• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Stability of General Linear Dynamic Multi-Agent Systems under Switching Topologies with Positive Real Eigenvalues

    2020-09-05 07:40:26ShengoEenLiZhitoWngYngZhengDingeYngKeyouYou
    Engineering 2020年6期

    Shengo Een Li*, Zhito Wng Yng Zheng, Dinge Yng Keyou You

    a State Key Lab of Automotive Safety and Energy, School of Vehicle and Mobility, Tsinghua University, Beijing 100084, China

    b Department of Engineering Science, Balliol College, University of Oxford, Oxford OX1 3PJ, UK

    c Department of Automation, Tsinghua University, Beijing 100084, China

    Keywords:

    Stability Multi-agent system Switching topologies Common Lyapunov function

    A B S T R A C T

    The time-varying network topology can significantly affect the stability of multi-agent systems. This paper examines the stability of leader-follower multi-agent systems with general linear dynamics and switching network topologies, which have applications in the platooning of connected vehicles. The switching interaction topology is modeled as a class of directed graphs in order to describe the information exchange between multi-agent systems, where the eigenvalues of every associated matrix are required to be positive real. The Hurwitz criterion and the Riccati inequality are used to design a distributed control law and estimate the convergence speed of the closed-loop system.A sufficient condition is provided for the stability of multi-agent systems under switching topologies. A common Lyapunov function is formulated to prove closed-loop stability for the directed network with switching topologies.The result is applied to a typical cyber-physical system—that is, a connected vehicle platoon—which illustrates the effectiveness of the proposed method.

    1. Introduction

    In recent years, the coordination control of multi-agent-based cyber-physical systems has attracted considerable research attention due to theoretical breakthrough and wide-ranging engineering applications. Research topics in coordination control include consensus control[1],rendezvous control[2],flocking control,and formation control [3]. In addition, coordination control has a broad range of applications due to its efficiency and reliability, such as vehicle platooning, the formation of multiple unmanned aerial vehicles (UAVs), collaborative assembly systems [4], and sensor networks [5,6].

    One central topic is the design of a distributed control law to stabilize a multi-agent system or reach a certain consensus,where each agent only uses local information from its neighbors for feedback[7].Graph Laplacians play an important role in describing the interaction topologies and analyzing the stability of multi-agent systems [8,9]. The theoretical framework for proving the stability with graph Laplacians was introduced in the seminal work by Olfati-Saber et al.[10,11],where each agent of the multi-agent system is a single integrator. By extending this framework into double-integrator dynamics,Ren and colleagues[12,13]presented sufficient and necessary conditions for the stability of multi-agent systems from a graph-theoretic perspective,where the transformation of the Jordan normal form was applied to analyze the closedloop matrices. For high-order dynamics, Ni and Cheng [14]designed a stability algorithm based on the Riccati and Lyapunov inequality. Zheng et al. [15] proved the stability under interconnected topologies whose matrix has positive real eigenvalues using matrix decomposition and the Hurwitz criterion. Hong et al. [16]proposed a rigorous proof for the stability with an extension of LaSalle’s invariance principle.Beyond the abovementioned control law, Zheng et al. [17]also designed a distributed model predictive controller for multi-agent nonlinear systems and formulated a Lyapunov function to prove the asymptotic stability of a connected vehicle platoon.Wu et al.[18]presented a distributed sliding mode controller for multi-agent systems with positive definite topologies and exploited the asymptotic stability in the Lyapunov sense.Barooah et al. [19] introduced a mistuning-based control method to improve the stability margin of vehicular platoons.Ploeg et al.[20]developed an H-infinity control law to achieve the string stability of multi-agent systems.

    The variation of interaction topologies is quite common due to link failures/creations in networks or obstruction between interactional agents. The stability of multi-agent systems under switching topologies has also attracted considerable research attention. For example, Tanner et al. [21] proposed a control law in combination with the attractive and alignment forces,which could stabilize the flocking system under dynamic topology. Olfati-Saber et al. [10] introduced a common Lyapunov function that could ensure the stability of single-integrator linear systems based on matrix theory and algebraic graph theory. Ren[12] considered a multi-agent system with double-integrator dynamics and showed that a set of connected, undirected, or directed topologies could stabilize the switching system by proving that the Lyapunov function is locally Lipschitz continuous. Ni and Cheng [14] expanded this study into a high-order integrator dynamic system and discussed the problem under the jointly connected undirected graph using Cauchy’s convergence criteria.Theoretically, the stability analysis of directed graphs is more challenging than the case of an undirected graph [10]. The methods for undirected topologies cannot naturally be applied to problems with directed topologies due to the lack of a positive definite property in directed topologies. In addition, it is more challenging to find a common Lyapunov function for switching directed topologies. Some pioneering studies have focused on the stability analysis of multi-agent systems with special switching directed topologies. For example, Qin et al. [22] analyzed a Lyapunov function of switching directed topologies systems and proved that system stability can be achieved under balanced directed graphs.Dong et al. [23] explored an explicit expression of the timevarying formation reference function and showed that the stability can be maintained if the dwell time is greater than a positive threshold.

    Fig.1. A depiction of the relationship between the discussed topologies. Positive real eigenvalues topology has the property of all the eigenvalues of matrix (L+P)being positive real. The followers in the forward-back topology can receive information from the same number of agents both forward and backward.It is clear that the forward-back type of topology is both a balanced graph and a positive real eigenvalues topology.

    The rest of this paper is organized as follows: Section 2 introduces the algebraic graph theory. In Section 3, a class of positive real eigenvalues topologies is introduced and a linear controller designed with a common Lyapunov function and Riccati inequality is proposed.In Section 4,the stability and convergence speed of the closed-loop systems under switching topologies are proved. Section 5 illustrates the method through numerical simulation, and Section 6 concludes this paper.

    2. Preliminaries and problem statement

    This paper considers a multi-agent system that consists of one leader and N followers. The dynamics of each agent are homogeneous and linear. It is assumed that all the eigenvalues of the matrices (L+P) describing the interaction topologies are positive and real numbers.

    2.1. Communication graph topology

    To represent the information flow between the leader and followers, a pinning matrix P is defined as P =diag{p1, p2, ..., pN},where pi=1 if the agent can obtain the information from the leader; otherwise, pi=0. Based on the pinning matrix P, a leaderreachable set could be defined as Pi= {0 } if pi=1; otherwise,Pi=?. Then, an information-reachable set is defined as Ii=Ni∪Pito represent the nodes from which agent i can obtain information.

    2.2. Agent dynamics

    The dynamics of each agent is:

    where xi(t )∈Rndenotes the state vector, ui(t )∈Rmis the control input, n and m are the dimension of state and control variable respectively,A ∈Rn×nand B ∈Rn×mare the system matrix and input matrix, respectively. The system is assumed to be stable by choosing an appropriate value of the pair (A, B).

    The leader has the following linear dynamic:

    where x0∈Rnis the state of the leader.

    2.3. Stability of multi-agent systems

    The objective of multi-agent consensus control is to make the state of each following agent consistent with that of the leader.For every agent i ∈ {1, ..., N}, a distributed controller ui(t ) is required to realize

    For the simplicity of the subsequent stability analysis, a new tracking error is defined as follows:

    The state space function of the tracking error is

    3. Design of the controller

    The interconnected topology of a multi-agent system varies with time due to some communication breakdown or obstacle between agents. In a switching topology problem, the information-reachable set of every agent varies with time. The notation (L+P)σ is used to describe the time-dependence of information flow,in which σ: [0, ∞)→∑is a switching signal at time t,and ∑is the index set of a group of graphs containing all the topologies. Consider an infinite sequence of nonempty time intervals [tk, tk+1), k=0, 1, ...with t0=0, tk+1-tk≤Tcfor some constant Tc. It is assumed that σ is constant in each interval and the graph can be denoted as Gσ.In order to ensure stability under varying topologies,an appropriate controller and the graph set {G∑}are designed in this section.

    3.1. Linear control law

    For each agent,the controller is distributed and can only use the information from its information-reachable set Ii. The following control law is used [24]:

    where K ∈Rm×nis a linear feedback gain.Substituting Eq.(6)to Eq.(5),the closed-loop dynamics of agent i can be obtained as follows:

    To describe the dynamic of the multi-agent system, the collective states of the system are defined as follows:

    Recall the definition of Laplacian matrix L and pinning matrix P; the closed-loop dynamics of the leader-follower multi-agent system are

    where INis the identity matrix and symbol ?is the Kronecker product. The overall closed-loop system matrix is defined as follows:

    For a linear system, the stability is associated with the eigenvalues of the closed-loop system matrix. From Eq. (10), it can be seen that the eigenvalues of Acdepend on (L+P). In other words, the interconnected topology influences the stability of the multi-agent system. In the following subsections, we will discuss a class of topologies that ensures that the eigenvalues of (L+P)are positive real numbers.

    3.2. Interconnected topologies with positive real eigenvalues

    The method proposed in this paper is suitable for a topology with positive real eigenvalues that lacks an exact uniform mathematic description. Therefore, a specific type of topology with a positive real property is particularly focused on in this paper.

    Lemma 1[15]: Let λi, i=1, 2, ..., N, be the eigenvalues of(L+P), then all the eigenvalues are positive real numbers; that is, λi>0, i=1, 2, ..., N, if there exists a directed spanning tree whose root is the leader and one of the following conditions holds:

    (1) The interconnected topology of the following agents is the forward type; that is, Ni= {i-hu, ..., i-hl}∩ {1, ..., N}, where huand hlare the upper and lower bound of forward communication range respectively.

    (2) The interconnected topology of the following agents is the forward-backward type; that is, Ni= {i-h, ..., i+h}∩{1, ..., N}/{i}, where h is the communication range.

    (3) The communication topology of the following agents is the undirected type; that is, j ∈Ni??i ∈Nj.

    Remark 1:For single-integrator or double-integrator dynamics,it is proved that switching directed topologies with a directed spanning tree is sufficient to stabilize the system; for example,see Refs. [10,12].

    Remark 2:In Ref. [14], stability under the switching of jointly connected undirected topologies is discussed. Our paper considered directed topologies; disconnected conditions are not considered, and will be studied in further work.

    3.3. Design of the coefficient matrix

    Since the pair (A, B)is stabilizable,there exists a solution P >0 for the following Riccati inequality:

    where δ is a positive number, which can be designed to influence the convergence of the system [25], and I is the identity matrix.The feedback matrix K can be constructed as follows:

    where α is the scaling factor that satisfies the following:

    Lemma 2:is the well-known Gershgorin Disk Criterion.

    Theorem 1:For the topology described inLemma 1, (L+P) is transformed to a Jordan diagonal canonical form J. Then He(J ) is a positive definite matrix.

    Proof:For the topology defined as (2) and (3) inLemma 1,matrix (L+P)is real symmetric.It is obvious that He(J )is positive definite,since J is a diagonal matrix.For the topology defined as(1)inLemma 1,the eigenvalues of (L+P)are larger than or equal to 1. J can be written as follows:

    For each block of He(J ), it has the following form:

    Remark 4: Theorem 1shows that the minimum eigenvalue of He(J )can influence the stability margin of the multi-agent system.It can be seen from Table 1 that the stability margin of the PF and BD topologies will get worse as the size N of followers increases,while the stability margin of the PLF,TPF,TPLF,and BDL topologies is independent of size N.The information from the leader is important for the stability margin of the system,and a suitable selection of topology,such as PLF and BDL,can improve the stability margin of the system. The result of the undirected topologies BD and BDL is the same as shown in Ref. [27]. A strict theoretical analysis will be conducted in future.

    4. Stability under switching topologies

    It is obvious that for a finite switching system, stability can be realized if the final topology can stabilize the system with the control law proposed in Section 3.Under infinite switching conditions and under a class of topologies, the system will be stabilized with the control law shown in Eq.(6).The speed of convergence can also be ensured.

    Lemma 4[28]:Given a family fσ,σ ∈Σ of functions from Rnto Rn, where Σ is some index set. This can represent a family of systems x˙=fσ(x ),σ ∈Σ. If all systems in the family share a common Lyapunov function,then the switching system x˙=fσ (x )is globally uniform asymptotically stable.

    This theorem will be used to prove our main theoretical result. Before the proof, some lemmas in matrix theory will be introduced.

    Lemma 5:Consider a positive definite real matrix M, and a positive real number ξ <min{λ( M)}, where λ( M) denotes the eigenvalues of M. The matrix M-ξI is still positive definite.

    Proof:If λiis an eigenvalue of M, there exists an eigenvector xisatisfying Mxi=λixi. Then, we have (M-ξI)xi= (λi-ξ)xi. Since 0 <ξ <min{λ(M )}, all the eigenvalues of (M-ξI ) are positive. It is obvious that (M-ξI) remains symmetric. Therefore, M-ξI is a positive definite matrix.

    The main result of this paper is stated as follows.

    ?Number of followerPFPLFTPFTPLFBDBDL 5 0.26792220.16202 6 0.19812220.11622 7 0.15222220.08742 8 0.12062220.06812 9 0.09792220.05462 100.08102220.04472

    Proof:Following the control law in Eq.(12)and Inequality(13),the following inequality can be obtained:

    The closed-loop dynamics of the multi-agent system are

    For a positive real topology, (L+P)σ is transformed to a Jordan diagonal canonical form. The closed-loop dynamic matrix can also be transformed to a diagonal block matrix:

    Substituting Inequality (13) into Eq. (19), we have

    The matrix

    is still symmetric. He (Jσ) is a positive definite matrix, according to

    Theorem 1.

    According to the Lemma 5, the inequality can be derived as follows:

    The following inequality can be derived according toLemma 5:

    Remark 6:In practice, the switching topologies may be unknown, which makes the selection of α nontrivial. A larger α is helpful to stabilize the switching system in this situation. In fact,Inequality (13) is only a sufficient condition for the system stability, which ensures the stability in theory. In our simulation, an α inconsistent with this inequality can also stabilize the system.

    5. Simulation results

    The vehicle platoon is a typical multi-agent system, which has attracted increasing attention because of its benefit in traffic[24]. The (L+P) matrices of typical topologies that describe the information flow among the vehicles in a platoon have positive real eigenvalues [15]. We conducted simulations of a homogeneous platoon with six identical vehicles (one leader and five followers)in order to validate the effectiveness. For platoon control, a thirdorder state space model is derived for each vehicle [17]:

    Fig.2. Switching topologies and are all positive real eigenvalue topologies. and are the forward type and is the forward-back type. In the simulations, the topology switches among these three topologies.

    The eigenvalues of He(J ) for the three topologies are listed in Table 2.All the eigenvalues are positive real and,considering their minimum value,the scaling factor α can be chosen to be 10.Three scenarios have been simulated,with two stable scenarios of different response coefficients δ and one unstable scenario.The controller parameters in Scenarios 1 and 2 are designed as in Theorem 2.However,the parameters in Scenario 3 do not satisfy the stability condition in Ref.[15].All the parameters are listed in Table 3.

    Fig.4 shows the state error of the vehicle platoon under the switching topologies.The simulation result shows that the control law designed according to Eq.(12)and Inequality(13)can stabilize the vehicle platoon. Compared with Fig.5, it demonstrates that a larger δ tends to make the system converge to the stable state more quickly. Fig.6 illustrates the performance of a controller whose parameters are chosen as the unstable region criterion in Ref.[15], which can show the effectiveness of our controller design method.It should be noted thatTheorem 2is only a sufficient condition for the system stability, which means that the selection of controller parameters—that is, if α does not meet the condition of Inequality (13)—may also stabilize the switching system.

    6. Conclusions

    This paper examines the stability of multi-agent systems under a class of switching topologies,where all the eigenvalues of(L+P)matrices are positive real numbers. Graph theory is used to describe the interconnected topology. The Hurwitz criterion andRiccati inequality are applied to design the control law in order to stabilize the multi-agent system and adjust the convergence speed of the system. By using the common Lyapunov function theorem,the stability of switching topology systems is proved. We have shown that stability can be achieved if the (L+P)matrices’eigenvalues of all the topologies are positive real numbers and present a sufficient condition for the switching system.The exponential stability and convergence speed can be influenced by the response coefficients δ in our controller.

    ?Switching topologyEigenvalue of He J( )~G10.27, 1.00, 2.00, 3.00, and 3.73~G20.59, 1.00, 2.00, 3.00, and 3.41~G30.16, 1.38, 3.43, 5.66, and 7.37

    ?ParametersScenario 1Scenario 2Scenario 3 K 10.071.6010.00 24.008.642.10 8.003.204.00 α 10.0010.00—δ 0.500.20—

    Fig.3. Switching signal. The dwell time is set as 2 s.

    Fig.4. Stability performance under switching topologies with δ = 0.5. (a), (b), and (c) show the tracking error of the position, velocity, and acceleration, respectively. The switching system achieved stability in 15 s.

    Fig.5. Stability performance under switching topologies with δ = 0.2. (a), (b), and (c) show the tracking error of the position, velocity, and acceleration, respectively.Compared with the controller in Scenario 1, this controller tends to have a longer convergence time of about 25 s.

    Fig.6. Stability performance under switching topologies with an unstable controller. (a), (b), and (c) show the tracking error of the position, velocity, and acceleration,respectively. The parameters are designed from the unstable region presented in Ref. [15]. This illustrates the effectiveness of our controller design method.

    Acknowledgements

    This work is supported by International Science and Technology Cooperation Program of China (2019YFE0100200) and Beijing Natural Science Foundation(JQ18010).It is also partially supported by Tsinghua University-Didi Joint Research Center for Future Mobility.

    Compliance with ethics guidelines

    Shengbo Eben Li, Zhitao Wang, Yang Zheng, Diange Yang, and Keyou You declare that they have no conflict of interest or financial conflicts to disclose.

    亚洲国产高清在线一区二区三| 亚洲美女视频黄频| 一级作爱视频免费观看| 叶爱在线成人免费视频播放| 变态另类丝袜制服| 成人国产一区最新在线观看| 手机成人av网站| 日本熟妇午夜| 亚洲中文日韩欧美视频| 99久久综合精品五月天人人| 每晚都被弄得嗷嗷叫到高潮| 亚洲国产中文字幕在线视频| 亚洲一区高清亚洲精品| 亚洲av第一区精品v没综合| 日韩 欧美 亚洲 中文字幕| 午夜两性在线视频| 99精品在免费线老司机午夜| 午夜老司机福利片| 欧美zozozo另类| 国产高清视频在线观看网站| 午夜免费成人在线视频| 日韩精品中文字幕看吧| 淫妇啪啪啪对白视频| 可以在线观看的亚洲视频| 欧美日韩乱码在线| 亚洲18禁久久av| 婷婷精品国产亚洲av在线| 国产免费男女视频| 欧美一级a爱片免费观看看 | 毛片女人毛片| 伊人久久大香线蕉亚洲五| 亚洲成人久久性| 在线观看www视频免费| 国产三级中文精品| 亚洲av日韩精品久久久久久密| 婷婷六月久久综合丁香| 日韩欧美 国产精品| 久久久久久免费高清国产稀缺| 中文字幕久久专区| 精品一区二区三区四区五区乱码| 黄色视频不卡| 国产一区二区在线观看日韩 | 波多野结衣高清无吗| 两个人的视频大全免费| 在线观看舔阴道视频| a在线观看视频网站| 国产精品av久久久久免费| 国产精品爽爽va在线观看网站| 97人妻精品一区二区三区麻豆| 亚洲av成人不卡在线观看播放网| 国产视频一区二区在线看| 一本综合久久免费| 国产av麻豆久久久久久久| 91大片在线观看| 成人亚洲精品av一区二区| 精品一区二区三区四区五区乱码| 麻豆国产av国片精品| tocl精华| 又大又爽又粗| videosex国产| 丰满的人妻完整版| 免费看a级黄色片| 熟女电影av网| 欧美乱色亚洲激情| 国产在线精品亚洲第一网站| 成年女人毛片免费观看观看9| 精品欧美国产一区二区三| 日日干狠狠操夜夜爽| 琪琪午夜伦伦电影理论片6080| 国产精品av视频在线免费观看| 午夜影院日韩av| 色在线成人网| 美女免费视频网站| 欧美日韩瑟瑟在线播放| 亚洲 欧美一区二区三区| 99在线视频只有这里精品首页| 精品久久久久久久末码| 欧美乱妇无乱码| 国产精品自产拍在线观看55亚洲| 免费在线观看完整版高清| 18禁国产床啪视频网站| 久久久久久久久久黄片| 欧美+亚洲+日韩+国产| 两人在一起打扑克的视频| 欧美zozozo另类| 岛国在线免费视频观看| 亚洲无线在线观看| 亚洲av美国av| 欧美黑人精品巨大| 亚洲真实伦在线观看| 999精品在线视频| 国产精品免费视频内射| 一本大道久久a久久精品| 波多野结衣巨乳人妻| 一级毛片女人18水好多| 在线播放国产精品三级| 久久国产精品人妻蜜桃| 午夜激情福利司机影院| a级毛片在线看网站| 国产av不卡久久| 久久精品综合一区二区三区| 我要搜黄色片| 亚洲五月天丁香| 色播亚洲综合网| 亚洲精品在线观看二区| 日韩欧美国产一区二区入口| 亚洲一区中文字幕在线| 搞女人的毛片| 小说图片视频综合网站| 麻豆成人av在线观看| 久久国产精品影院| 欧美不卡视频在线免费观看 | 国产爱豆传媒在线观看 | www.www免费av| 在线观看午夜福利视频| 99久久无色码亚洲精品果冻| 日韩精品青青久久久久久| 午夜日韩欧美国产| 欧美一级a爱片免费观看看 | 激情在线观看视频在线高清| 精品高清国产在线一区| 国产1区2区3区精品| 淫妇啪啪啪对白视频| 欧美一级a爱片免费观看看 | 丰满的人妻完整版| 国产精品久久久人人做人人爽| 男人舔女人下体高潮全视频| 两个人免费观看高清视频| 少妇人妻一区二区三区视频| 午夜福利在线在线| 国产三级中文精品| 我的老师免费观看完整版| 亚洲精品一卡2卡三卡4卡5卡| 少妇熟女aⅴ在线视频| 又黄又粗又硬又大视频| www日本在线高清视频| 国产亚洲精品av在线| 天天一区二区日本电影三级| 亚洲中文字幕日韩| 黄色 视频免费看| 日本熟妇午夜| 岛国在线观看网站| 成人欧美大片| 熟妇人妻久久中文字幕3abv| 久久香蕉精品热| 精品一区二区三区视频在线观看免费| 三级国产精品欧美在线观看 | 少妇熟女aⅴ在线视频| 亚洲中文字幕日韩| 亚洲熟女毛片儿| 午夜福利视频1000在线观看| 国产午夜精品久久久久久| 亚洲激情在线av| 国产精品一及| 草草在线视频免费看| 在线观看一区二区三区| 99re在线观看精品视频| 色噜噜av男人的天堂激情| 亚洲真实伦在线观看| 亚洲精品一区av在线观看| 国产亚洲精品第一综合不卡| 天天躁狠狠躁夜夜躁狠狠躁| 99国产极品粉嫩在线观看| 国产主播在线观看一区二区| 国产黄a三级三级三级人| 亚洲国产欧美人成| 精品乱码久久久久久99久播| 久久婷婷成人综合色麻豆| 12—13女人毛片做爰片一| 少妇人妻一区二区三区视频| 99热只有精品国产| or卡值多少钱| 宅男免费午夜| 丰满人妻一区二区三区视频av | a级毛片a级免费在线| www.www免费av| 亚洲人成伊人成综合网2020| 免费在线观看亚洲国产| 国内久久婷婷六月综合欲色啪| 久久久精品大字幕| 亚洲成av人片在线播放无| 亚洲专区国产一区二区| 2021天堂中文幕一二区在线观| 国产成年人精品一区二区| 亚洲aⅴ乱码一区二区在线播放 | 亚洲一卡2卡3卡4卡5卡精品中文| 久久久久九九精品影院| 热99re8久久精品国产| 法律面前人人平等表现在哪些方面| www.熟女人妻精品国产| 性欧美人与动物交配| www.熟女人妻精品国产| 国产探花在线观看一区二区| 免费一级毛片在线播放高清视频| 国产亚洲精品一区二区www| 婷婷精品国产亚洲av| 我的老师免费观看完整版| 亚洲精品中文字幕在线视频| 欧美三级亚洲精品| 日韩欧美精品v在线| 午夜a级毛片| 色噜噜av男人的天堂激情| 久久天堂一区二区三区四区| www.999成人在线观看| 亚洲中文av在线| 叶爱在线成人免费视频播放| 最近最新中文字幕大全免费视频| 99久久无色码亚洲精品果冻| 男人的好看免费观看在线视频 | 又黄又爽又免费观看的视频| 熟女电影av网| 亚洲全国av大片| 久久人人精品亚洲av| 国内揄拍国产精品人妻在线| 在线免费观看的www视频| 久久精品综合一区二区三区| 亚洲精品一区av在线观看| 男男h啪啪无遮挡| 日韩国内少妇激情av| 悠悠久久av| 国内揄拍国产精品人妻在线| 欧美黄色片欧美黄色片| 亚洲精品美女久久av网站| 91av网站免费观看| 午夜精品在线福利| 国产av一区在线观看免费| 不卡av一区二区三区| 99国产极品粉嫩在线观看| 国产精品久久久av美女十八| 国产av不卡久久| 青草久久国产| 国产在线精品亚洲第一网站| 精品一区二区三区视频在线观看免费| 亚洲精品久久成人aⅴ小说| 亚洲国产欧美人成| 免费观看人在逋| 欧美日韩乱码在线| 极品教师在线免费播放| 国产成人一区二区三区免费视频网站| 国产探花在线观看一区二区| www日本在线高清视频| 国产午夜福利久久久久久| 日本五十路高清| 国产高清激情床上av| 变态另类丝袜制服| 日本a在线网址| 99久久无色码亚洲精品果冻| 欧美人与性动交α欧美精品济南到| 亚洲免费av在线视频| 国产高清videossex| 亚洲午夜理论影院| 中文资源天堂在线| 午夜视频精品福利| 草草在线视频免费看| 91麻豆精品激情在线观看国产| 亚洲人成77777在线视频| 最近视频中文字幕2019在线8| 51午夜福利影视在线观看| 国产视频内射| 一级毛片精品| 国产精品免费视频内射| 又粗又爽又猛毛片免费看| 久久中文看片网| 久久中文字幕一级| 免费在线观看黄色视频的| 精品国产乱子伦一区二区三区| 日本成人三级电影网站| www日本黄色视频网| 国产av一区二区精品久久| 长腿黑丝高跟| 国模一区二区三区四区视频 | 丝袜美腿诱惑在线| 久久这里只有精品19| 日日爽夜夜爽网站| 动漫黄色视频在线观看| 国产在线观看jvid| 九九热线精品视视频播放| 午夜激情福利司机影院| 国产探花在线观看一区二区| 小说图片视频综合网站| 国产成人系列免费观看| a级毛片a级免费在线| 欧美日韩一级在线毛片| 日韩大尺度精品在线看网址| 757午夜福利合集在线观看| 国产精品亚洲一级av第二区| 999精品在线视频| 99re在线观看精品视频| 国产亚洲精品久久久久5区| 成人国语在线视频| 级片在线观看| 日本熟妇午夜| 欧美日本亚洲视频在线播放| 麻豆国产97在线/欧美 | 精品午夜福利视频在线观看一区| 色综合婷婷激情| 身体一侧抽搐| 国产精品免费一区二区三区在线| 日韩av在线大香蕉| 日本一区二区免费在线视频| 精品第一国产精品| 欧美精品亚洲一区二区| 此物有八面人人有两片| 欧美黄色片欧美黄色片| 中文字幕熟女人妻在线| 桃红色精品国产亚洲av| 色av中文字幕| 亚洲av片天天在线观看| 亚洲精品中文字幕在线视频| 国产在线观看jvid| 久久香蕉国产精品| 高清毛片免费观看视频网站| 性欧美人与动物交配| 亚洲成av人片在线播放无| 国产高清视频在线播放一区| 成人国产一区最新在线观看| 久久精品aⅴ一区二区三区四区| 亚洲av熟女| 成人亚洲精品av一区二区| 精品福利观看| 91麻豆精品激情在线观看国产| 给我免费播放毛片高清在线观看| 男女那种视频在线观看| 国产乱人伦免费视频| 草草在线视频免费看| www.www免费av| 亚洲av成人精品一区久久| 99久久久亚洲精品蜜臀av| 十八禁网站免费在线| 桃红色精品国产亚洲av| 久久久久久亚洲精品国产蜜桃av| 中文字幕av在线有码专区| 一区二区三区高清视频在线| 日韩欧美一区二区三区在线观看| 黄色视频不卡| 操出白浆在线播放| 淫妇啪啪啪对白视频| 小说图片视频综合网站| 国内揄拍国产精品人妻在线| 午夜亚洲福利在线播放| 久久久精品国产亚洲av高清涩受| 国产探花在线观看一区二区| 日韩中文字幕欧美一区二区| 国产精品久久久人人做人人爽| 国产成人精品无人区| 欧美黄色淫秽网站| 亚洲成av人片在线播放无| 国产av在哪里看| 中文字幕熟女人妻在线| 美女 人体艺术 gogo| 久久久久久久久中文| 国产野战对白在线观看| 51午夜福利影视在线观看| 欧美中文日本在线观看视频| 国产熟女xx| 欧美又色又爽又黄视频| 久久中文字幕人妻熟女| 美女 人体艺术 gogo| 日韩国内少妇激情av| 黄色女人牲交| 欧美人与性动交α欧美精品济南到| 精品高清国产在线一区| 久久精品人妻少妇| 天堂√8在线中文| 女警被强在线播放| 精品高清国产在线一区| 伊人久久大香线蕉亚洲五| 欧美日韩乱码在线| 黄色丝袜av网址大全| 两个人的视频大全免费| av在线天堂中文字幕| 亚洲精品国产一区二区精华液| 两个人的视频大全免费| 一个人观看的视频www高清免费观看 | 国产黄色小视频在线观看| 久久草成人影院| 免费无遮挡裸体视频| 五月伊人婷婷丁香| 日本 欧美在线| 精品第一国产精品| 国产三级中文精品| 亚洲av第一区精品v没综合| 老司机福利观看| 亚洲午夜精品一区,二区,三区| 一进一出好大好爽视频| 久久九九热精品免费| 欧美久久黑人一区二区| 999久久久国产精品视频| 午夜亚洲福利在线播放| 国产人伦9x9x在线观看| 欧美一区二区精品小视频在线| 国产一区二区在线av高清观看| 一进一出抽搐动态| 国产亚洲精品一区二区www| 巨乳人妻的诱惑在线观看| 99久久无色码亚洲精品果冻| 在线播放国产精品三级| 亚洲精品中文字幕在线视频| 视频区欧美日本亚洲| www国产在线视频色| 老熟妇乱子伦视频在线观看| 一进一出好大好爽视频| 99在线视频只有这里精品首页| 亚洲中文日韩欧美视频| 精品久久久久久,| 国产成人精品无人区| 精品久久久久久成人av| 一级黄色大片毛片| 欧美黄色片欧美黄色片| 久9热在线精品视频| 中文字幕av在线有码专区| 2021天堂中文幕一二区在线观| 搡老妇女老女人老熟妇| 国产激情久久老熟女| 小说图片视频综合网站| 99精品欧美一区二区三区四区| 成人av在线播放网站| 中文字幕高清在线视频| 亚洲自拍偷在线| а√天堂www在线а√下载| 色尼玛亚洲综合影院| 国产一级毛片七仙女欲春2| 国产精品日韩av在线免费观看| 成年免费大片在线观看| 成人国产综合亚洲| 丰满的人妻完整版| 欧美色视频一区免费| 亚洲av成人一区二区三| 久久久国产欧美日韩av| 大型av网站在线播放| 91大片在线观看| 天天躁夜夜躁狠狠躁躁| 久久中文字幕人妻熟女| 校园春色视频在线观看| 身体一侧抽搐| 久久中文字幕一级| 伦理电影免费视频| 亚洲真实伦在线观看| 男插女下体视频免费在线播放| 亚洲一区二区三区不卡视频| 18禁国产床啪视频网站| 亚洲一卡2卡3卡4卡5卡精品中文| 国产伦一二天堂av在线观看| 亚洲片人在线观看| 国产成人av教育| 两性午夜刺激爽爽歪歪视频在线观看 | 欧美黑人欧美精品刺激| 精品午夜福利视频在线观看一区| 欧美三级亚洲精品| 丁香欧美五月| 两性夫妻黄色片| 黄色成人免费大全| 精品免费久久久久久久清纯| 亚洲 欧美一区二区三区| 巨乳人妻的诱惑在线观看| 精品欧美国产一区二区三| 又黄又粗又硬又大视频| 90打野战视频偷拍视频| 2021天堂中文幕一二区在线观| 黄片大片在线免费观看| 不卡av一区二区三区| 在线免费观看的www视频| 老司机午夜十八禁免费视频| 国产精品98久久久久久宅男小说| 九九热线精品视视频播放| 亚洲欧洲精品一区二区精品久久久| 亚洲美女黄片视频| 99在线视频只有这里精品首页| 一边摸一边做爽爽视频免费| 欧美日韩乱码在线| 成人一区二区视频在线观看| 国产精品久久久人人做人人爽| 成人三级做爰电影| 亚洲成人久久性| 欧美黑人巨大hd| 国产亚洲精品综合一区在线观看 | 亚洲免费av在线视频| 国产视频一区二区在线看| 少妇裸体淫交视频免费看高清 | 精品不卡国产一区二区三区| 久久中文字幕一级| 精品国产乱子伦一区二区三区| 一级a爱片免费观看的视频| 在线观看免费午夜福利视频| 小说图片视频综合网站| 18禁美女被吸乳视频| 国产av麻豆久久久久久久| 亚洲片人在线观看| x7x7x7水蜜桃| 妹子高潮喷水视频| av超薄肉色丝袜交足视频| netflix在线观看网站| 国产精品一区二区三区四区久久| 亚洲男人的天堂狠狠| 欧美日本亚洲视频在线播放| 国产精品美女特级片免费视频播放器 | 欧美日韩一级在线毛片| 国产成+人综合+亚洲专区| 亚洲18禁久久av| 国产成人啪精品午夜网站| 99国产极品粉嫩在线观看| 亚洲成av人片免费观看| 一边摸一边做爽爽视频免费| 国产成人精品无人区| 国产熟女xx| 琪琪午夜伦伦电影理论片6080| 精品第一国产精品| 日韩 欧美 亚洲 中文字幕| 一进一出抽搐动态| 日韩中文字幕欧美一区二区| 99国产精品一区二区蜜桃av| 黑人操中国人逼视频| 亚洲av成人av| 国产高清videossex| 巨乳人妻的诱惑在线观看| 非洲黑人性xxxx精品又粗又长| 日韩中文字幕欧美一区二区| 亚洲黑人精品在线| 国产成+人综合+亚洲专区| 国产一区二区激情短视频| 正在播放国产对白刺激| 美女免费视频网站| 最新在线观看一区二区三区| 91字幕亚洲| 国产熟女午夜一区二区三区| 熟女电影av网| 男女视频在线观看网站免费 | 国产精品,欧美在线| 亚洲第一欧美日韩一区二区三区| 少妇粗大呻吟视频| www.www免费av| 国内精品一区二区在线观看| 欧美日韩中文字幕国产精品一区二区三区| 一本精品99久久精品77| 一a级毛片在线观看| 夜夜夜夜夜久久久久| 成人av一区二区三区在线看| 一本久久中文字幕| 国产精品98久久久久久宅男小说| 我要搜黄色片| 亚洲中文日韩欧美视频| 国产精品九九99| 一级毛片女人18水好多| 深夜精品福利| 久久国产精品人妻蜜桃| 国产欧美日韩一区二区三| 成人亚洲精品av一区二区| 亚洲乱码一区二区免费版| 精品欧美国产一区二区三| 午夜激情av网站| 国产高清有码在线观看视频 | 波多野结衣高清无吗| 国产成人一区二区三区免费视频网站| 日本免费一区二区三区高清不卡| 久久久国产成人免费| 精品国产超薄肉色丝袜足j| 国产精品 国内视频| 成人高潮视频无遮挡免费网站| 免费观看人在逋| 国产精品亚洲美女久久久| 国产精品av久久久久免费| 国产伦一二天堂av在线观看| 亚洲九九香蕉| 亚洲专区字幕在线| 国产精品精品国产色婷婷| 在线国产一区二区在线| 国产一区二区激情短视频| 国产成人av激情在线播放| 黄色女人牲交| 亚洲avbb在线观看| 国产真人三级小视频在线观看| 免费看日本二区| 五月伊人婷婷丁香| 可以免费在线观看a视频的电影网站| 人人妻人人澡欧美一区二区| 美女 人体艺术 gogo| 天天躁夜夜躁狠狠躁躁| 欧美日韩一级在线毛片| 麻豆久久精品国产亚洲av| 在线观看免费日韩欧美大片| 国产精品亚洲一级av第二区| 麻豆av在线久日| 亚洲专区国产一区二区| 母亲3免费完整高清在线观看| 色老头精品视频在线观看| 欧美成人性av电影在线观看| 欧美绝顶高潮抽搐喷水| 制服丝袜大香蕉在线| 久久精品亚洲精品国产色婷小说| 极品教师在线免费播放| 女人爽到高潮嗷嗷叫在线视频| av在线天堂中文字幕| 国产熟女xx| 在线观看美女被高潮喷水网站 | 国产成人av教育| 波多野结衣高清无吗| x7x7x7水蜜桃| 国产av在哪里看| 欧美黄色淫秽网站| 无遮挡黄片免费观看| 老司机午夜福利在线观看视频| 少妇人妻一区二区三区视频| 性欧美人与动物交配| 一级a爱片免费观看的视频| 精品午夜福利视频在线观看一区| 欧美在线黄色| 亚洲男人的天堂狠狠| 草草在线视频免费看| 高清在线国产一区| 国产91精品成人一区二区三区| 国产精品一区二区免费欧美| www.999成人在线观看| 日日夜夜操网爽| 亚洲九九香蕉| 激情在线观看视频在线高清|