufficient control agents for nematodes. Recently, some agrochemical companies have reported several new nematicidal active ingredients (Fig. 2); one of these, fluopyram, is a new amide nematicide that was successfully developed by Bayer AG in Germany and that has also been used as a broad-spectrum fungicide [3-6]. Its mechanism of action is to inhibit succinate dehydrogenase (SDH)in the respiratory electron transport chain of mitochondria [7].Other nematicidal amide structures have been subsequently reported (Fig. 3) [8-14].

    Plant diseases have been recognized as a worldwide threat to crop production, and the use of fungicides has been, is, and will remain critical for the effective control of most plant diseases in agriculture [15]. Among the more than 224 fungicides listed by the Fungicide Resistance Action Committee, the succinate dehydrogenase inhibitor (SDHI) class is the fastest growing in terms of new compounds produced and launched onto the market [16].Thus far,23 commercial SDHI fungicides—of which fluopyram possesses a unique amide bridge—have been approved for plant protection since the first launch of carboxin in 1966, and have been extensively applied to combat destructive plant fungi, such as Sclerotinia sclerotiorum, Rhizoctonia solani (RS), and Botrytis cinerea(BC) [17,18].

    Fig. 1. Chemical structures of fosthiazate and avermectin B2a.

    Fig. 2. Recently developed nematicidal active ingredients.

    Fig. 3. Structures of reported nematicidal amide compounds. Het: substituted aromatic heterocycles.

    In the present paper, considering that most of the new nematicidal structures reported above have heterocyclic, sulfide, sulfone, and amide substructures [19,20], while the synthetic procedures of fluopyram involve high-temperature deacidification or high-pressure reduction [21], two series of target compounds were designed and synthesized by introducing sulfide, sulfone, and various aromatic rings into the molecular skeleton of fluopyram (Fig. 4) [19,20]. The synthetic routes for the target compounds I-1 to I-12 and II-1 to II-12,and for the intermediate 4a, are displayed in Fig. 5, and have the advantages of convenient synthesis, simple post-processing,and high yield.

    Fig. 5. Synthetic route of the target compounds. (a) Organic synthetic route of the target compounds; (b) the structures of different substituted aromatic rings. DMF: N,Ndimethylformamide; mCPBA: meta-chloroperoxybenzoic acid; RT: room temperature; Et: ethyl.

    2. Materials and methods

    2.1. Reagents and instruments

    All reaction reagents were of analytical grade.Melting points for target compounds were determined on an X-4 binocular microscope (Gongyi Tech. Instrument Co., China).1H and13C nuclear magnetic resonance (NMR) was performed using a Bruker AV-400 spectrometer (400 MHz), and chemical-shift values (δ) were reported as parts per million (ppm) with tetramethylsilane as the internal standard. Mass spectra were recorded using a highresolution mass spectrometer (HRMS) (Varian 7.0 T FTMS, Agilent Technologies,USA).Column chromatography purification was carried out using silica gel (200-300 mesh).

    2.2. Synthesis of target compounds

    The intermediate 3 and 4a and the target compounds I-1 to I-12 and II-1 to II-12 were prepared according to previously reported methods [8,22,23]. The corresponding synthetic procedures and characterization data are available in the Supplementary data.

    2.3. Biological activity screening

    The nematicidal activities of the target compounds against Meloidogyne incognita were screened and evaluated with reference to the literature [24,25]. Eggs of Meloidogyne incognita were extracted from the infected roots of tomato(Solanum lycopersicum L.) into a solution of sodium hypochlorite (NaOCl). To obtain second-stage juveniles(J2),the eggs were spread on a mesh nylon filter(openings 30 μm in diameter)in a Petri dish containing water and incubated at 25°C. Emerging J2 individuals that passed through the filter were collected daily and used for bioassays immediately. The stock solution was prepared by dissolving the target compounds in dimethyl sulfoxide and diluting with 0.1%Tween-80 aqueous solution. The test solutions were introduced into the wells of 24-well tissue culture plates. In each well, the concentration of nematodes was approximately 100 juveniles of Meloidogyne incognita per 1 mL of water. The plates were covered and maintained at (25 ± 1)°C, and each treatment was replicated three times. Nematode mortality was observed under a stereomicroscope after 24 h.Nematodes were classified as dead if their bodies were motionless (i.e., straight) even after being transferred to clean water for 12 h.

    In addition, considering the fungicidal activity of the reference molecule fluopyram, the in vitro fungicidal inhibition rates of the target compounds were investigated using a mycelia growth inhibition method, as previously reported [26]. Common agricultural pathogens, including RS, Gibberella zeae (GZ), Physalospora piricola(PP),Cercospora circumscissa Sacc.(CS),Alternaria kikuchiana Tanaka(AK), BC, Colletotrichum capsici (CC), and Phomopsis vexans (PV),were taken as the test objects.

    2.4. Molecular docking

    The Surflex-Dock method[27]was applied to study the binding mode of the target compound I-9, which displayed an excellent fungicidal inhibition rate,with SDH while using the SYBYL 6.9 software package.The literature [7]reports that fluopyram is an SDHI that specifically binds to the ubiquinone-binding site (Q-site) of the mitochondrial SDH. Compound I-9 and fluopyram were manually docked into the active Q-site in Escherichia coli SDH based on the binding positions at the Q-site for ubiquinone in Escherichia coli SDH[28],which were retrieved from the RCSB Protein Data Bank (PDB ID: 1NEK). The receptor and the ligand molecule were prepared using standard procedures.

    3. Results and discussion

    3.1. Synthetic chemistry

    The key intermediate 3 and the target compounds I-1 to I-12 and II-1 to II-12 were designed and synthesized according to the procedures reported in the Supporting data. The acyl chloride 2 was prepared through the chlorination reaction of aromatic formic acid, and then converted to amide 3 by a reaction with 2-chloroethylamine hydrochloride. The aromatic thiophenol 4 was obtained from either the market or laboratory preparation; of these compounds, 3-chloro-5-(trifluoromethyl)pyridine-2-thiol(4a) was synthesized by the nucleophilic substitution of 2,3-dichloro-5-(trifluoromethyl)pyridine and sodium hydrosulfide.Finally, the N-(2-chloroethyl)aromatic amide 3 and thiophenol 4 were reacted to generate the target compounds I-1 to I-12, which were oxidized with meta-chloroperoxybenzoic acid (mCPBA) to yield the products II-1 to II-12. Surprisingly, the sulfur atom on the thiazole ring of compounds I-4, I-8, and I-12 was oxidized to sulfoxide to yield II-4, II-8, and II-12, respectively, under excess mCPBA conditions. The advantages of this result were that the introduction of the sulfide substructure made the synthesis of the target compounds more convenient and faster than that of the control fluopyram,and avoided the reaction conditions of high temperature and high pressure. Subsequently, all target compounds were identified and characterized by1H NMR,13C NMR,and HRMS. Several unique structural characteristics were also revealed via the crystal structure of compound I-3 (CCDC Number 1830647, Fig. 6).

    The rich girl sat at her door dressed out in all her best clothes, and when the King s son came near she got up, went to meet him, and made him a low curtsey

    3.2. Biological activity

    The nematicidal activities of the target compounds against Meloidogyne incognita, with fluopyram as a positive control, are shown in Table 1. According to the data, most compounds displayed excellent nematicidal activity at a concentration of 200 μg·mL-1, in comparison with fluopyram, except compound I-2. When the test concentration was reduced to 100 μg·mL-1, the nematicidal activities of the target compounds changed greatly,and most showed lower mortality. However, compounds I-11 and II-6 still exhibited good nematicidal activity at 100 μg·mL-1,with mortalities of 75% and 70%, respectively, and therefore provide a valuable guide for the further exploration of potential efficient nematicidal lead compounds. In addition, there was little difference in the mortality rates between the sulfide and sulfone substructures.

    Considering the fungicidal activity of the reference molecule,fluopyram,the fungicidal inhibition rates of the target compounds were further measured. The results are shown in Table 2. According to the data, most of the target compounds showed extremely weak fungicidal activity in comparison with fluopyram, except for compound I-9,whose inhibition rates were almost comparable to those of the control. Furthermore, similar to the nematicidal activity, there was no significant difference in the inhibitory activity between the sulfide and sulfone substructures. Based on the above results,the introduction of sulfide and sulfone substructures and the replacement of the heterocyclic rings had a great influence on the fungicidal activities of the target compounds,perhaps due to the effect of the change in length of the amide bridge in the compounds’ favorable conformations. These results will provide important guidance for subsequent molecular designs of exploring and developing potential fungicidal lead compounds.

    To further explore the fungicidal activity of compound I-9, the corresponding half maximal effective concentration (EC50) values of compound I-9 and fluopyram were estimated,and are displayed in Table 3. It can be concluded that compound I-9 and fluopyram have a poor inhibitory effect on Gibberella zeae. Compared with fluopyram, compound I-9 exhibits relatively weak inhibitory activities. However, as a whole, compound I-9 shows excellent fungicidal activity against BC, CC, and PV, compared with other pathogens.

    3.3. Molecular docking simulation

    The literature [7] reports that the mechanism of action for the fungicidal and nematicidal agent fluopyram involves acting on complex II of the mitochondrial respiratory electron transport chain—namely, SDH or succinate coenzyme Q reductase (SQR).Although the composite crystal structures of fluopyram and the target enzyme SDH have not been reported in the protein database(RCSB PDB),it has been pointed out[28]that amide fungicides acting on SDH specifically bind to the coenzyme Q-site on complex II.Therefore, a careful investigation of the binding pattern of ligands provided a few specific points, which were helpful for correlating in vitro fungicidal data.

    Fig. 6. The crystal structure of compound I-3.

    Table 1 Nematicidal activity of target compounds against Meloidogyne incognita.

    Table 2 Fungicidal activity of target compounds at 100 μg·mL-1.

    Table 3 EC50 values of compound I-9 and fluopyram.

    The Surflex-Dock method (SYBYL software) was used to simulate the interaction between compound I-9, fluopyram, and Escherichia coli SDH (PDB code: 1NEK), respectively (Fig. 7). From the data, it was concluded that the carbonyl oxygen on the amide and the fluorine atoms on the ortho-trifluoromethyl group of fluopyram facilitated the formation of hydrogen bonds with the amino acid residues B/TRP-164, D/TYR-83, and C/ARG-31 at the Q-site on the target enzyme,which helped to improve the fungicidal activity. Furthermore, the trifluoromethyl group was on the same side of the amide bridge as the carbonyl oxygen, and the two conformed to form hydrogen bonds with the amino acid residue TRP-164 together (Fig. 7(a)).

    Fig. 7. (a) The binding mode of fluopyram to Escherichia coli SDH (PDB code: 1NEK); (b) the binding mode of compound I-9 to Escherichia coli SDH; (c) the superposed conformation of fluopyram and compound I-9; (d) the docking pocket of compound I-9 to Escherichia coli SDH, TYP, TRP, ARG, HIS, SER: amino acid residue.

    When 3-(difluoromethyl)-1-methyl-1H-pyrazole was introduced into the amide bridge, the presence of the fluorine atoms on the ortho-difluoromethyl group of the amide contributed to the formation of hydrogen bonds with the amino acid residues,which was consistent with the hydrogen bond interaction when using fluopyram. Considering the excellent fungicidal activity and structural characteristics of fluopyram and the target compound I-9, combined with the docking results, it was concluded that the presence of the amide and its ortho-fluorinated groups had an important role in the fungicidal activity. On the other hand, the introduction of different aromatic rings in the aromatic sulfide moiety and the change in the length of the amide bridge had a great influence on the biological activity.

    4. Conclusion

    In summary, 24 novel target compounds were designed and synthesized by introducing sulfide and sulfone substructures into fluopyram.The bioassays indicated that the structural modification of the target compounds had different effects on the compounds’nematicidal and fungicidal activities.Although the synthetic routes for the target compounds were optimized through the introduction of sulfide and sulfone, the biological activities were greatly affected. Through the replacement of various heterocycles, compounds I-11 and II-6 with good nematicidal activity and compound I-9 with excellent fungicidal activity were discovered; combined with the molecular docking results, these results provide important guidance for further structural optimization.

    Acknowledgements

    This work was financially supported by the Natural Science Foundation of Shandong Province, China (ZR2017BC053), and the Doctoral Research Startup Foundation of Liaocheng University(318051625).

    Compliance with ethics guidelines

    Xuewen Hua, Nannan Liu, Sha Zhou, Leilei Zhang, Hao Yin,Guiqing Wang, Zhijin Fan, and Yi Ma declare that they have no conflict of interest or financial conflicts to disclose.

    Appendix A. Supplementary data

    Supplementary data to this article can be found online at https://doi.org/10.1016/j.eng.2019.09.011.

    国产国拍精品亚洲av在线观看| 中文欧美无线码| 你懂的网址亚洲精品在线观看| 大陆偷拍与自拍| 成年美女黄网站色视频大全免费 | 亚洲,一卡二卡三卡| 在线观看美女被高潮喷水网站| 国产视频首页在线观看| 18禁在线播放成人免费| 丝袜美足系列| 51国产日韩欧美| 成人午夜精彩视频在线观看| 亚洲丝袜综合中文字幕| 国产色婷婷99| 国产精品人妻久久久久久| 国产精品.久久久| 波野结衣二区三区在线| 精品少妇黑人巨大在线播放| 欧美变态另类bdsm刘玥| 丝袜喷水一区| 男女无遮挡免费网站观看| 国产精品久久久久久精品古装| 一区二区三区乱码不卡18| 日本欧美国产在线视频| 性色avwww在线观看| 免费观看的影片在线观看| 中文乱码字字幕精品一区二区三区| 黄色视频在线播放观看不卡| 免费黄色在线免费观看| 999精品在线视频| 午夜精品国产一区二区电影| 高清在线视频一区二区三区| 国产亚洲精品第一综合不卡 | 边亲边吃奶的免费视频| 日韩av免费高清视频| 国产亚洲精品久久久com| 涩涩av久久男人的天堂| 美女脱内裤让男人舔精品视频| 一区二区av电影网| 丰满少妇做爰视频| 日本91视频免费播放| 99精国产麻豆久久婷婷| 色婷婷av一区二区三区视频| 一级毛片我不卡| av黄色大香蕉| 一级毛片黄色毛片免费观看视频| 18禁裸乳无遮挡动漫免费视频| 亚洲成人手机| 欧美成人午夜免费资源| 免费高清在线观看日韩| 女人精品久久久久毛片| 夜夜骑夜夜射夜夜干| 在线观看人妻少妇| 日本-黄色视频高清免费观看| 日韩大片免费观看网站| 女性被躁到高潮视频| 在线观看一区二区三区激情| av.在线天堂| 国产精品国产三级国产av玫瑰| av电影中文网址| 丁香六月天网| 午夜福利在线观看免费完整高清在| 久久久久视频综合| 国产精品久久久久久精品电影小说| 亚洲第一av免费看| 成人毛片a级毛片在线播放| 高清av免费在线| 亚洲国产色片| 免费人成在线观看视频色| 91久久精品电影网| 国产亚洲最大av| 午夜激情福利司机影院| 尾随美女入室| 日韩中字成人| 好男人视频免费观看在线| 久久久久久久久久久丰满| 夫妻性生交免费视频一级片| 成人国语在线视频| 热99国产精品久久久久久7| 国产高清三级在线| 男女免费视频国产| a级毛片免费高清观看在线播放| 久久人人爽人人片av| 蜜桃在线观看..| 国产精品偷伦视频观看了| 人人妻人人添人人爽欧美一区卜| 欧美 日韩 精品 国产| 九草在线视频观看| 亚洲综合色惰| 99久国产av精品国产电影| 在线观看一区二区三区激情| 亚洲av欧美aⅴ国产| √禁漫天堂资源中文www| 黄色视频在线播放观看不卡| 久久久欧美国产精品| 亚洲欧美一区二区三区黑人 | 国产黄频视频在线观看| 日韩成人av中文字幕在线观看| 人妻系列 视频| 国产成人午夜福利电影在线观看| 国产一区二区三区av在线| 国产黄片视频在线免费观看| 九九爱精品视频在线观看| 少妇高潮的动态图| 女人精品久久久久毛片| 简卡轻食公司| 国产伦理片在线播放av一区| 成人国产麻豆网| 欧美精品一区二区免费开放| 黑人欧美特级aaaaaa片| 国产精品久久久久久久久免| 精品酒店卫生间| www.色视频.com| av.在线天堂| 一区二区av电影网| av不卡在线播放| 日韩一区二区视频免费看| 18在线观看网站| 精品少妇久久久久久888优播| 九九爱精品视频在线观看| 夜夜看夜夜爽夜夜摸| 少妇的逼好多水| 少妇人妻精品综合一区二区| 亚洲精品美女久久av网站| 亚洲综合色惰| 黄色视频在线播放观看不卡| 午夜福利,免费看| 少妇被粗大猛烈的视频| 国语对白做爰xxxⅹ性视频网站| 美女中出高潮动态图| 日产精品乱码卡一卡2卡三| 久久精品久久精品一区二区三区| 高清在线视频一区二区三区| 人人妻人人爽人人添夜夜欢视频| 免费观看av网站的网址| 美女大奶头黄色视频| 亚洲一区二区三区欧美精品| 国产精品一国产av| 草草在线视频免费看| 亚洲av成人精品一二三区| 日韩不卡一区二区三区视频在线| 欧美日韩精品成人综合77777| 亚洲精品乱久久久久久| 欧美日韩视频高清一区二区三区二| av国产久精品久网站免费入址| 亚洲四区av| 久久久久久人妻| 国产日韩欧美在线精品| www.av在线官网国产| 永久免费av网站大全| 国产精品成人在线| 777米奇影视久久| 高清午夜精品一区二区三区| 国产一区亚洲一区在线观看| 国产乱来视频区| 亚洲在久久综合| 日韩制服骚丝袜av| 欧美日韩av久久| 久久亚洲国产成人精品v| 欧美bdsm另类| 男人爽女人下面视频在线观看| 久久亚洲国产成人精品v| 少妇人妻 视频| 老司机亚洲免费影院| 午夜免费男女啪啪视频观看| 日韩不卡一区二区三区视频在线| 熟女人妻精品中文字幕| 黄色一级大片看看| 日韩中文字幕视频在线看片| 久久精品久久久久久久性| 黄色一级大片看看| 自拍欧美九色日韩亚洲蝌蚪91| 日韩一区二区三区影片| 久久久国产精品麻豆| 高清av免费在线| 婷婷成人精品国产| 亚洲欧美精品自产自拍| 亚洲av电影在线观看一区二区三区| 久久久久久人妻| 成人毛片60女人毛片免费| 免费大片18禁| 亚洲av成人精品一区久久| 超色免费av| 美女内射精品一级片tv| 国产成人午夜福利电影在线观看| 日本vs欧美在线观看视频| 最近2019中文字幕mv第一页| 久久久国产精品麻豆| 亚洲精品乱久久久久久| 亚洲精品中文字幕在线视频| 制服丝袜香蕉在线| av在线播放精品| 亚洲三级黄色毛片| 欧美bdsm另类| 亚洲欧美一区二区三区国产| 色94色欧美一区二区| 一边亲一边摸免费视频| 国产欧美日韩一区二区三区在线 | 亚洲欧美中文字幕日韩二区| 久久久久久久久久久免费av| a级毛片免费高清观看在线播放| 99热这里只有精品一区| 91午夜精品亚洲一区二区三区| 91精品伊人久久大香线蕉| 99久久精品一区二区三区| 亚洲色图 男人天堂 中文字幕 | 人妻系列 视频| 欧美日韩综合久久久久久| 中文字幕最新亚洲高清| 国产亚洲av片在线观看秒播厂| freevideosex欧美| 日韩免费高清中文字幕av| 国产伦理片在线播放av一区| xxx大片免费视频| 婷婷色av中文字幕| 91久久精品电影网| videossex国产| 考比视频在线观看| 国产成人91sexporn| 99热全是精品| 狠狠婷婷综合久久久久久88av| 9色porny在线观看| 国产成人精品一,二区| 制服诱惑二区| 国产黄色视频一区二区在线观看| 精品国产一区二区三区久久久樱花| 一区二区av电影网| 欧美日韩av久久| 国产精品.久久久| 丰满乱子伦码专区| av在线老鸭窝| 3wmmmm亚洲av在线观看| 一级黄片播放器| 国产高清不卡午夜福利| 日本av手机在线免费观看| 亚洲三级黄色毛片| 久久久久久伊人网av| 韩国高清视频一区二区三区| 国产成人精品无人区| 亚洲精品久久午夜乱码| 日韩欧美一区视频在线观看| 亚洲伊人久久精品综合| 在线观看www视频免费| 日本黄大片高清| 久久97久久精品| 久久这里有精品视频免费| 国产av一区二区精品久久| 亚洲精品日韩av片在线观看| 午夜激情福利司机影院| 亚洲欧美精品自产自拍| 18禁在线无遮挡免费观看视频| 国产精品人妻久久久久久| 色吧在线观看| 九九爱精品视频在线观看| 2022亚洲国产成人精品| 亚洲国产色片| 夫妻性生交免费视频一级片| 视频中文字幕在线观看| 少妇被粗大的猛进出69影院 | 国产视频首页在线观看| 国产色婷婷99| www.色视频.com| 婷婷色av中文字幕| 日韩av不卡免费在线播放| 大片免费播放器 马上看| 日日摸夜夜添夜夜添av毛片| 午夜激情久久久久久久| 美女视频免费永久观看网站| 日产精品乱码卡一卡2卡三| 99久国产av精品国产电影| 久久精品人人爽人人爽视色| 欧美日韩视频高清一区二区三区二| 久久精品熟女亚洲av麻豆精品| www.色视频.com| 嘟嘟电影网在线观看| 久久久亚洲精品成人影院| 亚洲精品国产av成人精品| 国产欧美亚洲国产| 国产综合精华液| 久久这里有精品视频免费| 日韩大片免费观看网站| 亚洲图色成人| 婷婷色综合大香蕉| 亚洲精品成人av观看孕妇| 中文字幕人妻丝袜制服| 亚洲国产最新在线播放| videosex国产| 亚洲精品av麻豆狂野| 在线播放无遮挡| 777米奇影视久久| 高清在线视频一区二区三区| 亚洲欧美成人综合另类久久久| 国产片特级美女逼逼视频| 国产伦理片在线播放av一区| 日韩av在线免费看完整版不卡| 亚洲av.av天堂| 日韩成人av中文字幕在线观看| 三上悠亚av全集在线观看| 亚洲人成77777在线视频| 又粗又硬又长又爽又黄的视频| 国产亚洲精品久久久com| 国产成人精品一,二区| 成人免费观看视频高清| 国产伦精品一区二区三区视频9| 美女国产高潮福利片在线看| 欧美日韩一区二区视频在线观看视频在线| videossex国产| 九草在线视频观看| 久久97久久精品| 亚洲性久久影院| 欧美另类一区| 99久久精品一区二区三区| 大码成人一级视频| 又黄又爽又刺激的免费视频.| 九九久久精品国产亚洲av麻豆| 女的被弄到高潮叫床怎么办| 亚洲精品日韩av片在线观看| 婷婷成人精品国产| 男人操女人黄网站| 国产精品久久久久久精品古装| 最新的欧美精品一区二区| 精品一区二区三区视频在线| 亚洲欧美精品自产自拍| 插阴视频在线观看视频| 精品国产一区二区三区久久久樱花| 国产成人免费无遮挡视频| 久久久久久久久久成人| 国产综合精华液| 欧美老熟妇乱子伦牲交| 免费久久久久久久精品成人欧美视频 | 国产精品久久久久成人av| 色网站视频免费| 91精品国产国语对白视频| 不卡视频在线观看欧美| 亚洲精品久久成人aⅴ小说 | 一边摸一边做爽爽视频免费| 这个男人来自地球电影免费观看 | 欧美bdsm另类| 精品99又大又爽又粗少妇毛片| 国产 一区精品| 国产日韩欧美视频二区| 久久久午夜欧美精品| 国产精品99久久99久久久不卡 | 晚上一个人看的免费电影| 免费人妻精品一区二区三区视频| 国产乱来视频区| 国产黄色免费在线视频| 最近的中文字幕免费完整| 精品人妻偷拍中文字幕| 国产精品一区www在线观看| 人成视频在线观看免费观看| 下体分泌物呈黄色| 日韩av在线免费看完整版不卡| 黄色视频在线播放观看不卡| 亚洲精品亚洲一区二区| a级毛色黄片| 婷婷色麻豆天堂久久| 狂野欧美激情性bbbbbb| 伊人亚洲综合成人网| 下体分泌物呈黄色| 亚洲精品视频女| 51国产日韩欧美| 91午夜精品亚洲一区二区三区| 亚洲欧美一区二区三区国产| 欧美亚洲 丝袜 人妻 在线| 亚洲欧美日韩另类电影网站| 国产黄频视频在线观看| 如何舔出高潮| 免费观看a级毛片全部| 美女视频免费永久观看网站| 久久久久精品久久久久真实原创| 久久精品国产a三级三级三级| 日韩制服骚丝袜av| 丝袜喷水一区| 免费久久久久久久精品成人欧美视频 | 亚洲美女搞黄在线观看| 亚洲综合色惰| 免费少妇av软件| 自拍欧美九色日韩亚洲蝌蚪91| 久久国产精品男人的天堂亚洲 | 亚洲国产色片| 这个男人来自地球电影免费观看 | 少妇人妻久久综合中文| 亚洲少妇的诱惑av| 777米奇影视久久| 精品一区二区三卡| 国产亚洲最大av| 免费看不卡的av| 一级片'在线观看视频| 最近中文字幕2019免费版| 国产精品欧美亚洲77777| 免费黄频网站在线观看国产| 亚洲色图 男人天堂 中文字幕 | 久久人人爽av亚洲精品天堂| 成年女人在线观看亚洲视频| 这个男人来自地球电影免费观看 | 国产成人午夜福利电影在线观看| 成人18禁高潮啪啪吃奶动态图 | 多毛熟女@视频| 少妇的逼水好多| 国产视频首页在线观看| 十八禁网站网址无遮挡| 热re99久久国产66热| 丝袜喷水一区| 九色成人免费人妻av| 成人午夜精彩视频在线观看| 天堂8中文在线网| 国产欧美亚洲国产| 亚洲国产最新在线播放| 天天操日日干夜夜撸| 国产成人aa在线观看| 亚洲精品久久久久久婷婷小说| 国产69精品久久久久777片| 哪个播放器可以免费观看大片| 亚洲精品国产av蜜桃| 菩萨蛮人人尽说江南好唐韦庄| 97在线人人人人妻| 日韩中文字幕视频在线看片| 中文字幕久久专区| 国产精品欧美亚洲77777| 97超碰精品成人国产| 亚洲情色 制服丝袜| 成年人免费黄色播放视频| 久久 成人 亚洲| 最近中文字幕2019免费版| 热99国产精品久久久久久7| 22中文网久久字幕| 亚洲精品中文字幕在线视频| 极品人妻少妇av视频| 一级爰片在线观看| 男女高潮啪啪啪动态图| 国产在线视频一区二区| 少妇猛男粗大的猛烈进出视频| 99国产综合亚洲精品| 中文乱码字字幕精品一区二区三区| 久久免费观看电影| 国产精品久久久久久久久免| 国产成人免费观看mmmm| 亚洲丝袜综合中文字幕| 观看美女的网站| 日韩,欧美,国产一区二区三区| 久久韩国三级中文字幕| 狠狠婷婷综合久久久久久88av| 国产精品久久久久久精品电影小说| 最新的欧美精品一区二区| 亚洲国产欧美日韩在线播放| 日日撸夜夜添| 欧美日韩成人在线一区二区| 婷婷色av中文字幕| 色婷婷av一区二区三区视频| 亚洲精品久久成人aⅴ小说 | 国产精品国产av在线观看| 视频中文字幕在线观看| 亚洲成人av在线免费| 在现免费观看毛片| 久久99蜜桃精品久久| 自线自在国产av| 亚洲精品乱久久久久久| 热99久久久久精品小说推荐| 一二三四中文在线观看免费高清| 亚洲欧美精品自产自拍| 国产亚洲一区二区精品| 亚洲伊人久久精品综合| 两个人免费观看高清视频| 色视频在线一区二区三区| .国产精品久久| 色婷婷久久久亚洲欧美| 国产精品成人在线| av黄色大香蕉| 伦理电影免费视频| 国产精品一区二区三区四区免费观看| 国内精品宾馆在线| 久久久午夜欧美精品| 久久久久久久国产电影| 精品久久蜜臀av无| 亚洲国产精品999| 嫩草影院入口| 国产永久视频网站| 久热久热在线精品观看| 18禁裸乳无遮挡动漫免费视频| 欧美变态另类bdsm刘玥| 卡戴珊不雅视频在线播放| 天堂中文最新版在线下载| 韩国av在线不卡| 亚洲欧洲国产日韩| 亚洲精品久久成人aⅴ小说 | a级片在线免费高清观看视频| 久久精品久久精品一区二区三区| 天堂中文最新版在线下载| 三级国产精品片| 国产伦精品一区二区三区视频9| 美女中出高潮动态图| 青青草视频在线视频观看| 成人亚洲欧美一区二区av| 国产精品一区www在线观看| 一区在线观看完整版| 丝袜喷水一区| 18禁在线播放成人免费| 九九在线视频观看精品| 亚洲精品第二区| 亚洲av成人精品一二三区| 久久精品熟女亚洲av麻豆精品| 人人妻人人添人人爽欧美一区卜| 免费观看av网站的网址| 欧美3d第一页| 亚州av有码| 欧美激情 高清一区二区三区| 久久午夜福利片| 男女边摸边吃奶| 99热这里只有精品一区| 免费久久久久久久精品成人欧美视频 | 男女无遮挡免费网站观看| 午夜免费鲁丝| 中文字幕人妻丝袜制服| 啦啦啦啦在线视频资源| 久久久久视频综合| 在线精品无人区一区二区三| 99久国产av精品国产电影| 中文欧美无线码| 丝袜喷水一区| 在线观看美女被高潮喷水网站| 全区人妻精品视频| 性色av一级| 99久久中文字幕三级久久日本| 欧美老熟妇乱子伦牲交| 亚洲精品国产av成人精品| 久久99精品国语久久久| 国产亚洲精品第一综合不卡 | 国产精品久久久久久精品古装| 成人国语在线视频| 亚洲,欧美,日韩| 一本大道久久a久久精品| 久久99精品国语久久久| 久久久a久久爽久久v久久| 免费大片18禁| 大话2 男鬼变身卡| 在线亚洲精品国产二区图片欧美 | 亚洲国产日韩一区二区| 国产片特级美女逼逼视频| av福利片在线| 欧美97在线视频| 免费观看性生交大片5| 久久99一区二区三区| 国产精品久久久久久久久免| 高清av免费在线| 伦理电影大哥的女人| 亚洲欧美中文字幕日韩二区| 成人国产麻豆网| 亚洲人成网站在线观看播放| 亚洲国产最新在线播放| 国产精品成人在线| 久久国产精品男人的天堂亚洲 | 九九爱精品视频在线观看| 97在线视频观看| 国产成人精品在线电影| 国产乱来视频区| 各种免费的搞黄视频| 精品人妻熟女毛片av久久网站| 国产精品嫩草影院av在线观看| 精品久久久久久久久亚洲| 亚洲精品久久成人aⅴ小说 | 亚洲精品美女久久av网站| 男人爽女人下面视频在线观看| 国产极品粉嫩免费观看在线 | 777米奇影视久久| 国产在线免费精品| 久久久久国产精品人妻一区二区| 99热网站在线观看| 亚洲性久久影院| 老司机影院成人| 少妇丰满av| 国产又色又爽无遮挡免| 夜夜骑夜夜射夜夜干| 亚洲精品日韩av片在线观看| 亚洲精品久久成人aⅴ小说 | 日韩,欧美,国产一区二区三区| 国产精品久久久久久精品电影小说| 日韩不卡一区二区三区视频在线| 在线播放无遮挡| 日本欧美国产在线视频| 久久久久精品久久久久真实原创| 国产成人午夜福利电影在线观看| 中文字幕精品免费在线观看视频 | 久久韩国三级中文字幕| 汤姆久久久久久久影院中文字幕| 国产高清三级在线| 亚洲精品av麻豆狂野| 日韩av在线免费看完整版不卡| 91成人精品电影| 91在线精品国自产拍蜜月| 久久久亚洲精品成人影院| 丁香六月天网| av国产精品久久久久影院| 国产永久视频网站| 日本91视频免费播放| 国精品久久久久久国模美| 日韩av在线免费看完整版不卡| 久久久a久久爽久久v久久| 久久精品熟女亚洲av麻豆精品| 18禁在线无遮挡免费观看视频| 国产午夜精品久久久久久一区二区三区| 日韩视频在线欧美| 好男人视频免费观看在线| 日本av免费视频播放| 美女中出高潮动态图| av国产久精品久网站免费入址| 亚洲色图 男人天堂 中文字幕 | 日韩熟女老妇一区二区性免费视频| 99热6这里只有精品| 精品午夜福利在线看| 久久久久久久久久久免费av| 久久久精品区二区三区| 有码 亚洲区| 欧美日韩一区二区视频在线观看视频在线| 麻豆乱淫一区二区|