仝錦,孫敏,任愛(ài)霞,林文,余少波,王強(qiáng),馮玉,任婕,高志強(qiáng)
高產(chǎn)小麥品種植株干物質(zhì)積累運(yùn)轉(zhuǎn)、土壤耗水與產(chǎn)量的關(guān)系
仝錦,孫敏,任愛(ài)霞,林文,余少波,王強(qiáng),馮玉,任婕,高志強(qiáng)
(山西農(nóng)業(yè)大學(xué)農(nóng)學(xué)院,山西太谷 030801)
【】通過(guò)明確不同產(chǎn)量水平小麥品種植株干物質(zhì)積累運(yùn)轉(zhuǎn)、土壤水分消耗與籽粒產(chǎn)量形成的關(guān)系,挖掘小麥品種生產(chǎn)潛力,為小麥產(chǎn)量提升提供依據(jù)。本試驗(yàn)于2016—2018年在山西省洪洞縣進(jìn)行,選擇4個(gè)不同產(chǎn)量水平小麥品種(煙農(nóng)999、山農(nóng)29、邯農(nóng)1412和良星67),比較品種間植株干物質(zhì)積累運(yùn)轉(zhuǎn)、土壤耗水的差異及其與產(chǎn)量形成的關(guān)系,揭示品種間產(chǎn)量和水分利用效率存在差異的原因。連續(xù)2年煙農(nóng)999、山農(nóng)29產(chǎn)量高于9 000 kg·hm-2,達(dá)到超高產(chǎn)水平,邯農(nóng)1412產(chǎn)量均高于8 000 kg·hm-2,達(dá)到高產(chǎn)水平,而良星67產(chǎn)量低于7 500 kg·hm-2,未達(dá)到高產(chǎn)水平。較良星67,3個(gè)高產(chǎn)品種提高了播種期—拔節(jié)期、拔節(jié)期—開(kāi)花期、開(kāi)花期—成熟期各階段干物質(zhì)積累量,分別達(dá)12%—57%、5%—62%、11%—47%,顯著提高了花前干物質(zhì)運(yùn)轉(zhuǎn)量、花后干物質(zhì)積累量,分別達(dá)1%—85%、11%—48%;提高了生育期總耗水量,達(dá)17%—29%,顯著提高了花前2個(gè)階段耗水量,分別達(dá)11%—41%、8%—32%;最終,提高穗數(shù)7%—24%、穗粒數(shù)4%—13%、千粒重1%—9%,產(chǎn)量20%—37%,水分利用效率2%—14%。較高產(chǎn)品種邯農(nóng)1412,超高產(chǎn)品種煙農(nóng)999顯著提高了播種期—拔節(jié)期、拔節(jié)期—開(kāi)花期干物質(zhì)積累量和花前干物質(zhì)運(yùn)轉(zhuǎn)量,分別達(dá)32%—33%、41%—55%、49%—50%,提高了花前2個(gè)階段耗水量,分別達(dá)5%—7%、3%—9%,提高穗數(shù)8%—16%、穗粒數(shù)5%—6%,產(chǎn)量10%—11%;山農(nóng)29顯著提高了花后干物質(zhì)積累量,達(dá)13%,顯著提高了花后耗水量,達(dá)6%—26%,千粒重提高4%—6%,產(chǎn)量提高5%—6%。2個(gè)試驗(yàn)?zāi)甓?個(gè)小麥品種的相關(guān)分析表明,花前2個(gè)階段耗水量與花前干物質(zhì)運(yùn)轉(zhuǎn)量顯著相關(guān),花前干物質(zhì)運(yùn)轉(zhuǎn)量與穗數(shù)、產(chǎn)量顯著相關(guān);花后耗水量與花后干物質(zhì)積累量顯著相關(guān),花后干物質(zhì)積累量與千粒重、產(chǎn)量顯著相關(guān)。此外,3個(gè)高產(chǎn)品種較良星67,每多消耗1 mm土壤水分可增產(chǎn)16—40 kg·hm-2·mm-1,且超高產(chǎn)品種土壤耗水對(duì)籽粒產(chǎn)量的貢獻(xiàn)更大,其水分利用效率較高產(chǎn)品種提高6%—22%。3個(gè)高產(chǎn)品種提高了花前干物質(zhì)運(yùn)轉(zhuǎn)量和花前2個(gè)階段耗水量,有利于優(yōu)化產(chǎn)量構(gòu)成因素,實(shí)現(xiàn)增產(chǎn)、增效。然而不同小麥品種高產(chǎn)途徑亦有所差異,煙農(nóng)999由于生育前期利用土壤水分能力強(qiáng),促進(jìn)花前干物質(zhì)向籽粒運(yùn)轉(zhuǎn),通過(guò)提高穗數(shù)和穗粒數(shù)實(shí)現(xiàn)超高產(chǎn);山農(nóng)29由于生育后期利用土壤水分能力強(qiáng),促進(jìn)花后干物質(zhì)積累,通過(guò)提高千粒重實(shí)現(xiàn)超高產(chǎn)。
小麥;高產(chǎn)品種;干物質(zhì)積累和運(yùn)轉(zhuǎn);土壤耗水;產(chǎn)量;水分利用效率
【研究意義】山西省是我國(guó)小麥主產(chǎn)區(qū)之一,光熱資源充足,土地肥沃,小麥生產(chǎn)潛力大。研究不同產(chǎn)量水平小麥品種植株干物質(zhì)積累運(yùn)轉(zhuǎn)、土壤耗水與產(chǎn)量的關(guān)系,對(duì)晉南地區(qū)小麥產(chǎn)量的穩(wěn)定提高具有重要意義。【前人研究進(jìn)展】近年來(lái),前人在篩選高效高產(chǎn)品種提高小麥產(chǎn)量方面進(jìn)行了大量研究。冬小麥產(chǎn)量的形成與植株干物質(zhì)量的積累與運(yùn)轉(zhuǎn)關(guān)系密切。馬小龍等[1]對(duì)山西、陜西、甘肅180個(gè)農(nóng)戶的小麥生產(chǎn)情況進(jìn)行調(diào)研,結(jié)果表明小麥生物量每增加1 000 kg?hm-2,籽粒產(chǎn)量就增加430 kg?hm-2。李瑞珂等[2]研究表明,不同小麥品種花前貯藏物質(zhì)的運(yùn)轉(zhuǎn)能力有顯著差異,花前干物質(zhì)積累量高的品種,運(yùn)轉(zhuǎn)率較高,有利于產(chǎn)量的提高。段文學(xué)等[3]對(duì)不同穗型小麥品種的研究表明,中穗型品種山農(nóng)15花前干物質(zhì)向籽粒的運(yùn)轉(zhuǎn)能力較強(qiáng),產(chǎn)量也顯著提高,大穗型品種山農(nóng)8355花后干物質(zhì)的積累有利于其產(chǎn)量的形成。不同小麥品種各生育階段耗水量存在差異。臧賀藏等[4]研究表明,濟(jì)麥22較石麥15植株花前干物質(zhì)運(yùn)轉(zhuǎn)量、運(yùn)轉(zhuǎn)率及其對(duì)籽粒的貢獻(xiàn)率提高,播種期—越冬期、拔節(jié)期—開(kāi)花期和開(kāi)花期—成熟期階段耗水量及其占總耗水的比例也提高,產(chǎn)量和水分利用效率較高。閆學(xué)梅等[5]研究表明,高產(chǎn)小麥品種較中產(chǎn)品種顯著提高播種期—拔節(jié)期耗水量,從而顯著提高產(chǎn)量和水分利用效率。此外,不同小麥品種間產(chǎn)量和水分利用效率也存在顯著差異。董寶娣等[6]在河北石家莊的研究表明,不同小麥品種間的產(chǎn)量和水分利用效率差異顯著,產(chǎn)量相差達(dá)44.86%,水分利用效率相差達(dá)42.18%。高春華等[7]研究表明,山農(nóng)15較煙農(nóng)21提高了總耗水量、播前土壤貯水利用量及其所占比例,提高產(chǎn)量6.3%,提高水分利用效率5.3%?!颈狙芯壳腥朦c(diǎn)】目前,前人對(duì)不同小麥品種植株干物質(zhì)積累運(yùn)轉(zhuǎn)、階段耗水量與產(chǎn)量之間的關(guān)系進(jìn)行了大量研究,而對(duì)晉南地區(qū)不同產(chǎn)量水平的品種造成產(chǎn)量差異機(jī)理的研究鮮見(jiàn)報(bào)道。【擬解決的關(guān)鍵問(wèn)題】本研究分析超高產(chǎn)品種、高產(chǎn)品種以及低產(chǎn)品種植株干物質(zhì)量積累運(yùn)轉(zhuǎn)與階段耗水量、產(chǎn)量形成的關(guān)系,明確品種引起產(chǎn)量差異的農(nóng)學(xué)機(jī)理,為挖掘山西省小麥高產(chǎn)潛力提供理論依據(jù)。
試驗(yàn)于2016—2018年連續(xù)2年在山西農(nóng)業(yè)大學(xué)洪洞試驗(yàn)基地進(jìn)行,基地位于黃土高原東南部,屬于干旱半干旱地區(qū),海拔460 m,年均氣溫12.1℃,年均降雨量460 mm,60%—70%的降雨量集中7—9月。該地區(qū)為水澆地,灌溉條件充足,冬小麥于第一年10月上、中旬種植,第二年6月上旬收獲。2個(gè)試驗(yàn)?zāi)甓?—20 cm土層土壤基礎(chǔ)肥力如表1所示,2016—2017年土壤有機(jī)質(zhì)含量為13.15 g·kg-1,堿解氮、速效磷和速效鉀含量分別為42.12、17.52和209.46 mg·kg-1;2017—2018年土壤有機(jī)質(zhì)含量為12.35 g·kg-1,堿解氮、速效磷和速效鉀含量分別為43.61、18.21和212.06 mg·kg-1。
圖1為試驗(yàn)地降水情況,試驗(yàn)地1981—2010年生育期平均降雨量為173 mm,本試驗(yàn)2016—2017年生育期總降雨量為142.8 mm,2017—2018年生育期總降雨量為155.9 mm,2個(gè)試驗(yàn)?zāi)甓瓤偨涤炅糠謩e低于常年的17%和10%,2016—2017年,主要是拔節(jié)期—開(kāi)花期階段降水量低于常年,2017—2018年主要是越冬期—拔節(jié)期階段降水量低于常年。
數(shù)據(jù)來(lái)源于山西省洪洞縣氣象站。SS-WS:播種期—越冬期;WS-JS:越冬期—拔節(jié)期;JS-AS:拔節(jié)期—開(kāi)花期;AS-MS:開(kāi)花期—成熟期
表1 洪洞試驗(yàn)點(diǎn)0—20 cm土層土壤基礎(chǔ)肥力
本試驗(yàn)選用4個(gè)當(dāng)?shù)刂魍菩←溒贩N,分別為煙農(nóng)999(2013—2014年度參加黃淮冬麥區(qū)南片水地品種區(qū)域試驗(yàn),產(chǎn)量為8 716.5 kg?hm-2)、山農(nóng)29(2013—2014年度參加黃淮冬麥區(qū)北片水地品種區(qū)域試驗(yàn),產(chǎn)量為9 300 kg?hm-2)、邯農(nóng)1412 (2013—2014年度參加冀中南水地品種區(qū)域試驗(yàn),產(chǎn)量為9 331.5 kg?hm-2)和良星67(2007—2008年度參加黃淮冬麥區(qū)北片水地品種區(qū)域試驗(yàn),產(chǎn)量為7 848 kg?hm-2)。
采用單因素完全隨機(jī)設(shè)計(jì),選擇4個(gè)當(dāng)?shù)刂魍菩←溒贩N,小麥播前進(jìn)行深松,深度為30—40 cm。2個(gè)試驗(yàn)?zāi)甓扔?016年10月2日、2017年10月16日播種,深松一體機(jī),施有機(jī)肥1 500 kg?hm-2(其中有機(jī)質(zhì)含量45%左右,氮、磷、鉀含量分別為12%、1%、0.3%),施復(fù)合肥750 kg?hm-2(氮、磷、鉀含量分別為20%、20%、5%),拔節(jié)期追施尿素(46%)196 kg?hm-2,越冬期、拔節(jié)期各灌水一次,約40 m3?hm-2,常規(guī)管理,分別于2017年6月18日、2018年6月20日收獲。播種方式采用寬幅條播,播量為300 kg?hm-2,小區(qū)長(zhǎng)25 m,寬2.5 m,面積為50 m2,重復(fù)3次。
1.4.1 土壤水分的測(cè)定 于冬小麥播種期、拔節(jié)期、開(kāi)花期、成熟期,選取長(zhǎng)勢(shì)均勻的地塊,挖一個(gè)2 m深的剖面坑,每個(gè)土層為20 cm,共10層,采用環(huán)刀法從上到下進(jìn)行取土,測(cè)定土壤容重。于冬小麥播種期、拔節(jié)期、開(kāi)花期、成熟期,分別用土鉆鉆取2 m深土柱樣品,每個(gè)土層為20 cm,共10層,放入鋁盒中,迅速稱濕重并記錄,然后放入鼓風(fēng)干燥箱105℃烘12 h至恒重,然后測(cè)定土壤干重,并計(jì)算土壤含水量和土壤蓄水量。
1.4.2 植株干物質(zhì)量的測(cè)定 采用李念念等[8]的方法測(cè)定植株干物質(zhì)量。于冬小麥越冬期、拔節(jié)期、開(kāi)花期、成熟期分別進(jìn)行植株取樣,越冬期取整株樣,拔節(jié)期取葉片、莖稈+葉鞘2部分植株樣,開(kāi)花期取葉片、莖稈+葉鞘、穗3部分植株樣,成熟期取葉片、莖稈+葉鞘、穗軸+穎殼、籽粒4部分植株樣,樣品取回后放入鼓風(fēng)干燥箱,先于105℃殺青0.5 h,后85℃烘至恒重,稱量并記錄各器官干物質(zhì)量,后計(jì)算干物質(zhì)積累量、運(yùn)轉(zhuǎn)量、運(yùn)轉(zhuǎn)率及對(duì)籽粒的貢獻(xiàn)率。
1.4.3 產(chǎn)量及其構(gòu)成 于冬小麥成熟期,剪取0.667 m2長(zhǎng)勢(shì)均勻的冬小麥穗子,同時(shí)記錄穗數(shù),置于網(wǎng)袋中,脫粒曬干后稱重,即為實(shí)際產(chǎn)量,同時(shí)調(diào)查穗粒數(shù)和千粒重。
1.5.1 土壤水分計(jì)算方法 采用田欣等[9]方法計(jì)算土壤水分。土壤蓄水量SWS=W×D×H×10/100,式中,SWS為第層土壤蓄水量(mm);W為第層的土壤含水量(%);D為第層的土壤容重(g·cm-3);H為第層的土層厚度(cm)。各生育階段土壤貯水減少量?S=S1-S2,式中,?S為某一生長(zhǎng)階段土壤蓄水量的變化(mm),S1為階段初的土壤蓄水量,S2為階段末的土壤蓄水量。生育期總耗水量ET=?S+M+P+K,式中,ET為生育期總耗水量(mm),M為灌水量(mm),P為有效降水量(mm),K為地下水補(bǔ)給量(mm)。本試驗(yàn)地下水埋深在5 m以下,故K值可忽略不計(jì)。水分利用效率WUE=Y/ET,式中,WUE為水分利用效率(kg·hm-2·mm-1),Y為籽粒產(chǎn)量(kg·hm-2),ET為生育期總耗水量(mm)。單位耗水下的增產(chǎn)量ΔY=(Y1-Y良)/(E1-E良),式中,ΔY為單位耗水量下的增產(chǎn)量(kg·hm-2·mm-1),Y1為煙農(nóng)999、山農(nóng)29、邯農(nóng)1412的籽粒產(chǎn)量(kg·hm-2),Y良為良星67的籽粒產(chǎn)量(kg·hm-2),E1為煙農(nóng)999、山農(nóng)29、邯農(nóng)1412的生育期耗水量(mm),E良為良星67的生育期耗水量(mm)。
1.5.2 植株干物質(zhì)量計(jì)算方法 采用薛麗華[10]和高春華等[11]方法計(jì)算植株干物質(zhì)量。其中,花前干物質(zhì)運(yùn)轉(zhuǎn)量=開(kāi)花期營(yíng)養(yǎng)器官干物質(zhì)積累量-成熟期營(yíng)養(yǎng)器官干物質(zhì)積累量;花前干物質(zhì)運(yùn)轉(zhuǎn)率=花前干物質(zhì)運(yùn)轉(zhuǎn)量/開(kāi)花期營(yíng)養(yǎng)器官干物質(zhì)積累量×100%;花后干物質(zhì)積累量=成熟期干物質(zhì)積累量-開(kāi)花期干物質(zhì)積累量;花前干物質(zhì)運(yùn)轉(zhuǎn)量對(duì)籽粒的貢獻(xiàn)率=花前干物質(zhì)運(yùn)轉(zhuǎn)量/成熟期籽粒干物質(zhì)積累量×100%;花后干物質(zhì)積累量對(duì)籽粒的貢獻(xiàn)率=花后干物質(zhì)積累量/成熟期籽粒干物質(zhì)積累量×100%。
用Microsoft Excel 2010整理數(shù)據(jù)并繪圖,Origin Pro 8軟件繪制相關(guān)分析圖,DPS 7.05軟件進(jìn)行顯著性差異檢驗(yàn),LSD法多重比較(α=0.05)。
連續(xù)2年煙農(nóng)999、山農(nóng)29產(chǎn)量高于9 000 kg·hm-2,達(dá)到超高產(chǎn)水平,邯農(nóng)1412產(chǎn)量均高于8 000 kg·hm-2,達(dá)到高產(chǎn)水平,而良星67產(chǎn)量低于7 500 kg·hm-2,未達(dá)到高產(chǎn)水平(表2)。
較良星67,3個(gè)高產(chǎn)品種穗數(shù)、穗粒數(shù)顯著提高,分別達(dá)7%—24%、4%—13%,千粒重提高1%—9%,2016—2017年煙農(nóng)999與良星67之間無(wú)顯著差異,最終,產(chǎn)量顯著提高20%—37%;較良星67,2016—2017年煙農(nóng)999和邯農(nóng)1412水分利用效率顯著提高3%—14%,2017—2018年3個(gè)高產(chǎn)品種水分利用效率顯著提高2%—12%。
較高產(chǎn)品種邯農(nóng)1412,超高產(chǎn)品種煙農(nóng)999穗數(shù)、穗粒數(shù)顯著提高,分別達(dá)8%—16%、5%—6%,千粒重?zé)o顯著差異,產(chǎn)量顯著提高10%—13%;而超高產(chǎn)品種山農(nóng)29穗數(shù)、穗粒數(shù)與邯農(nóng)1412無(wú)顯著差異,千粒重顯著提高,達(dá)4%—6%,產(chǎn)量顯著提高5%—6%;2個(gè)超高產(chǎn)品種水分利用效率顯著提高6%—22%??梢?jiàn),高產(chǎn)品種煙農(nóng)999和邯農(nóng)1412主要通過(guò)提高穗數(shù)、穗粒數(shù)實(shí)現(xiàn)高產(chǎn)、高效,且以超高產(chǎn)品種煙農(nóng)999效果較好,山農(nóng)29通過(guò)提高千粒重實(shí)現(xiàn)高產(chǎn)。
2.2.1 各生育階段干物質(zhì)積累及其比例 較良星67,3個(gè)高產(chǎn)品種提高了各生育階段干物質(zhì)積累量,播種期—拔節(jié)期、拔節(jié)期—開(kāi)花期、開(kāi)花期—成熟期階段分別達(dá)19%—57%、5%—62%、11%—47%,且2017—2018年山農(nóng)29和邯農(nóng)1412拔節(jié)期—開(kāi)花期階段干物質(zhì)積累量與良星67之間無(wú)顯著差異(圖2)。
較高產(chǎn)品種邯農(nóng)1412,超高產(chǎn)品種煙農(nóng)999顯著提高了播種期—拔節(jié)期、拔節(jié)期—開(kāi)花期階段干物質(zhì)積累量,分別達(dá)32%—33%、41%—55%,2個(gè)階段干物質(zhì)積累量占成熟期干物質(zhì)積累量的比例較高,且與邯農(nóng)1412差異顯著;而超高產(chǎn)品種山農(nóng)29顯著提高了開(kāi)花期—成熟期階段干物質(zhì)積累量,達(dá)13%??梢?jiàn),高產(chǎn)品種各生育階段干物質(zhì)積累量提高,且超高產(chǎn)品種煙農(nóng)999生育前、中期干物質(zhì)積累量較高,山農(nóng)29生育后期干物質(zhì)積累量較高。
2.2.2 干物質(zhì)積累、運(yùn)轉(zhuǎn)及對(duì)籽粒產(chǎn)量的貢獻(xiàn) 4個(gè)不同產(chǎn)量水平小麥品種的花前干物質(zhì)運(yùn)轉(zhuǎn)量對(duì)籽粒的貢獻(xiàn)率達(dá)23%—41%,花后干物質(zhì)積累量對(duì)籽粒的貢獻(xiàn)率達(dá)59%—77%(表3)。可見(jiàn),不同小麥品種籽粒產(chǎn)量主要來(lái)源于花后干物質(zhì)積累。
較良星67,3個(gè)高產(chǎn)品種顯著提高了花前干物質(zhì)運(yùn)轉(zhuǎn)量和花后干物質(zhì)積累量,分別達(dá)1%—85%、11%—48%,且2017—2018年山農(nóng)29花前干物質(zhì)運(yùn)轉(zhuǎn)量與良星67之間無(wú)顯著差異(表3)。
較高產(chǎn)品種邯農(nóng)1412,超高產(chǎn)品種煙農(nóng)999顯著提高了花前干物質(zhì)運(yùn)轉(zhuǎn)量,達(dá)49%—50%,且其花前干物質(zhì)運(yùn)轉(zhuǎn)率及花前干物質(zhì)運(yùn)轉(zhuǎn)量對(duì)籽粒的貢獻(xiàn)率顯著提高;而超高產(chǎn)品種山農(nóng)29相反,主要表現(xiàn)在花后干物質(zhì)積累量顯著提高13%,花后干物質(zhì)積累量對(duì)籽粒的貢獻(xiàn)率也顯著提高。可見(jiàn),高產(chǎn)品種煙農(nóng)999和邯農(nóng)1412花前干物質(zhì)運(yùn)轉(zhuǎn)量、運(yùn)轉(zhuǎn)率較大,且以超高產(chǎn)品種煙農(nóng)999花前干物質(zhì)運(yùn)轉(zhuǎn)量對(duì)籽粒產(chǎn)量的貢獻(xiàn)最大,而山農(nóng)29花后干物質(zhì)積累量對(duì)籽粒產(chǎn)量的貢獻(xiàn)最大。
SS—JS:播種期—拔節(jié)期;JS—AS:拔節(jié)期—開(kāi)花期;AS-MS:開(kāi)花期—成熟期。不同小寫字母在0.05水平差異顯著。下同
表2 不同品種產(chǎn)量及其構(gòu)成因素的差異
WUE:水分利用效率。不同小寫字母在0.05水平差異顯著。下同
WUE: Water use efficiency. Different small letters indicate significant differences at 0.05 level. The same as below
表3 不同品種花前干物質(zhì)運(yùn)轉(zhuǎn)和花后干物質(zhì)積累的差異
DMABA:花前干物質(zhì)量;DMAAA:花后干物質(zhì)量;TA:運(yùn)轉(zhuǎn)量;TR:運(yùn)轉(zhuǎn)率;CG:籽粒貢獻(xiàn)率;AA:積累量
DMABA: Dry matter assimilation before anthesis; DMAAA: Dry matter assimilation after anthesis; TA: Translocation amount; TR: Translocation ratio; CG: Contribution ratio to grain; AA: Assimilation amount
較良星67,3個(gè)高產(chǎn)品種提高了播種期—拔節(jié)期、拔節(jié)期—開(kāi)花期階段耗水量,2個(gè)階段分別達(dá)11%—42%、5%—32%(圖3),且2016—2017年山農(nóng)29拔節(jié)期—開(kāi)花期階段耗水量與良星67之間無(wú)顯著差異。
較高產(chǎn)品種邯農(nóng)1412,超高產(chǎn)品種煙農(nóng)999提高了播種期—拔節(jié)期、拔節(jié)期—開(kāi)花期階段耗水量,分別達(dá)5%—7%、3%—9%,2個(gè)階段耗水量占生育期總耗水量的比例較高,且與邯農(nóng)1412差異顯著;而超高產(chǎn)品種山農(nóng)29提高了開(kāi)花期—成熟期階段耗水量,達(dá)6%—26%,這一階段耗水量占生育期總耗水量的比例較高,且與邯農(nóng)1412差異顯著??梢?jiàn),高產(chǎn)品種在播種期—拔節(jié)期、拔節(jié)期—開(kāi)花期階段耗水較多,且以超高產(chǎn)品種煙農(nóng)999在生育前、中期耗水最多,山農(nóng)29在生育后期耗水最多。
2個(gè)試驗(yàn)?zāi)甓?個(gè)小麥品種的相關(guān)分析表明,播種期—拔節(jié)期、拔節(jié)期—開(kāi)花期階段耗水量與花前干物質(zhì)積累量、運(yùn)轉(zhuǎn)量呈顯著或極顯著相關(guān)關(guān)系,且拔節(jié)期—開(kāi)花期階段耗水量與花前干物質(zhì)運(yùn)轉(zhuǎn)量的相關(guān)性大;開(kāi)花—成熟階段耗水量與花后干物質(zhì)積累量呈顯著相關(guān)關(guān)系(圖4);花前干物質(zhì)運(yùn)轉(zhuǎn)量與穗數(shù)、產(chǎn)量呈顯著相關(guān)關(guān)系,花后干物質(zhì)積累量與千粒重、產(chǎn)量呈顯著相關(guān)關(guān)系(圖5)。
圖3 不同品種各生育階段耗水量及其占總耗水量比例的差異
圖中氣泡與數(shù)字對(duì)稱,*在P<0.05 水平顯著;**在P<0.01 水平顯著。X1:播種—拔節(jié)階段耗水量;X2:拔節(jié)—開(kāi)花階段耗水量;X3:開(kāi)花—成熟階段耗水量;X4:播種—拔節(jié)階段干物質(zhì)積累量;X5:拔節(jié)—開(kāi)花階段干物質(zhì)積累量;X6:花前干物質(zhì)運(yùn)轉(zhuǎn)量;X7:花后干物質(zhì)積累量。下同
X1:花前干物質(zhì)運(yùn)轉(zhuǎn)量;X2:花后干物質(zhì)積累量;X3:產(chǎn)量;X4:穗數(shù);X5:穗粒數(shù);X6:千粒重。
較良星67,3個(gè)高產(chǎn)品種顯著提高了生育期總耗水量,達(dá)17%—29%(表4)。較良星67,3個(gè)高產(chǎn)品種煙農(nóng)999、山農(nóng)29、邯農(nóng)1412每多消耗1 mm土壤水分可分別增產(chǎn)38.40—40.53 kg·hm-2、25.59—27.63 kg·hm-2、16.15—25.01 kg·hm-2,其中以煙農(nóng)999最高,且與山農(nóng)29、邯農(nóng)1412差異顯著,其次為山農(nóng)29??梢?jiàn),高產(chǎn)品種生育期總耗水量較多,且超高產(chǎn)品種單位耗水下的增產(chǎn)量較高,對(duì)土壤水分的利用能力較強(qiáng),土壤耗水對(duì)籽粒產(chǎn)量的貢獻(xiàn)較大。
表4 不同品種土壤水分消耗對(duì)籽粒產(chǎn)量的貢獻(xiàn)
TWC:總耗水量;YIUPWC:?jiǎn)挝缓乃碌脑霎a(chǎn)量
TWC: Total water consumption; YIUPWC: The yield increased under per water consumption
干物質(zhì)的積累和運(yùn)轉(zhuǎn)對(duì)小麥產(chǎn)量形成的影響較大。小麥籽粒產(chǎn)量少部分來(lái)源于花前干物質(zhì)運(yùn)轉(zhuǎn),較大一部分來(lái)自于花后干物質(zhì)量的積累[12-14]。本研究結(jié)果表明,4個(gè)不同產(chǎn)量水平小麥品種花前干物質(zhì)運(yùn)轉(zhuǎn)量對(duì)籽粒的貢獻(xiàn)率為23%—41%,而花后干物質(zhì)積累量對(duì)籽粒的貢獻(xiàn)率高達(dá)59%—77%,可見(jiàn),花后干物質(zhì)積累量對(duì)籽粒產(chǎn)量的貢獻(xiàn)更大。灌漿期水分虧缺可促進(jìn)花前營(yíng)養(yǎng)器官中儲(chǔ)藏的干物質(zhì)向籽粒中的再轉(zhuǎn)運(yùn)[15-17]。有研究表明,石家莊8號(hào)較西風(fēng)20,在較強(qiáng)干旱脅迫下,干物質(zhì)積累量也較高[18]。本研究在越冬、拔節(jié)期進(jìn)行灌溉,開(kāi)花、灌漿期不灌溉的條件下,高產(chǎn)品種花前干物質(zhì)積累、運(yùn)轉(zhuǎn)量顯著提高,說(shuō)明開(kāi)花期相對(duì)干旱條件下,有利于花前積累的干物質(zhì)向籽粒中轉(zhuǎn)移。
另外,有研究指出基因型對(duì)小麥干物質(zhì)運(yùn)轉(zhuǎn)量、運(yùn)轉(zhuǎn)率和對(duì)籽粒的貢獻(xiàn)率影響最大[19-21]。李瑞珂等[2]研究表明,不同小麥品種開(kāi)花前干物質(zhì)的運(yùn)轉(zhuǎn)能力有顯著差異,開(kāi)花前積累的干物質(zhì)越多,干物質(zhì)的運(yùn)轉(zhuǎn)率就越高。吳金芝等[22]研究表明,晉麥47較偃展4110花前積累的干物質(zhì)多,花前物質(zhì)運(yùn)轉(zhuǎn)能力強(qiáng),花前貯藏干物質(zhì)對(duì)籽粒的貢獻(xiàn)率大,為產(chǎn)量形成提供物質(zhì)來(lái)源,從而獲得較高的產(chǎn)量。陳士強(qiáng)等[23]研究表明,超高產(chǎn)小麥品種花前光合產(chǎn)物的同化能力及其向籽粒的運(yùn)轉(zhuǎn)能力較強(qiáng)。本研究結(jié)果表明,較高產(chǎn)品種邯農(nóng)1412,超高產(chǎn)品種煙農(nóng)999播種期—拔節(jié)期、拔節(jié)期—開(kāi)花期干物質(zhì)積累量顯著提高,花前干物質(zhì)向籽粒的運(yùn)轉(zhuǎn)能力較強(qiáng),產(chǎn)量顯著提高,這可能是由于其花前耗水較多,生育前期生長(zhǎng)發(fā)育較好,植株花前干物質(zhì)積累量較多,有利于生物量的提高,進(jìn)而提高產(chǎn)量。此外,高玉紅等[24]研究表明,甘春25號(hào)較對(duì)照品種顯著增產(chǎn)6%,這是因?yàn)樵撈贩N花后干物質(zhì)積累量對(duì)籽粒的貢獻(xiàn)率較高,有利于生育后期籽粒的充分灌漿,使千粒重增加,從而獲得較高產(chǎn)量。本研究結(jié)果也表明,較高產(chǎn)品種邯農(nóng)1412,超高產(chǎn)品種山農(nóng)29花后干物質(zhì)積累量及其對(duì)籽粒的貢獻(xiàn)率顯著提高,千粒重也顯著提高,可達(dá)47 g,產(chǎn)量也較高,這可能是由于其花后耗水較多,有利于灌漿期籽粒的充分灌漿,進(jìn)而提高產(chǎn)量。
不同小麥品種相比較,全生育期總耗水量無(wú)顯著差異時(shí),產(chǎn)量和水分利用效率差異顯著[25]。有研究指出,受小麥各生長(zhǎng)階段耗水量及其分配比例的影響,產(chǎn)量也存在差異[26]。高春華等[11]在山東泰安的研究表明,不同小麥品種階段耗水量存在差異,與濟(jì)麥22相比,山農(nóng)15生育期總耗水量無(wú)顯著差異,但其拔節(jié)期—開(kāi)花期階段耗水量及其占總耗水的比例較大,產(chǎn)量和水分利用效率分別提高了2%—10%、3%—9%,可節(jié)水0.6—1.6 m3·kg-1,是當(dāng)?shù)氐某弋a(chǎn)節(jié)水品種。本研究結(jié)果表明,高產(chǎn)品種較良星67生育期總耗水量顯著提高,且花前耗水較多,水分利用效率提高2%—14%,產(chǎn)量提高20%—37%,每多消耗1 mm土壤水分可增產(chǎn)16—40 kg·hm-2·mm-1。有研究指出,春季干旱不利于光合能力的提高和干物質(zhì)的積累,對(duì)小麥產(chǎn)量影響較大,重度干熱風(fēng)危害使黃淮海地區(qū)冬小麥平均減產(chǎn)率為27.83%,選擇優(yōu)良品種對(duì)避免小麥春季干旱和灌漿期干熱風(fēng)危害十分重要[27-28]。本研究結(jié)果表明,不同高產(chǎn)品種間生育期總耗水量差異不大,但階段耗水量差異顯著。超高產(chǎn)品種煙農(nóng)999在播種期—拔節(jié)期、拔節(jié)期—開(kāi)花期階段耗水多,這可能是由于當(dāng)?shù)卮杭据^為干旱,而煙農(nóng)999可發(fā)揮其生長(zhǎng)優(yōu)勢(shì),在生育前中期耗水多,有利于群體的生長(zhǎng)和穗器官的發(fā)育,進(jìn)而提高產(chǎn)量;山農(nóng)29在開(kāi)花期—成熟期階段耗水多,這可能是由于當(dāng)?shù)馗蔁犸L(fēng)危害較小,有利于籽粒的充分灌漿,這是其獲得高產(chǎn)的原因。
小麥的單位面積穗數(shù)、穗粒數(shù)、千粒重和產(chǎn)量對(duì)不同小麥品種處理響應(yīng)有差異[29-30]。本試驗(yàn)不足之處是,雖然各品種采用的種子播種重量相同,但是由于種子千粒重有一定的差異,因此實(shí)際播種密度會(huì)有所不同。本研究結(jié)果表明,在相同播量的條件下,與良星67相比,高產(chǎn)品種千粒重提高,則播種密度減少,但穗數(shù)顯著提高,說(shuō)明品種之間的差異對(duì)產(chǎn)量形成的影響較大;與高產(chǎn)品種邯農(nóng)1412相比,超高產(chǎn)品種山農(nóng)29千粒重顯著提高,播種密度較少,且穗數(shù)略有提高,說(shuō)明此品種可較好發(fā)揮其生長(zhǎng)優(yōu)勢(shì)。此外,將種子播種千粒重和播種重量折算為播種密度,進(jìn)行播種密度與穗數(shù)的回歸分析發(fā)現(xiàn),在本試驗(yàn)條件下,播種密度對(duì)穗數(shù)影響不顯著(附圖1)。品種與播種密度互作對(duì)小麥產(chǎn)量及其構(gòu)成的影響尚不明確,有待于進(jìn)一步研究。本試驗(yàn)中高產(chǎn)小麥品種穗粒數(shù)顯著提高,其中以煙農(nóng)999最高,與山農(nóng)29、邯農(nóng)1412差異顯著,山農(nóng)29與邯農(nóng)1412無(wú)顯著差異;而山農(nóng)29千粒重最高,與煙農(nóng)999、邯農(nóng)1412差異顯著,說(shuō)明煙農(nóng)999和山農(nóng)29可以發(fā)揮其不同生育階段生長(zhǎng)優(yōu)勢(shì),增強(qiáng)階段耗水和物質(zhì)積累,實(shí)現(xiàn)增產(chǎn)。
此外,單位面積穗數(shù)和穗粒數(shù)的增加對(duì)小麥產(chǎn)量的形成貢獻(xiàn)最大,由于水分利用能力和干物質(zhì)積累量存在差異,小麥產(chǎn)量構(gòu)成因素組成差異較大[31]。本研究結(jié)果表明,2016—2017年,小麥各品種穗數(shù)相對(duì)較多,穗粒數(shù)較少,這可能是由于小麥越冬期—拔節(jié)期階段降雨量較高,可滿足小麥春季生長(zhǎng)發(fā)育的水分需求,減少春季干旱帶來(lái)的危害,有利于返青后分蘗的發(fā)生,從而保證小麥合理群體的構(gòu)建和穗數(shù)的形成。2017—2018年,小麥各品種均是穗數(shù)略減少,而穗粒數(shù)明顯增加,這可能是由于小麥拔節(jié)期—開(kāi)花期階段降雨量較高,有利于小麥穗部分化,促進(jìn)花前干物質(zhì)量的積累,保證花后有充足的光合產(chǎn)物向籽粒中運(yùn)轉(zhuǎn),進(jìn)而增加穗粒數(shù)。
2個(gè)試驗(yàn)?zāi)甓?個(gè)不同小麥品種的試驗(yàn)條件下,花前耗水量與花前干物質(zhì)運(yùn)轉(zhuǎn)量關(guān)系密切,花前干物質(zhì)運(yùn)轉(zhuǎn)量與穗數(shù)、產(chǎn)量關(guān)系密切,煙農(nóng)999提高了花前2個(gè)階段耗水量和花前干物質(zhì)運(yùn)轉(zhuǎn)量,通過(guò)增加穗數(shù)、穗粒數(shù)實(shí)現(xiàn)超高產(chǎn);花后耗水量與花后干物質(zhì)積累量關(guān)系密切,花后干物質(zhì)積累量與千粒重、產(chǎn)量關(guān)系密切,山農(nóng)29提高了花后耗水量和花后干物質(zhì)積累量,通過(guò)提高千粒重實(shí)現(xiàn)超高產(chǎn)。3個(gè)高產(chǎn)品種較良星67顯著提高了花前干物質(zhì)運(yùn)轉(zhuǎn)量和花后干物質(zhì)積累量,顯著提高了花前兩階段耗水量,最終增產(chǎn)20%—37%,增效2%—14%,每多消耗1 mm土壤水分可增產(chǎn)16—40 kg·hm-2·mm-1,且以超高產(chǎn)品種效果較好。
[1] 馬小龍, 佘旭, 王朝輝, 曹寒冰, 何紅霞, 何剛, 王森, 黃明, 劉璐. 旱地小麥產(chǎn)量差異與栽培、施肥及主要土壤肥力因素的關(guān)系. 中國(guó)農(nóng)業(yè)科學(xué), 2016, 49(24): 4757-4771.
MA X L, SHE X, WANG Z H, CAO H B, HE H X, HE G, WANG S, HUANG M, LIU L. Yield variation of winter wheat and its relation to cultivation, fertilization, and main soil fertility factors., 2016, 49(24): 4757-4771. (in Chinese)
[2] 李瑞珂, 汪洋, 安志超, 武慶慧, 王改革, 仝瑞芳, 葉優(yōu)良. 不同產(chǎn)量類型小麥品種的干物質(zhì)和氮素積累運(yùn)轉(zhuǎn)特征. 麥類作物學(xué)報(bào), 2018, 38(11): 1359-1364.
LI R K, WANG Y, AN Z C, WU Q H, WANG G G, TONG R F, YE Y L. The transport characteristics of dry matter and nitrogen accumulation in different wheat cultivars., 2018, 38(11): 1359-1364. (in Chinese)
[3] 段文學(xué), 于振文, 張永麗, 王東. 測(cè)墑補(bǔ)灌對(duì)不同穗型小麥品種耗水特性和干物質(zhì)積累與分配的影響. 植物生態(tài)學(xué)報(bào), 2010, 34(12): 1424-1432.
DUAN W X, YU Z E, ZHANG Y L, WANG D. Effects of supplemental irrigation on water consumption characteristics and dry matter accumulation and distribution in different spike-type wheat cultivars based on testing soil moisture., 2010, 34(12): 1424-1432. (in Chinese)
[4] 臧賀藏, 劉云鵬, 余鵬, 張英華, 王志敏. 水氮限量供給下兩個(gè)高產(chǎn)小麥品種物質(zhì)積累與水分利用特征. 麥類作物學(xué)報(bào), 2012, 32(4): 689-695.
ZANG H Z, LIU Y P, YU P, ZHANG Y H, WANG Z M. Dry matter accumulation and water utilization characteristics of two high-yield winter wheat cultivars under limited irrigation and nitrogen supply.,2012, 32(4): 689-695. (in Chinese)
[5] 閆學(xué)梅,于振文, 張永麗, 王東. 不同小麥品種耗水特性和籽粒產(chǎn)量的差異. 應(yīng)用生態(tài)學(xué)報(bào), 2011, 22(3): 694-700.
YAN X M, YU Z W, ZHANG Y L, WANG D. Differences in water consumption characteristics and grain yield of different wheat cultivars., 2011, 22(3): 694-700. (in Chinese)
[6] 董寶娣, 張正斌, 劉孟雨, 張依章, 李全起, 石磊, 周永田. 小麥不同品種的水分利用特性及對(duì)灌溉制度的響應(yīng). 農(nóng)業(yè)工程學(xué)報(bào), 2007, 23(9): 27-33.
DONG B D, ZHANG Z B, LIU M Y, ZHANG Y Z, LI Q Q, SHI L, ZHOU Y T. Water use characteristics of different wheat varieties and their responses to different irrigation schedulings., 2007, 23(9): 27-33. (in Chinese)
[7] 高春華, 張永麗, 于振文. 高產(chǎn)條件下不同小麥品種耗水特性及籽粒產(chǎn)量的差異. 麥類作物學(xué)報(bào), 2010, 30(1): 101-105.
GAO C H, ZHANG Y L, YU Z W. Difference of water consumption characteristics and grain yield of different wheat cultivars under high yield condition., 2010, 30(1): 101-105. (in Chinese)
[8] 李念念, 孫敏, 高志強(qiáng), 張娟, 張慧芋, 梁艷妃, 楊清山, 楊珍平, 鄧妍. 極端年型旱地麥田深松和覆蓋播種水分消耗與植株氮素吸收、利用關(guān)系的研究. 中國(guó)農(nóng)業(yè)科學(xué), 2018, 51(18): 3455-3469.
LI N N, SUN M, GAO Z Q, ZHANG J, ZHANG H Y, LIANG Y F, YANG Q S, YANG Z P, DENG Y. A study on the relationship between water consumption and nitrogen absorption, utilization under sub-soiling during the fallow period plus mulched-sowing in humid and dry years of dryland wheat., 2018, 51(18): 3455-3469. (in Chinese)
[9] 田欣, 孫敏, 高志強(qiáng), 張娟, 林文, 薛建福, 楊珍平, 莫非. 播期播量對(duì)旱地小麥土壤水分消耗和植株氮素運(yùn)轉(zhuǎn)的影響. 應(yīng)用生態(tài)學(xué)報(bào), 2019, 30(10): 3443-3451.
TIAN X, SUN M, GAO Z Q, ZHANG J, LIN W, XUE J F, YANG Z P, MO F. Effects of sowing date and seeding rate on soil water consumption and plant nitrogen translocation in dryland wheat., 2019, 30(10): 3443-3451. (in Chinese)
[10] 薛麗華, 胡銳, 賽力汗, 陳興武, 陸樹(shù)清. 滴灌量對(duì)冬小麥耗水特性和干物質(zhì)積累分配的影響. 麥類作物學(xué)報(bào), 2013, 33(1): 78-83.
XUE L H, HU R, SAI L H, CHEN X W, LU S Q. Effect of different amount of drip irrigation on water consumption characteristics and dry matter accumulation and distribution in winter-wheat., 2013, 33(1): 78-83. (in Chinese)
[11] 高春華, 于振文, 石玉, 張永麗, 趙俊曄. 測(cè)墑補(bǔ)灌條件下高產(chǎn)小麥品種水分利用特性及干物質(zhì)積累和分配. 作物學(xué)報(bào), 2013, 39(12): 2211-2219.
GAO C H, YU Z W, SHI Y, ZHANG Y L, ZHAO J Y. Characteristics of water use and dry matter accumulation and distribution in different high-yielding wheat cultivars under supplemental irrigation based on soil moisture., 2013, 39(12): 2211-2219. (in Chinese)
[12] 鄭成巖, 于振文, 馬興華, 王西芝, 白洪立. 高產(chǎn)小麥耗水特性及干物質(zhì)的積累與分配. 作物學(xué)報(bào), 2008, 34(8): 1450-1458.
ZHENG C Y, YU Z W, MA X H, WANG X Z, BAI L H. Water consumption characteristic and dry matter accumulation and distribution in high-yielding wheat., 2008, 34(8): 1450-1458. (in Chinese)
[13] ZHANG X, WANG Y, SUN H. Optimizing the yield of winter wheat by regulating water consumption during vegetative and reproductive stages under limited water supply., 2013, 31(5): 1103-1112.
[14] 王德梅, 于振文, 張永麗, 王東. 灌水對(duì)不同小麥品種物質(zhì)生產(chǎn)及水分利用的影響. 麥類作物學(xué)報(bào), 2010, 30(2): 366-371.
WANG D M, YU Z W, ZHANG Y L, WANG D. Effects of irrigation on dry matter production and water use of different wheat cultivars., 2010, 30(2): 366-371. (in Chinese)
[15] 周玲, 王朝輝, 李富翠, 孟曉瑜, 李可懿, 李生秀. 不同產(chǎn)量水平旱地冬小麥品種干物質(zhì)累積和轉(zhuǎn)移的差異分析. 生態(tài)學(xué)報(bào), 2012, 32(13): 4123-4131.
ZHOU L, WANG Z H, LI F C, MENG X Y, LI K Y, LI S X. Analysis of dry matter accumulation and translocation for winter wheat cultivars with different yields on dryland., 2012, 32(13): 4123-4131. (in Chinese)
[16] PANDA R K, BEHERA S K, KASHYAP P S. Effective management of irrigation water for wheat under stressed conditions., 2003, 63: 37-56.
[17] YANG J C, ZHANG J H, HUANG Z L, ZHU Q S, WANG L. Remobilization of carbon reserves is improved by controlled soil-drying during grain filling of wheat., 2000, 40: 1645-1655.
[18] DONG B D, SHI L, SHI C H, QIAO Y Z, LIU M Y, ZHANG Z B. Grain yield and water use efficiency of two types of winter wheat cultivars under different water regimes.,2011, 99: 103-110.
[19] 李東方, 李世清, 張勝利. 不同基因型冬小麥干物質(zhì)運(yùn)移及其對(duì)氮的反應(yīng). 河南農(nóng)業(yè)科學(xué), 2006, 35(8): 34.
LI D F, LI S Q, ZHANG S L. Dry matter accumulation and transfer of different winter wheat genotypes and its response to N fertilizer., 2006, 35(8): 34. (in Chinese)
[20] ARDUINI I, MASONI A, ERCOLI L, MARIOTTI M. Grain yield, and dry matter and nitrogen accumulation and remobilization in durum wheat as affected by variety and seeding rate., 2006, 25(4): 309-318.
[21] 韓勝芳, 李淑文, 吳立強(qiáng), 文宏達(dá), 肖凱. 不同小麥品種氮效率與氮吸收對(duì)氮素供應(yīng)的響應(yīng)及生理機(jī)制. 應(yīng)用生態(tài)學(xué)報(bào), 2007, 18(4): 807-812.
HAN S F, LI S W, WU L Q, WEN H D, XIAO K. Responses and corresponding physiological mechanisms of different wheat varieties in their nitrogen efficiency and nitrogen uptake to nitrogen supply., 2007, 18(4): 807-812. (in Chinese)
[22] 吳金芝, 王志敏, 李友軍, 張英華. 干旱脅迫下不同抗旱性小麥品種產(chǎn)量形成與水分利用特征. 中國(guó)農(nóng)業(yè)大學(xué)學(xué)報(bào), 2015, 20(6): 25-35.
WU J Z, WANG Z M, LI Y J, ZHANG Y H. Characteristics of yield formation and water use in different drought tolerance cultivars of winter wheat under drought stress., 2015, 20(6): 25-35. (in Chinese)
[23] 陳士強(qiáng), 張容, 王建華, 朱瑩, 袁媛, 陳秀蘭, 何震天. 長(zhǎng)江中下游高產(chǎn)小麥產(chǎn)量與農(nóng)藝性狀的相關(guān)性研究. 江蘇農(nóng)業(yè)科學(xué), 2018, 46(6): 63-66.
CHEN S Q, ZHANG R, WANG J H, ZHU Y, YUAN Y, CHEN X L, HE Z T. Correlation between yield and agronomic characters of wheat with high yield in middle and lowerreaches of the Yangtze River., 2018, 46(6): 63-66. (in Chinese)
[24] 高玉紅, 吳兵, 崔紅艷, 劉宏勝, 常瑜, 田雪梅, 牛俊義. 不同旱地春小麥新品種(系)干物質(zhì)積累和產(chǎn)量形成的特點(diǎn). 干旱地區(qū)農(nóng)業(yè)研究, 2018, 36(5): 1-6.
GAO Y H, WU B, CUI H Y, LIU H S, CHANG Y, TIAN X M, NIU J Y. Characteristics of dry matter accumulation and grain yield forming of different spring wheat varieties or strains in dryland of Gansu province., 2018, 36(5): 1-6. (in Chinese)
[25] 王克武, 王志平, 鄭雅蓮, 張娜, 朱青艷. 小麥高WUE品種篩選和田間耗水規(guī)律研究. 干旱地區(qū)農(nóng)業(yè)研究, 2009, 27(2): 69-73.
WANG K W, WANG Z P, ZHENG Y L, ZHANG N, ZHU Q Y. Selection of wheat varieties with high WUE and study on laws of their water consumption., 2009, 27(2): 69-73. (in Chinese)
[26] 周凌云. 封丘地區(qū)雨養(yǎng)麥田的水分供應(yīng)和產(chǎn)量潛力. 土壤學(xué)報(bào), 1993, 30(3): 297-303.
ZHOU L Y. Water supply and potential productivity in rainfed wheat field in Fengqiu region., 1993, 30(3): 297-303. (in Chinese)
[27] 楊永華. 旱澇和干熱風(fēng)對(duì)安徽省阜陽(yáng)地區(qū)小麥生產(chǎn)的影響及預(yù)防措施. 農(nóng)業(yè)災(zāi)害研究, 2014, 4(2): 45-47.
YANG Y H. Influences and prevention measures of droughts & floods, dry-hot-wind on wheat production in Fuyang area of Anhui province., 2014, 4(2): 45-47. (in Chinese)
[28] 趙俊芳, 趙艷霞, 郭建平, 穆佳. 基于干熱風(fēng)危害指數(shù)的黃淮海地區(qū)冬小麥干熱風(fēng)災(zāi)損評(píng)估. 生態(tài)學(xué)報(bào), 2015, 35(16): 5287-5293.
ZHAO J F, ZHAO Y X, GUO J P, MU J. Assessment of the yield loss of winter wheat caused by dry-hot wind in Huanghuaihai plain based on the hazard index of dry-hot wind., 2015, 35(16): 5287-5293. (in Chinese)
[29] 王玉玲, 何鴻舉, 喬紅, 歐行奇. 氮磷鉀施用水平對(duì)不同小麥品種產(chǎn)量性狀的影響. 河南科技學(xué)院學(xué)報(bào)(自然科學(xué)版), 2019, 47(1): 16-19, 24.
WANG Y L, HE H J, QIAO H, OU X Q. Effects of N, P, K levels on the yield properties of different wheat cultivars., 2019, 47(1): 16-19, 24. (in Chinese)
[30] 黃玲, 高陽(yáng), 邱新強(qiáng), 李新強(qiáng), 申孝軍, 孫景生, 鞏文軍, 段愛(ài)旺. 灌水量和時(shí)期對(duì)不同品種冬小麥產(chǎn)量和耗水特性的影響. 農(nóng)業(yè)工程學(xué)報(bào), 2013, 29(14): 99-108.
HUANG L, GAO Y, QIU X Q, LI X Q, SHEN X J, SUN J S, GONG W J, DUAN A W. Effects of irrigation amount and stage on yield and water consumption of different winter wheat cultivars.2013, 29(14): 99-108. (in Chinese)
[31] 董浩, 陳雨海, 周勛波. 灌溉和種植方式對(duì)冬小麥耗水特性及干物質(zhì)生產(chǎn)的影響. 應(yīng)用生態(tài)學(xué)報(bào), 2013, 24(7): 1871-1878.
DONG H, CHEN Y H, ZHOU X B. Effects of irrigation and planting pattern on winter wheat water consumption characteristics and dry matter production., 2013, 24(7): 1871-1878. (in Chinese)
Relationship between Plant Dry Matter Accumulation, Translocation, Soil Water Consumption and Yield of High-yielding Wheat Cultivars
TONG Jin, SUN Min, REN Aixia, LIN Wen, YU Shaobo, WANG Qiang, FENG Yu, REN Jie, GAO Zhiqiang
(College of Agriculture, Shanxi Agricultural University, Taigu 030801, Shanxi)
【】By clarifying the relationship between dry matter accumulation, transportation of wheat plants and soil water change and yield formation, this paper intended to tap the production potential of cultivars, and providing the theoretical basis for improving the yield of winter wheat.【】Four wheat cultivars with different yield levels were selected, Yannong999, Shannong29, Hannong1412 and Liangxing67, and the field experiments were conducted in Hongtong county, Shanxi province from 2016 to 2018. The differences of dry matter accumulation and transportation, soil water consumption and their relationship with yield formation of different cultivars were compared to reveal the reasons for the differences in yield and water use efficiency among cultivars.【】For two consecutive years, the yield of Yannong999 and Shannong29 were higher than 9 000 kg?hm-2, reaching a super high yield level; The yield of Hannong1412 was higher than 8 000 kg?hm-2, reaching a high yield level; While the yield of Liangxing67 was lower than 7 500 kg?hm-2, not reaching the high yield level. Compared with Liangxing67, the three high-yielding cultivars improved the dry matter accumulation in stages from sowing stage to jointing, jointing stage to anthesis, and anthesis to mature by 12%-57%, 5%-62% and 11%-47%, respectively, which significantly improved the dry matter transportation before anthesis and the dry matter accumulation after anthesis by 1%-85% and 11%-48%, respectively. The total water consumption during the whole growth stage was improved by 17%-29%. The water consumption of the two stages before anthesis was increased by 11%-41% and 8%-32%, respectively. Finally, the ear numbers was improved by 7%-24%, the grain number per ear was improved by 4%-13%, the weight of 1 000 grains was improved by 1%-9%, the yield was improved by 20%-37%, and the water use efficiency was improved by 2%-14%. Compared with the high-yielding cultivars Hannong1412, a super high-yielding cultivar, significantly improved matter accumulation from sowing stage to jointing stage, jointing stage to anthesis and the dry matter transportation before anthesis by 32%-33%, 41%-55% and 49%-50%, respectively; The water consumption of Yannong999 in the first two stages of anthesis was increased by 5%-7% and 3%-9%, respectively; The ear numbers of Yannong999 was improved by 8%-16%, and the grain number per ear was improved by 5%-6%; the yield of Yannong999 was improved by 10%-11%. Shannong29 improved the dry matter accumulation after anthesis, the water consumption after anthesis, weight of 1000 grains, and the yield by 13%, 6%-26%, 4%-6% and 5%-6% respectively. Correlation analysis of four wheat varieties in the two experimental years showed that the water consumption in the first two stages before anthesis was significantly related with the dry matter transportation before anthesis. The dry matter transportation before anthesis was significantly related to the ear numbers and yield, the water consumption after anthesis was significantly related to the dry matter accumulation after anthesis, and the dry matter accumulation after anthesis was significantly related to the weight of 1000 grains and yield. In addition, compared with Liangxing67, for the three high-yielding cultivars, every increase of 1 mm of water consumption in growth period could increase 16-40 kg·hm-2of wheat yield. The contribution of soil water consumption of super high-yielding cultivars to grain yield was greater, and its water use efficiency was 6%-22% higher than that of high-yielding cultivars.【】The three high-yielding cultivars improved the dry matter translocation and water consumption in the two stages before anthesis, which was beneficial to optimize the yield and its components, so as to achieve the increase of yield and water use efficiency. There are some differences in wheat cultivars for getting high-yielding. Yannong999 had a strong ability of using soil water in early growth, which promoted the translocation of dry matter to grains before anthesis, and achieved super high-yielding by increasing the ear numbers and the grain number per ear. Shannong29 had a strong ability of using soil water in later growth stage, which promoted the dry matter accumulation after anthesis, and achieved super high-yielding by increasing the weight of 1000 grains.
wheat; high-yielding cultivars; dry matter accumulation and translocation; soil water consumption; yield; water use efficiency
10.3864/j.issn.0578-1752.2020.17.005
2020-02-10;
2020-06-04
國(guó)家現(xiàn)代農(nóng)業(yè)產(chǎn)業(yè)技術(shù)體系建設(shè)專項(xiàng)(CARS-03-01-24)、國(guó)家重點(diǎn)研發(fā)計(jì)劃(2018YFD020040105)、國(guó)家自然科學(xué)基金(31771727)、山西省回國(guó)留學(xué)人員科研項(xiàng)目(2017-068)、作物生態(tài)與旱作栽培生理山西省重點(diǎn)實(shí)驗(yàn)室(201705D111007)、山西省重點(diǎn)研發(fā)計(jì)劃重點(diǎn)項(xiàng)目(201703D211001)、山西農(nóng)谷建設(shè)科研專項(xiàng)(SXNGJSKYZX201703)、小麥旱作栽培山西省重點(diǎn)創(chuàng)新團(tuán)隊(duì)項(xiàng)目(201605D131041)、山西省優(yōu)秀博士來(lái)晉工作獎(jiǎng)勵(lì)資金科研項(xiàng)目(SXYBKY2018044)
仝錦,E-mail:965733679@qq.com。通信作者高志強(qiáng),E-mail:gaozhiqiang1964@126.com
(責(zé)任編輯 楊鑫浩)