• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    CAS FGOALS-g3 Model Datasets for the CMIP6 Scenario Model Intercomparison Project (ScenarioMIP)

    2020-09-07 08:21:06YePUHongboLIURuojingYANHaoYANGKunXIAYiyuanLILiDONGLijuanLIHeWANGYanNIEMirongSONGJinboXIEShuwenZHAOKangjunCHENBinWANGJianghaoLIandLingZUO
    Advances in Atmospheric Sciences 2020年10期

    Ye PU, Hongbo LIU*, Ruojing YAN,2, Hao YANG,2, Kun XIA, Yiyuan LI, Li DONG, Lijuan LI,He WANG, Yan NIE,2, Mirong SONG, Jinbo XIE, Shuwen ZHAO,2, Kangjun CHEN,Bin WANG, Jianghao LI,2, and Ling ZUO,3

    1State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics (LASG),Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China

    2College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, China

    3Department of Atmospheric Sciences, Yunnan University, Kunming 650504, China

    ABSTRACT This paper describes the datasets from the Scenario Model Intercomparison Project (ScenarioMIP) simulation experiments run with the Chinese Academy of Sciences Flexible Global Ocean-Atmosphere-Land System Model,GridPoint version 3 (CAS FGOALS-g3). FGOALS-g3 is driven by eight shared socioeconomic pathways (SSPs) with different sets of future emission, concentration, and land-use scenarios. All Tier 1 and 2 experiments were carried out and were initialized using historical runs. A branch run method was used for the ensemble simulations. Model outputs were three-hourly, six-hourly, daily, and/or monthly mean values for the primary variables of the four component models. An evaluation and analysis of the simulations is also presented. The present results are expected to aid research into future climate change and socio-economic development.

    Key words: ScenarioMIP, CMIP6, CAS FGOALS-g3

    1. Introduction

    Climate change and sustainable development are at the frontier of international geoscience research in the 21st century. Their global impacts have made them two of the most important challenges facing human society today(Houghton et al., 1996, 2001; Ye et al., 2003). According to the Fifth Intergovernmental Panel on Climate Change(IPCC) Assessment Report, it is clear that human activity affects the climate system and recent anthropogenic emissions of greenhouse gases are the highest in history. Recent climatic changes have had a wide range of impacts on human and natural systems. Since 1950, many changes in extreme weather events and the climate have been observed,such as a decrease in extreme low temperatures, an increase in extreme high temperatures, extremely high sea levels,and heavy precipitation events in some regions (Alexander et al., 2006; Mudersbach et al., 2013; Wang and Fu, 2013).Continued emissions of greenhouse gases will lead to further warming and long-term changes in all components of the climate system, increasing the likelihood of serious, widespread, and irreversible impacts on human society and Earth’s ecosystems (AR5; IPCC, 2014).

    Measurements of economic risk are science-based tools used by governments to make important decisions related to climate change. They are also core components of previous IPCC scientific assessment reports. To better measure the relationship between different socioeconomic development models and climate change risks, the IPCC developed scenario A (SA90) for the first assessment report (FAR) in 1990(IPCC, 1990), IS92 for the third assessment report (TAR) in 1992 (IPCC, 1992), the SRE scenario for the TAR’s special report on emissions and the fourth assessment report (AR4;IPCC, 2000), and the Representative Concentration Pathway (RCP) for the fifth assessment report (van Vuuren et al., 2011). Phase 6 of the Coupled Model Intercomparison Project (CMIP6) uses six integrated assessment models(IAMs), various shared socioeconomic paths (SSPs), and the latest trends in anthropogenic emissions and land-use changes to generate new prediction scenarios. These scenarios form part of CMIP6 and are referred to as the Scen-ario Model Intercomparison Project (ScenarioMIP; O’Neill et al., 2016).

    ScenarioMIP is a matrix combination of different SSPs and radiative forcing. An SSP describes possible future social development without the effects of climate change or climate policy (Zhang et al., 2019). O’Neill et al. (2016)gave a complete description of ScenarioMIP for CMIP6.For the analysis presented here, we briefly describe each SSP. A total of five pathways (i.e., SSP1, SSP2, SSP3,SSP4, and SSP5) are included in CMIP6, which consider the effects of population changes, economic growth, and urbanization (Calvin et al., 2017; Kriegler et al., 2017; Fricko et al., 2017; Fujimori et al., 2017; van Vuuren et al., 2017).Among the pathways, SSP1 is the most optimistic scenario and maintains sustainable development. In contrast, SSP5 assumes an energy intensive, fossil-fuel-based economy,although it also assumes relatively optimistic development.SSP2 is a middle pathway, which assumes current development trends continue in the future. SSP3 and SSP4 are the most undesirable pathways and assume unsustainable development trends, involving less investment in education and health, fast-growing populations, and increasing inequality.ScenarioMIP uses the IAMs to generate quantitative predictions of greenhouse gas emissions, atmospheric component concentrations, and land-use changes that may occur under different SSP energy scenarios. ScenarioMIP divides the experiments into two groups: Tier 1 and Tier 2. Tier 1 includes new SSP-based scenarios (SSP1-2.6, SSP2-4.5,SSP5-8.5) as continuations of the RCP2.6, RCP4.5, and RCP8.5 forcing levels, and an additional unmitigated forcing scenario (SSP3-7.0) with particularly high aerosol emissions and land-use change. Tier 2 includes additional scenarios of interest as well as additional ensemble members and long-term extensions (SSP1-1.9, SSP4-3.4, SSP4-6.0,SSP5-3.4-over) (O’Neill et al., 2016).

    The Chinese Academy of Sciences Flexible Global Ocean-Atmosphere-Land System Model, GridPoint version 3 (CAS FGOALS-g3), developed by the State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics (LASG), Institute of Atmospheric Physics (IAP), Chinese Academy of Sciences (CAS), has completed the Tier 1 and 2 experiments of ScenarioMIP (Li et al., 2020a). Simulation results have been submitted to the Earth System Grid (ESG) data server(https://esgf-nodes.llnl.gov/projects/cmip6/). Section 2 provides detailed descriptions of the experimental design,model configuration, and output variables of the ScenarioMIP Tier 1 and 2 experiments performed using the CAS FGOALS-g3 model. Section 3 presents a preliminary model verification and future projections for each scenario. A brief usage note is provided in section 4.

    2. Model and experiments

    2.1. Model description

    CAS FGOALS-g3 comprises the following five components:

    (1) Atmospheric general circulation model (AGCM).The Gridpoint Atmospheric Model of IAP LASG, version 3(GAMIL3) (Li et al. 2020b), is an updated version of GAMIL2 (Li et al., 2013).

    (2) Oceanic general circulation model (OGCM). The LASG/IAP Climate Ocean Model (LICOM3) has been updated from LICOM2 (Liu et al., 2012; Lin et al., 2016).LICOM3 has performed the OMIP simulations and a detailed description of the results is given by Lin et al.(2020).

    (3) Land model. The Land Surface Model of the Chinese Academy of Sciences (CAS-LSM), the land component of FGOALS-g3 with the same horizontal resolution as the atmospheric model, is based on the Community Land Model, version 4.5 (CLM4.5).

    (4) Sea ice model. The sea ice model is the improved Los Alamos sea ice model, version 4.0, which uses the same grid as the oceanic model.

    (5) Coupler. In FGOALS-g3, there are two optional couplers: CPL7, developed by the National Center for Atmospheric Research (NCAR) (Craig et al., 2012), and the Community Coupler, version 2 (C-Coupler2), developed by Tsinghua University (Liu et al., 2018).

    A detailed description of CAS FGOALS-g3 is given in Li et al. (2020a).

    2.2. Experimental design

    Following the requirements for ScenarioMIP experiments (O’Neill et al., 2016), we carried out simulations for eight scenarios (Experiment ID in Table 1). In these experiments, the external forcings, including greenhouse gas concentrations, ozone concentrations, anthropogenic aerosol optical properties and an associated Twomey effect, landuse changes, and solar irradiance, are all based on the SSP scenario. All experiments were initialized from 1 January 2015 (branch run from the end of the historical runs, which ended on 31 December 2014) and share the same physical scheme settings, which are exactly same as those of the historical run. Experiment variants are labelled; e.g., r1i1p1f1,indicating the realization, initialization, physical, and forcing indices. We used the branch run method for the Tier 1 and 2 SSP scenario simulations. For example, the label r1i1p1f1 indicates that the initial conditions are the outputs from the historical r1i1p1f1 branch run. Table 1 gives detailed descriptions of each experiment.

    We used the model outputs for the period 2015-2100 in our analysis. Following the requirements of CMIP6 (Martin et al., 2020), monthly mean values for the primary variables of each component model were output. To investigate predicted extreme weather events in each scenario, the atmospheric component also provides additional 6-h and 3-h high-frequency outputs for some variables, including precipitation, specific humidity, and near-surface air temperature,for both future predictions and the historical runs. Details of the primary outputs and diagnostic variables for each component model are given in Tables 2-5.

    Table 1. ScenarioMIP experiment descriptions.

    We used the following observational datasets for the model validation: Global Precipitation Climatology Project(GPCP, version 2.3) monthly data (Adler et al., 2003), Had-CRUT4 monthly mean near-surface temperatures (Morice et al., 2012), China Merged Surface Temperature data (Yun et al., 2019), and the Arctic and Antarctic sea ice area records provided by the National Snow and Ice Data Center(NSIDC; http://nsidc.org/arcticseaicenews/sea-ice-tools/).The ensemble means from the historical runs (six members)and Tier 1 SSP experiments (see Table 1 for ensemble sizes) were used in our analysis. The base period for each anomaly analysis was 1980-2009.

    3. Model validation and future projections

    Reasonable reproductions of the past climate form the basis of the future projections generated by most climate models. In our historical runs, the trend of increasing surface temperature (i.e., global warming; 1980-2009 base period is adopted) since 1980 is well reproduced, and the fluctuation around 1990-1995 (related to volcano activities) is also well captured (Fig. 1a). This warming trend remains for all ScenarioMIP experiments until the 2030s when the projections diverge. The surface temperature increase remains roughly linear for high-emission scenarios with large radiative forcings, especially for SSP5-8.5, but also for SSP3-7.0,SSP4-6.0, and SSP2-4.5. By 2100, the positive anomaly is projected to reach 3.2°C (SSP5-8.5), 2.8°C (SSP3-7.0),1.8°C (SSP4-6.0), or 1.4°C (SSP2-4.5). In contrast, there is no significant temperature increase projected for SSP5-3.4-over, SSP4-3.4, or SSP1-2.6, and a decreasing trend is even projected for SSP1-1.9. The positive anomaly in 2018 is 0.6°C but decreases to 0.4°C after 2050 for SSP1-1.9.

    During the period 1980-2016, the observed global precipitation (GPCP) follows an increasing trend but with large annual fluctuations (Fig. 1b). The FGOALS-g3 model captures this increasing trend, but with less pronounced annual fluctuations. This is reasonable because the result of FGOALS-g3 is the ensemble mean, which smooths some model internal variability. Under all scenarios, the precipitation increases until 2050 when precipitation variability increases and results diverge among the scenarios, as was the case for the surface temperature trends (Fig. 1a). For SSP1-1.9, the precipitation decreases after 2050, and eventually returns to the values of the 2000s and 2010s. For SSP4-3.4 and SSP5-3.4-over, the increasing tends are not significant. By 2100, the anomaly reaches 0.06 mm d?1for scenarios SSP2-4.5 and SSP4-6.0, and exceeds 0.10 mm d?1for scenarios SSP3-7.0 and SSP5-8.5.

    Consistent with the results shown in Fig. 1a, the annualmean global surface temperature follows an overall increasing trend over the period 2070-99 relative to the base period, as radiative forcing increases. However, large spatial discrepancies for the same emission and land-use scenarios exist in the simulations from each experiment (Fig. 2).In general, the surface temperature over the Arctic and highlatitude regions of the NH presents the strongest warming signals, with amplitudes of 1.0°C to >5.0°C for the SSP1-1.9to SSP5-8.5 scenarios. The surface warming over the continents is generally higher than over the oceans, particularly for the Tibetan and Brazilian plateaus. Although ocean surface warming remains relatively weak, the equatorial East-Central Pacific shows an El Ni?o-like warm tongue for SSP4-3.4 and the last four scenario simulations (Figs. 2c and e-h). The differences in regional patterns of warming are consistent with expectations and previous results. Note that although a global warming trend exists under each scenario, the North Atlantic Ocean is an exception. The northwest-southeast belt-shaped “warm hole” (i.e., cooling anomaly) in this region even strengthens with increased radiative forcing and reaches ?5.0°C for SSP4-6.0 (Fig. 2f). This phenomenon has been observed in other simulation studies (Gervais et al., 2019), and may be related to Arctic sea ice melting and resulting changes to ocean circulation patterns, such as the Atlantic Meridional Overturning Circulation(AMOC). We will describe them in the following contents.

    Table 2. AGCM output variables from FGOALS-g3 for the ScenarioMIP experiments. TOA means top of atmosphere; * represents additional high-frequency output variables.

    Table 3. OGCM output variables from FGOALS-g3 for the ScenarioMIP experiments.

    Table 4. Land model output variables from FGOALS-g3 for the ScenarioMIP experiments.

    Table 5. Sea ice model output variables from FGOALS-g3 for the ScenarioMIP experiments.

    Fig. 1. Global mean (a) surface air temperature anomaly (units: °C) and (b) precipitation anomaly (units: mm d?1)time series from observations (black and deep red lines), historical runs (red line) for 1980-2014, and eight SSP scenario experiments for 2015-2100. The base period is 1980-2009.

    The projected annual mean precipitation shows large variations in the tropical and subtropical regions of both the NH and SH (Fig. 3). Between 2070 and 2099, there is a narrow quasi-east-west belt of increased rainfall over the equatorial Pacific with large amounts of precipitation to the east of the Maritime Continent. The positive rainfall anomalies increase from 0.5 mm d?1to >3.0 mm d?1as the scenario varies from lower to higher future forcing. In contrast, the tropical Indian Ocean, subtropical southwestern Pacific, tropical western Atlantic, and northern South America all show decreases in rainfall of ?0.5 to ?1.5 mm d?1. Rainfall anomalies present an obvious dipole feature in the tropical Indian ocean in all scenarios. Lower rainfall intensities in these regions are associated with greater radiative forcing.

    The spatial distributions of winter snow cover over the NH for the period 2070-2099 relative to the base period for eight scenarios are shown in Fig. 4. Clear negative anomalies are evident in the NH under the various emission scenarios. Western Europe and southern North America experience the most significant decrease. With increasing carbon dioxide concentrations and anthropogenic radiative forcing,these negative anomalies grow. For SSP3-7.0 and SSP5-8.5,most areas north of 30°N show negative anomalies, with values less than ?0.2 over Eurasia and North America (Figs. 4g and h). Results suggest that to maintain snow cover over the NH, it will be important to control greenhouse gas emissions in the future.

    The AMOC plays an important role in regulating the climate by transporting heat northward in the Atlantic and thus maintaining the warmth of the NH. The annual mean maximum volume transport stream function at 26.5°N [units: Sverdrups (Sv)] in the Atlantic is used to measure the intensity of the AMOC. The historical and eight scenario simulations of the AMOC are shown in Fig. 5. From 1980 to 2015,the simulated AMOC from historical runs maintains an intensity of approximately 27.0 Sv, with a weak increase during the 1980s and a decrease in the early 1990s. Similar to surface temperature, the projected AMOC shows an overall weakening trend from 2015 to 2100 for SSP2-4.5, SSP4-6.0, SSP3-7.0, and SSP5-8.5. By 2100, the AMOC shows a decrease in intensity of 26% (37%) for SSP2-4.5 and SSP4-6.0 (SSP3-7.0 and SSP5-8.5). Due to the internal variability of AMOC, the regulation of deep water formation in the Greenland-Iceland-Norwegian Seas and Arctic sea ice melting, the projected AMOC shows large fluctuations under small-to-medium radiative forcing scenarios. This is similar to the results of FGOALS-g2 (Huang et al., 2014). For example, in the 2090s, the AMOC exhibits a strong rebound with a 4% intensity increase relative to 2014 values for SSP1-1.9. For SSP1-2.6, SSP4-3.4, and SSP5-3.4-over, the AMOC also rebounds, but to a lesser extent than for SSP1-1.9.

    Fig. 2. Annual mean global surface temperature difference (units: °C; 2070-2099 minus 1980-2009) between the eight ScenarioMIP experiments (2070-2099) and historical runs (1980-2009) for scenarios (a) SSP1-1.9, (b) SSP1-2.6, (c) SSP4-3.4, (d) SSP5-3.4-over, (e) SSP2-4.5, (f) SSP4-6.0, (g) SSP3-7.0, and (h) SSP5-8.5. Black dots denote the results significant at the 95% confidence level (similarly for Figs. 3 and 4).

    Figure 6 presents the sea ice area (SIA) anomaly time series over both hemispheres for the NSIDC observations,the historical runs, and the eight ScenarioMIP experiments.Overall, the variation of the SIA over the SH is greater than in the NH in both observations and simulations. The observed SIA over the NH first rises at the end of the 1980s and then gradually decreases over the subsequent 30 years(Fig. 6a). In contrast, the SIA over the SH has continuously increased, with relatively large annual variations, since 1980, and reached a peak around 2014 before decreasing sharply to its lowest point in 2017. The SIA anomalies associated with the historical runs over the NH are more consistent with the observations (i.e., they follow a decreasing trend), but show large discrepancies over the SH, especially between 2008 and 2014 (Fig. 6b). The rate of projected SIA decay over the NH is the largest for SSP5-8.5, followed by SSP3-7.0. The projected SIA over the NH is constant for SSP1-1.9, SSP1-2.6, SSP4-3.4, and SSP5-3.4-over, and even increases in the mid-21st century for SSP1-1.9.Although the SIA over the SH exhibits similar variations to those over the NH for each SSP, the decay rate decreases(e.g., for SSP5-8.5 and SSP3-7.0) and the amplitude of the annual fluctuations increases for all ScenarioMIP experiments.

    Fig. 3. As in Fig. 2, but for annual mean global precipitation (units: mm d?1).

    Fig. 4. As in Fig. 2, but for the spatial distribution of winter snow cover fraction over the NH.

    Fig. 5. AMOC (units: Sv) time series from historical runs (red line) for 1980-2014 and eight SSP scenario experiments for 2015-2100.

    4. Usage notes

    The AGCM and land surface model use the same horizontal resolution; i.e., an equal area-weighted 180 × 80 horizontal grid in the zonal and meridional directions. The OGCM and sea ice model use the same tripolar 360 × 218 grid. The model outputs on their native grids have been saved and transformed to the Climate Model Output Rewriter (CMOR) file structure as required by CMIP6.According to the standard of CMOR, each variable is stored in a separate file. The dataset format is Network Common Data Form (NetCDF), version 4. The data can be down-loaded from CMIP6 website.

    Fig. 6. SIA anomaly (units: 106 km2) time series for the (a) NH and (b) SH from NSIDC observations(1980-2019), historical runs (1980-2014), and eight ScenarioMIP runs (2015-2100). The base period is 1980-2009.

    Acknowledgements.This study was supported by the National Key Research and Development Program of China (Grant Nos. 2017YFA0603903, 2017YFA0603901, and 2017YFA060 3902), the Strategic Priority Research Program of Chinese Academy of Sciences (Grant No. XDB42010404) and the National Basic Research (973) Program of China (Grant Nos.2015CB954102).Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source,provide a link to the Creative Commons license, and indicate if changes were made.

    av一本久久久久| 丝袜美腿诱惑在线| 曰老女人黄片| 在线观看三级黄色| 中文字幕人妻熟女乱码| 美女大奶头黄色视频| 女人久久www免费人成看片| 秋霞伦理黄片| 精品一区二区三卡| 一区二区三区激情视频| 国精品久久久久久国模美| xxxhd国产人妻xxx| 欧美少妇被猛烈插入视频| 色精品久久人妻99蜜桃| 精品人妻在线不人妻| 美女国产高潮福利片在线看| 色综合欧美亚洲国产小说| 美女大奶头黄色视频| 国产xxxxx性猛交| 国产精品一区二区精品视频观看| 中文字幕最新亚洲高清| 精品国产乱码久久久久久小说| 国产精品久久久人人做人人爽| 超碰97精品在线观看| 嫩草影院入口| 久久热在线av| 日韩制服骚丝袜av| 亚洲精品自拍成人| 中文字幕另类日韩欧美亚洲嫩草| 久久鲁丝午夜福利片| 老熟女久久久| 老司机在亚洲福利影院| 高清欧美精品videossex| 一区二区三区四区激情视频| 在线观看国产h片| 亚洲欧洲精品一区二区精品久久久 | 水蜜桃什么品种好| 又黄又粗又硬又大视频| 免费久久久久久久精品成人欧美视频| 国产欧美日韩综合在线一区二区| 国产一区二区三区av在线| 欧美日韩综合久久久久久| 在线观看免费视频网站a站| 国产日韩欧美在线精品| 国产免费又黄又爽又色| 久久精品国产a三级三级三级| 欧美国产精品va在线观看不卡| 欧美日韩亚洲国产一区二区在线观看 | 国产色婷婷99| 一二三四中文在线观看免费高清| 精品久久蜜臀av无| 观看av在线不卡| 亚洲美女黄色视频免费看| 国产伦人伦偷精品视频| 欧美xxⅹ黑人| 永久免费av网站大全| 成年美女黄网站色视频大全免费| 欧美日韩亚洲综合一区二区三区_| 制服丝袜香蕉在线| 大话2 男鬼变身卡| 日韩人妻精品一区2区三区| 一级片免费观看大全| 日韩熟女老妇一区二区性免费视频| 两个人免费观看高清视频| 嫩草影视91久久| 亚洲精品第二区| 国语对白做爰xxxⅹ性视频网站| 日韩成人av中文字幕在线观看| 国产精品三级大全| 久久影院123| 99久久精品国产亚洲精品| 七月丁香在线播放| 中国三级夫妇交换| 国产男人的电影天堂91| 久久久精品国产亚洲av高清涩受| 亚洲精品自拍成人| 亚洲av欧美aⅴ国产| 亚洲精品久久久久久婷婷小说| 亚洲精品久久久久久婷婷小说| 亚洲天堂av无毛| 国产 一区精品| 大香蕉久久成人网| 91aial.com中文字幕在线观看| 交换朋友夫妻互换小说| 亚洲成色77777| 岛国毛片在线播放| 久久久国产精品麻豆| 香蕉丝袜av| 免费观看av网站的网址| 日韩熟女老妇一区二区性免费视频| 高清视频免费观看一区二区| 亚洲精品美女久久久久99蜜臀 | 涩涩av久久男人的天堂| 免费少妇av软件| 成人午夜精彩视频在线观看| 亚洲,欧美精品.| 99国产精品免费福利视频| 欧美日本中文国产一区发布| 肉色欧美久久久久久久蜜桃| 欧美97在线视频| 日韩电影二区| 亚洲精品中文字幕在线视频| 少妇 在线观看| 男人爽女人下面视频在线观看| 搡老乐熟女国产| 天天躁日日躁夜夜躁夜夜| 国产男人的电影天堂91| 搡老乐熟女国产| 在线观看免费午夜福利视频| 精品免费久久久久久久清纯 | av线在线观看网站| 天天影视国产精品| 韩国av在线不卡| 无限看片的www在线观看| 欧美 亚洲 国产 日韩一| 搡老乐熟女国产| 久久青草综合色| e午夜精品久久久久久久| av片东京热男人的天堂| 亚洲美女黄色视频免费看| 51午夜福利影视在线观看| 最近最新中文字幕大全免费视频 | 午夜影院在线不卡| 国产精品久久久av美女十八| 国产精品99久久99久久久不卡 | 精品视频人人做人人爽| 婷婷成人精品国产| 纯流量卡能插随身wifi吗| 亚洲欧美清纯卡通| xxxhd国产人妻xxx| 黄色毛片三级朝国网站| 成人三级做爰电影| 一区在线观看完整版| 在线观看免费午夜福利视频| 天堂中文最新版在线下载| 亚洲成av片中文字幕在线观看| 另类亚洲欧美激情| 欧美日韩亚洲高清精品| 亚洲欧美中文字幕日韩二区| av女优亚洲男人天堂| 色视频在线一区二区三区| 国产97色在线日韩免费| 亚洲免费av在线视频| 最新的欧美精品一区二区| 最近中文字幕2019免费版| av.在线天堂| 熟女av电影| 国产日韩欧美在线精品| 亚洲国产精品999| 中文字幕另类日韩欧美亚洲嫩草| 如日韩欧美国产精品一区二区三区| 大陆偷拍与自拍| 午夜福利一区二区在线看| 久久精品aⅴ一区二区三区四区| 18禁动态无遮挡网站| 久久久久国产精品人妻一区二区| 丝袜脚勾引网站| 在线观看免费高清a一片| av一本久久久久| 啦啦啦在线免费观看视频4| 久久久久国产一级毛片高清牌| 别揉我奶头~嗯~啊~动态视频 | 亚洲欧美精品综合一区二区三区| 少妇猛男粗大的猛烈进出视频| 最近中文字幕高清免费大全6| 欧美中文综合在线视频| 午夜老司机福利片| 99热网站在线观看| 又大又爽又粗| 免费观看人在逋| 超色免费av| 精品国产露脸久久av麻豆| 不卡视频在线观看欧美| 人人妻人人澡人人爽人人夜夜| 久久毛片免费看一区二区三区| 午夜福利乱码中文字幕| 日本欧美视频一区| 九九爱精品视频在线观看| 成人午夜精彩视频在线观看| 国产乱人偷精品视频| 国产精品蜜桃在线观看| 国产爽快片一区二区三区| 色网站视频免费| 男女午夜视频在线观看| 热re99久久国产66热| 国产激情久久老熟女| 天堂8中文在线网| 超碰成人久久| 水蜜桃什么品种好| 亚洲综合精品二区| 久久久久网色| 侵犯人妻中文字幕一二三四区| 少妇人妻精品综合一区二区| 水蜜桃什么品种好| 黄网站色视频无遮挡免费观看| 亚洲av综合色区一区| 999久久久国产精品视频| av在线app专区| 国产日韩欧美在线精品| 捣出白浆h1v1| 欧美日韩综合久久久久久| 男女边摸边吃奶| 街头女战士在线观看网站| 亚洲天堂av无毛| 日韩一卡2卡3卡4卡2021年| 777米奇影视久久| 国产成人啪精品午夜网站| 一级毛片电影观看| 一级毛片我不卡| 一边摸一边做爽爽视频免费| 国产爽快片一区二区三区| 国产av一区二区精品久久| 99精国产麻豆久久婷婷| 美女主播在线视频| 日韩制服骚丝袜av| xxx大片免费视频| 看免费av毛片| 亚洲欧美激情在线| 成年av动漫网址| 久久毛片免费看一区二区三区| 少妇被粗大的猛进出69影院| 九草在线视频观看| 天堂中文最新版在线下载| 操出白浆在线播放| 成人漫画全彩无遮挡| 国产成人a∨麻豆精品| 亚洲一区中文字幕在线| 麻豆精品久久久久久蜜桃| 男女午夜视频在线观看| 少妇被粗大的猛进出69影院| 亚洲国产日韩一区二区| 精品国产一区二区三区久久久樱花| 精品国产乱码久久久久久男人| 亚洲天堂av无毛| 日韩大片免费观看网站| 久久人人爽av亚洲精品天堂| 欧美 亚洲 国产 日韩一| 亚洲熟女毛片儿| 18禁观看日本| 亚洲,欧美,日韩| 男女边摸边吃奶| 中文精品一卡2卡3卡4更新| 午夜日韩欧美国产| 国产精品国产三级国产专区5o| 久久婷婷青草| 成年美女黄网站色视频大全免费| 免费不卡黄色视频| 中文字幕最新亚洲高清| netflix在线观看网站| 亚洲精品第二区| 18禁观看日本| 人妻 亚洲 视频| 久久精品人人爽人人爽视色| 一级,二级,三级黄色视频| 亚洲av成人精品一二三区| 日本av手机在线免费观看| 不卡av一区二区三区| 韩国高清视频一区二区三区| 久久毛片免费看一区二区三区| 男女之事视频高清在线观看 | 悠悠久久av| 无遮挡黄片免费观看| 久久久久久久久久久免费av| 免费观看a级毛片全部| 久久久精品94久久精品| 亚洲自偷自拍图片 自拍| 极品少妇高潮喷水抽搐| 成人免费观看视频高清| 亚洲熟女精品中文字幕| 色吧在线观看| 午夜免费鲁丝| 欧美乱码精品一区二区三区| 热re99久久精品国产66热6| 蜜桃在线观看..| 日韩av在线免费看完整版不卡| 中国三级夫妇交换| xxx大片免费视频| 久久人人爽av亚洲精品天堂| 秋霞在线观看毛片| 午夜免费观看性视频| 亚洲欧美一区二区三区黑人| 亚洲免费av在线视频| 热re99久久国产66热| 欧美日韩亚洲高清精品| 日韩,欧美,国产一区二区三区| 日韩大码丰满熟妇| 丰满乱子伦码专区| 9热在线视频观看99| 青春草视频在线免费观看| 亚洲国产精品999| 美女高潮到喷水免费观看| 亚洲av日韩在线播放| 青草久久国产| 18禁裸乳无遮挡动漫免费视频| 国产视频首页在线观看| 卡戴珊不雅视频在线播放| 男人爽女人下面视频在线观看| 亚洲精品国产区一区二| 久久久国产欧美日韩av| 久久久欧美国产精品| 女性生殖器流出的白浆| 日韩人妻精品一区2区三区| 久久久久精品久久久久真实原创| 亚洲av福利一区| 久久国产亚洲av麻豆专区| 老司机影院成人| 免费黄网站久久成人精品| 日韩精品免费视频一区二区三区| 亚洲中文av在线| 欧美精品人与动牲交sv欧美| 操出白浆在线播放| 女性被躁到高潮视频| 久久天堂一区二区三区四区| 麻豆av在线久日| 国产精品国产三级专区第一集| 欧美中文综合在线视频| 久久 成人 亚洲| 国产亚洲一区二区精品| 国产在线一区二区三区精| 国产毛片在线视频| 一级毛片黄色毛片免费观看视频| 别揉我奶头~嗯~啊~动态视频 | 精品国产超薄肉色丝袜足j| 久久国产精品男人的天堂亚洲| 欧美人与善性xxx| 亚洲av中文av极速乱| 少妇被粗大猛烈的视频| 久久国产亚洲av麻豆专区| 久久久久精品性色| av在线老鸭窝| 深夜精品福利| 伊人亚洲综合成人网| 少妇人妻 视频| 国产精品一区二区在线不卡| 91精品国产国语对白视频| 黄色 视频免费看| 少妇精品久久久久久久| 中文字幕人妻丝袜制服| 亚洲美女黄色视频免费看| 男女高潮啪啪啪动态图| 女人爽到高潮嗷嗷叫在线视频| 精品国产超薄肉色丝袜足j| 国产色婷婷99| 午夜福利在线免费观看网站| 如日韩欧美国产精品一区二区三区| 一本—道久久a久久精品蜜桃钙片| 免费观看性生交大片5| 女性被躁到高潮视频| 黑人巨大精品欧美一区二区蜜桃| 久久天堂一区二区三区四区| 中文字幕人妻丝袜制服| 操出白浆在线播放| 丰满迷人的少妇在线观看| 99久国产av精品国产电影| 在线亚洲精品国产二区图片欧美| 国产伦理片在线播放av一区| av.在线天堂| 国产成人91sexporn| 黑人猛操日本美女一级片| 国产精品国产三级国产专区5o| 丝袜喷水一区| 永久免费av网站大全| 日本wwww免费看| 一本久久精品| 欧美日韩亚洲高清精品| 捣出白浆h1v1| 母亲3免费完整高清在线观看| 国产男人的电影天堂91| 国产1区2区3区精品| 人人妻,人人澡人人爽秒播 | 最近最新中文字幕免费大全7| 亚洲国产精品一区三区| 国产精品熟女久久久久浪| 伊人久久国产一区二区| 精品少妇黑人巨大在线播放| 欧美日韩成人在线一区二区| 18禁裸乳无遮挡动漫免费视频| 国产成人a∨麻豆精品| 在线观看www视频免费| 久久天堂一区二区三区四区| 天堂中文最新版在线下载| 国产97色在线日韩免费| 啦啦啦视频在线资源免费观看| 亚洲精品国产区一区二| 欧美黑人精品巨大| 男的添女的下面高潮视频| 桃花免费在线播放| 国语对白做爰xxxⅹ性视频网站| 晚上一个人看的免费电影| 夫妻性生交免费视频一级片| 成人黄色视频免费在线看| 人妻人人澡人人爽人人| 国产爽快片一区二区三区| 亚洲av电影在线进入| av免费观看日本| 看免费av毛片| 免费看av在线观看网站| 国产又色又爽无遮挡免| 交换朋友夫妻互换小说| 精品午夜福利在线看| 国产在视频线精品| 免费黄网站久久成人精品| 精品人妻熟女毛片av久久网站| 亚洲av国产av综合av卡| www.精华液| 国产老妇伦熟女老妇高清| 国产一区有黄有色的免费视频| 欧美日韩综合久久久久久| av网站在线播放免费| 超碰成人久久| 国产精品国产av在线观看| 国产精品久久久久久人妻精品电影 | 成年动漫av网址| 这个男人来自地球电影免费观看 | 精品亚洲乱码少妇综合久久| 国产免费现黄频在线看| 操出白浆在线播放| 久久韩国三级中文字幕| 中文字幕制服av| 久久人妻熟女aⅴ| 国产精品亚洲av一区麻豆 | www.av在线官网国产| 美女主播在线视频| 中文字幕av电影在线播放| 18禁动态无遮挡网站| 大香蕉久久网| 男女高潮啪啪啪动态图| 亚洲少妇的诱惑av| 肉色欧美久久久久久久蜜桃| 国产片内射在线| 亚洲熟女毛片儿| 亚洲国产日韩一区二区| 国产精品三级大全| 国产成人欧美| 欧美日韩综合久久久久久| 高清av免费在线| 蜜桃国产av成人99| 国产成人精品久久久久久| 国产精品 欧美亚洲| 国产一级毛片在线| 男女之事视频高清在线观看 | 成年美女黄网站色视频大全免费| 国产精品欧美亚洲77777| 欧美亚洲日本最大视频资源| 高清黄色对白视频在线免费看| 深夜精品福利| 国产 一区精品| 欧美乱码精品一区二区三区| 91成人精品电影| 天天躁夜夜躁狠狠久久av| 日本av手机在线免费观看| 无遮挡黄片免费观看| 亚洲精品视频女| 丰满迷人的少妇在线观看| 午夜福利视频在线观看免费| 婷婷色麻豆天堂久久| 亚洲色图综合在线观看| 亚洲国产毛片av蜜桃av| 日韩av在线免费看完整版不卡| 啦啦啦在线免费观看视频4| 欧美精品高潮呻吟av久久| 免费高清在线观看视频在线观看| 中文字幕高清在线视频| tube8黄色片| 街头女战士在线观看网站| 欧美乱码精品一区二区三区| 热99久久久久精品小说推荐| 国产欧美日韩综合在线一区二区| 国产精品嫩草影院av在线观看| 亚洲第一青青草原| 亚洲av成人精品一二三区| 9热在线视频观看99| 不卡视频在线观看欧美| 成人国产av品久久久| 欧美久久黑人一区二区| 如何舔出高潮| 天天躁夜夜躁狠狠久久av| 国产1区2区3区精品| 久久精品aⅴ一区二区三区四区| 婷婷色综合大香蕉| 9热在线视频观看99| 欧美日韩一区二区视频在线观看视频在线| 黄片播放在线免费| 免费少妇av软件| 精品国产一区二区久久| 日韩 亚洲 欧美在线| 国产成人精品福利久久| 午夜久久久在线观看| 国产在线一区二区三区精| 制服诱惑二区| 99九九在线精品视频| 午夜免费男女啪啪视频观看| 国产一区二区在线观看av| 亚洲成人一二三区av| 一区二区三区精品91| 中文字幕精品免费在线观看视频| 亚洲精华国产精华液的使用体验| 亚洲国产av影院在线观看| 亚洲精品中文字幕在线视频| 精品福利永久在线观看| 一本久久精品| 成人免费观看视频高清| 国产精品女同一区二区软件| 久久精品aⅴ一区二区三区四区| 成人国语在线视频| 在线观看www视频免费| 成年美女黄网站色视频大全免费| 日日爽夜夜爽网站| 国产精品香港三级国产av潘金莲 | 国产精品av久久久久免费| 国产一区二区 视频在线| 巨乳人妻的诱惑在线观看| 观看av在线不卡| 曰老女人黄片| 久久女婷五月综合色啪小说| 天美传媒精品一区二区| 精品一区二区三卡| 午夜av观看不卡| 国产精品熟女久久久久浪| 99国产精品免费福利视频| 国产精品三级大全| av在线app专区| 亚洲精品,欧美精品| 欧美精品亚洲一区二区| 亚洲第一区二区三区不卡| 亚洲成人手机| 亚洲国产日韩一区二区| 丰满迷人的少妇在线观看| 午夜免费男女啪啪视频观看| 可以免费在线观看a视频的电影网站 | 91成人精品电影| 日本vs欧美在线观看视频| 国产一级毛片在线| 如日韩欧美国产精品一区二区三区| av女优亚洲男人天堂| 免费观看人在逋| 亚洲国产欧美网| 91精品三级在线观看| 久久ye,这里只有精品| 男女无遮挡免费网站观看| 一级毛片 在线播放| 国产爽快片一区二区三区| 哪个播放器可以免费观看大片| 少妇人妻精品综合一区二区| 国产成人精品久久二区二区91 | 国产爽快片一区二区三区| av福利片在线| 婷婷成人精品国产| 午夜av观看不卡| 不卡av一区二区三区| 人妻一区二区av| 久久久久精品国产欧美久久久 | 另类亚洲欧美激情| 欧美少妇被猛烈插入视频| 日韩欧美一区视频在线观看| 成人三级做爰电影| 亚洲少妇的诱惑av| 日本wwww免费看| 亚洲美女搞黄在线观看| 亚洲欧洲国产日韩| 99久久人妻综合| 日本vs欧美在线观看视频| 伊人久久大香线蕉亚洲五| 人人妻人人澡人人看| 女人被躁到高潮嗷嗷叫费观| 国产精品一国产av| 亚洲av综合色区一区| 观看av在线不卡| 国产精品蜜桃在线观看| 亚洲av成人精品一二三区| 亚洲国产精品国产精品| 亚洲国产av新网站| 国产日韩欧美亚洲二区| 少妇的丰满在线观看| tube8黄色片| 性少妇av在线| 老熟女久久久| 一区二区av电影网| 韩国精品一区二区三区| bbb黄色大片| 国产深夜福利视频在线观看| 亚洲av成人精品一二三区| 免费黄网站久久成人精品| 亚洲国产av新网站| 97在线人人人人妻| 国产97色在线日韩免费| 少妇精品久久久久久久| 久久久久视频综合| 搡老岳熟女国产| 欧美日韩亚洲国产一区二区在线观看 | 久久久精品区二区三区| 成人黄色视频免费在线看| 欧美日韩亚洲高清精品| 久久精品久久久久久噜噜老黄| 久久人人97超碰香蕉20202| 亚洲av成人精品一二三区| www.自偷自拍.com| 亚洲国产av影院在线观看| 精品人妻一区二区三区麻豆| 最新在线观看一区二区三区 | 国产精品免费视频内射| 日韩av在线免费看完整版不卡| 9热在线视频观看99| 永久免费av网站大全| 婷婷成人精品国产| 男人操女人黄网站| 亚洲国产欧美日韩在线播放| 亚洲熟女精品中文字幕| 一个人免费看片子| 一本—道久久a久久精品蜜桃钙片| 女人高潮潮喷娇喘18禁视频| 99热网站在线观看| 日韩一区二区视频免费看| 国产精品三级大全| 久久久欧美国产精品|