◎李四偉 (中山市第一中等職業(yè)技術(shù)學(xué)校,廣東 中山 528400)
2020 年廣東省中等職業(yè)學(xué)校高職高考已經(jīng)結(jié)束了,縱觀數(shù)學(xué)試卷,更加充分地體現(xiàn)了中職數(shù)學(xué)在實際中的運用,符合中職學(xué)生的數(shù)學(xué)基礎(chǔ),對中職數(shù)學(xué)的教學(xué)改革也提供了參考.根據(jù)多年高職高考班的一線教學(xué)經(jīng)驗,我簡單談?wù)勚械嚷殬I(yè)學(xué)校高職高考數(shù)學(xué)的一些教學(xué)策略.
中職學(xué)校高職高考數(shù)學(xué)是以職業(yè)高中、中等專業(yè)學(xué)校和技工學(xué)校應(yīng)屆畢業(yè)生為對象的選拔性考試,結(jié)合廣東省中等職業(yè)學(xué)校數(shù)學(xué)教育的實際,對知識的認知要求分為了解、理解和掌握三個層次.中職學(xué)校課程安排主要是專業(yè)課,文化課課時較少,學(xué)生在初中學(xué)習(xí)時數(shù)學(xué)基礎(chǔ)一般也很薄弱,這就需要我們根據(jù)實際情況,合理選擇教材內(nèi)容,根據(jù)考綱來進行教學(xué)安排.今年的中等職業(yè)學(xué)校高職高考數(shù)學(xué)試卷和以往相比,顯得更加注重基本概念,并沒有增加難度.選擇題、填空題中考查了學(xué)生對基本知識的理解和運用,主要知識點為交集、定義域、反函數(shù)、一元二次不等式、充要條件、點到直線的距離公式、方差、等差數(shù)列、直線和圓的關(guān)系、雙曲線的焦點、拋物線的準線、三角函數(shù)、向量的平行與垂直、函數(shù)的奇偶性、單調(diào)性、概率等,沒有對數(shù)的運算、指數(shù)函數(shù)、正弦定理、余弦定理、圓的參數(shù)方程等知識點,突出了重點考查學(xué)生的基礎(chǔ)知識.在學(xué)生充分理解了基本知識點后,計算出正確答案應(yīng)該是比較容易得分的,符合中職數(shù)學(xué)的實際情況,指明了中職數(shù)學(xué)的教學(xué)方向.因此,在平時的教學(xué)中,我們要加強學(xué)生的數(shù)學(xué)基本知識(包括數(shù)學(xué)概念、數(shù)學(xué)計算、數(shù)學(xué)邏輯等)教學(xué),培養(yǎng)學(xué)生的數(shù)學(xué)基本能力,為他們進入高職院校進一步深造打下基礎(chǔ).
考試大綱是中職數(shù)學(xué)教學(xué)的根本,任教老師一定要加強對考綱的理解.在這個基礎(chǔ)上,結(jié)合學(xué)生實際,在教學(xué)中選擇合適的教材.對教學(xué)內(nèi)容符合考綱要求的,要注重基礎(chǔ)知識的講解和訓(xùn)練,優(yōu)化教學(xué)知識結(jié)構(gòu);對一些不符合考綱的知識點要進行刪減.現(xiàn)在的考綱中刪除了向量的平移公式;刪除直線的方向向量和直線的點向式方程、直線的法向向量和直線的點法式方程的要求,新增了理解直線的斜截式方程、截距式方程;刪除了兩條直線的夾角的求法.教師必須根據(jù)這些變化在教學(xué)過程中做出相應(yīng)的教學(xué)調(diào)整,以適應(yīng)新的考試要求.
今年的中等職業(yè)學(xué)校高職高考數(shù)學(xué)題更接近中職學(xué)生的實際情況,更好地選拔了中職學(xué)校的優(yōu)秀生進入高職院校.比如,不等式,考綱中要求是理解不等式的性質(zhì),會證明簡單的不等式,掌握一元一次不等式、一元二次不等式、絕對值不等式的求解,會解簡單的不等式應(yīng)用題.考綱里面沒有具體涉及均值不等式、分式不等式、無理不等式、指數(shù)不等式、對數(shù)不等式等.前幾年的高考題中出現(xiàn)了這樣的試題:(08 年高考題)解不等式(11 年高考題)解不等式從這些試題看出,關(guān)于不等式內(nèi)容有逐漸降低難度的趨勢,更加符合中職學(xué)生的實際.因此,我們在教學(xué)過程中就要合理地把握難度,不宜過度地講解難題,而是將重點放在讓學(xué)生了解這個知識點,會解簡單的不等式上,優(yōu)化教學(xué)內(nèi)容,在有限的教學(xué)時間內(nèi)提高教學(xué)效率.
現(xiàn)在中職數(shù)學(xué)高考時間已經(jīng)提前到春季進行,學(xué)生學(xué)習(xí)時間明顯縮短了一個學(xué)期,但知識點的考查并沒有減少.為了更好地讓學(xué)生掌握知識,教師必須進行課堂教學(xué)改革,提高課堂教學(xué)效率,完成教學(xué)任務(wù).這里根據(jù)數(shù)學(xué)知識點的邏輯關(guān)系,建議進行模塊化教學(xué)設(shè)計,注重基礎(chǔ)知識的傳授與復(fù)習(xí).
目前各高考復(fù)習(xí)資料已經(jīng)按章節(jié)進行了模塊編寫,教師利用資料復(fù)習(xí)是很好的方法.下面是近幾年高考題各模塊章節(jié)知識點的分布比例,教師可以根據(jù)這個數(shù)據(jù)來合理安理教學(xué)任務(wù).
章節(jié) 2019 年 2018 年 2017 年 2016 年 2015 年年集合與邏輯用語 6.67% 6.67% 6.67% 6.67% 6.67%不等式 3.33% 0 0 3.33% 6.67%函數(shù) 18.00% 14.67% 14.00% 10.00% 6.67%三角函數(shù) 14.67% 18.00% 18.00% 18.00% 26.00%數(shù)列 14.67% 14.67% 14.67% 14.67% 16.00%平面向量 6.67% 6.67% 6.67% 10.00% 6.67%平面解析幾何 22.67% 22.67% 26.67% 27.33% 18.00%概率與統(tǒng)計初步 10.00% 10.00% 10.00% 10.00% 10.00%指數(shù)函數(shù)與對數(shù)函數(shù) 3.33% 6.67% 3.33% 0 3.33%
我在這個基礎(chǔ)上,又重新進行了模塊化教學(xué)設(shè)計.第一個模塊:基本計算能力.在這個設(shè)計中,主要把整式、分式、一元一次方程、一元二次方程、一元一次不等式、一元二次不等式、分式不等式、絕對值不等式、二元二次方程(解析幾何上的曲線方程計算)、指數(shù)、對數(shù)的計算放在一起,主要是訓(xùn)練學(xué)生的基本計算能力,讓他們能夠快速計算出結(jié)果.第二個模塊:基本概念的理解.這里包括集合的一些概念、充要條件、函數(shù)概念、指數(shù)函數(shù)、對數(shù)函數(shù)、三角函數(shù)、等差和等比數(shù)列、平面向量、解析幾何中的直線、圓、橢圓、雙曲線、拋物線、概率等.讓學(xué)生掌握數(shù)學(xué)中的一些基本概念,并學(xué)會簡單應(yīng)用.第三個模塊:能力提高訓(xùn)練模塊.這里主要是針對解答題思想方法的研究,利用基本知識進行綜合能力的訓(xùn)練.學(xué)生熟練掌握了前面兩個模塊,第三個模塊學(xué)起來就會快很多了.
數(shù)學(xué)來源于生活,又應(yīng)用于生活.《普通高中數(shù)學(xué)課程標準(2017 年版)》中提出:應(yīng)加強數(shù)學(xué)與學(xué)生生活經(jīng)驗的聯(lián)系,從學(xué)生熟知、感興趣的生活事例出發(fā),以生活實踐為依托,將生活經(jīng)驗數(shù)學(xué)化,促進學(xué)生的主動參與,煥發(fā)出數(shù)學(xué)課堂的活力.近幾年的高職高考數(shù)學(xué)試卷的解答題中,都出現(xiàn)了這種與實際生活相結(jié)合的情況.
15 年高職高考第21 題:某單位有一塊如圖所示的四邊形空地ABCD,已知∠A=90° ,AB=3 m,AD=4 m,BC=12 m,CD=13 m.
(1)求 cosC的值;
(2)若在該空地上種植每平方米100 元的草皮,問:需要投入多少資金?
18 年高職高考第21 題:已知矩形的周長為 10 ,設(shè)該矩形的面積為A,一邊的長為x .
(1)將A表示為x的函數(shù);
(2)求A的最大值;
(3)設(shè)周長為 10 的圓的面積為S,試比較A和S的大小關(guān)系,并說明理由.
以上兩題都是實際生活與數(shù)學(xué)知識的簡單結(jié)合,種植草皮投入多少資金? 比較矩形和圓的面積大小等,與生活實際密切相關(guān),我們在教學(xué)中要多挖掘教材內(nèi)容中的生活素材,把生活經(jīng)驗數(shù)學(xué)化,數(shù)學(xué)問題生活化,以此來激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣,讓枯燥的數(shù)學(xué)問題變?yōu)楝F(xiàn)實中的實際問題,從而使學(xué)生對數(shù)學(xué)產(chǎn)生親切感,增強了數(shù)學(xué)的應(yīng)用意識.這種體驗式教學(xué),讓學(xué)生用所學(xué)的數(shù)學(xué)知識進行簡單的數(shù)學(xué)建模,以此來解決實際問題,更好地體現(xiàn)了數(shù)學(xué)的應(yīng)用價值.
中等職業(yè)學(xué)校高職高考是一種選拔人才的考試,部分中等職業(yè)學(xué)校某些專業(yè)有了本科的招生,這更有利于一些優(yōu)秀學(xué)生獲得職業(yè)教育的高層次發(fā)展,并促進職業(yè)教育的發(fā)展.因此,在中等職業(yè)學(xué)校高職高考數(shù)學(xué)教學(xué)過程中,教師除了注重基礎(chǔ)知識講授外,還要適當進行分層教學(xué),加強各知識點的綜合運用,讓部分學(xué)有余力的學(xué)生靈活掌握數(shù)學(xué)知識,爭取在中等職業(yè)學(xué)校高職高考中取得更好的成績.近幾年的中等職業(yè)學(xué)校高職高考最后幾道大題也是采取了這樣的區(qū)分度,更有利于選拔出優(yōu)秀學(xué)生進入本科院校學(xué)習(xí).
16 年高職高考第 23 題:已知數(shù)列{an}的前n項和Sn滿足an+Sn=1(n∈N?),若a7=16,a12=26.
(1)求{an}的通項公式;
(2)設(shè)bn=log2an(n∈N?),求數(shù)列{bn}的前n項和Tn.
(1)求橢圓的標準方程;
(2)設(shè)P是橢圓上的任意一點,求 cos∠F1PF2的最小值.
上一題是數(shù)列知識與對數(shù)函數(shù)結(jié)合,下一題是橢圓知識與三角函數(shù)結(jié)合,突出了數(shù)學(xué)知識的綜合運用,區(qū)分度較高,有利于選拔學(xué)習(xí)能力強的學(xué)生進入本科院校繼續(xù)深造.
(1)求橢圓方程;
(2)點P(x0,y0)為橢圓上一點,當∠F1PF2為銳角時,求x0的取值范圍.
這道題將橢圓知識和向量知識結(jié)合,第(2)問利用向量的內(nèi)積公式來計算就方便多了.此題突出考查綜合運用數(shù)學(xué)知識的能力.
課堂教學(xué)改革離不開現(xiàn)代化信息技術(shù),作為一線教育工作者,更是要充分利用信息技術(shù),提高課堂教學(xué)效率,適應(yīng)教育信息化時代的要求,促進由“教”向“學(xué)”的轉(zhuǎn)變.教師除了在課堂上用課件講授重點知識外,還可以通過網(wǎng)絡(luò)學(xué)習(xí)平臺,把相關(guān)的學(xué)習(xí)資料、微課等內(nèi)容發(fā)布上去,讓學(xué)生利用課前來預(yù)習(xí),課后來鞏固,不再受上課時間的限定;教師還可以在平臺上給學(xué)生答疑或與學(xué)生互動,并且進行線上測評等,對學(xué)生進行學(xué)習(xí)指導(dǎo),把線上和線下教育結(jié)合起來.目前,很多高考復(fù)習(xí)資料也帶有電子版本,教師可以根據(jù)所教學(xué)生的實際情況,把一些比較重要的知識,或者較難理解的知識,放在網(wǎng)絡(luò)學(xué)習(xí)平臺上,讓學(xué)生根據(jù)自己的實際來自主學(xué)習(xí),達到事半功倍的效果.
中等職業(yè)學(xué)校高職高考數(shù)學(xué)教學(xué),教師既要在較短的時間內(nèi)讓學(xué)生系統(tǒng)掌握數(shù)學(xué)基礎(chǔ)知識,又要加強學(xué)生數(shù)學(xué)能力的培養(yǎng).這就需要我們緊緊根據(jù)考試大綱,適當調(diào)整教材內(nèi)容,改進教學(xué)方法,重構(gòu)教學(xué)體系,利用信息化教學(xué)技術(shù)提高課堂教學(xué)效率.同時積極做好中職數(shù)學(xué)高考方向的研究,為高職院校輸送更多的人才.