• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    GTB-PPI:Predict Protein-protein Interactions Based on L1-regularized Logistic Regression and Gradient Tree Boosting

    2020-09-02 00:04:10BinYuChengChenHongyanZhouBingqiangLiuQinMa
    Genomics,Proteomics & Bioinformatics 2020年5期

    Bin Yu*,Cheng Chen,Hongyan Zhou,Bingqiang Liu,Qin Ma*

    1 School of Life Sciences,University of Science and Technology of China,Hefei 230027,China

    2 College of Mathematics and Physics,Qingdao University of Science and Technology,Qingdao 266061,China

    3 Artificial Intelligence and Biomedical Big Data Research Center,Qingdao University of Science and Technology,Qingdao 266061,China

    4 School of Mathematics,Shandong University,Jinan 250100,China

    5 Department of Biomedical Informatics,College of Medicine,The Ohio State University,Columbus,OH 43210,USA

    KEYWORDS Protein-protein interaction;Feature fusion;L1-regularized logistic regression;Gradient tree boosting;Machine learning

    Abstract Protein-protein interactions (PPIs) are of great importance to understand genetic mechanisms,delineate disease pathogenesis,and guide drug design.With the increase of PPI data and development of machine learning technologies,prediction and identification of PPIs have become a research hotspot in proteomics.In this study,we propose a new prediction pipeline for PPIs based on gradient tree boosting(GTB).First,the initial feature vector is extracted by fusing pseudo amino acid composition(PseAAC),pseudo position-specific scoring matrix(PsePSSM),reduced sequence and index-vectors(RSIV),and autocorrelation descriptor(AD).Second,to remove redundancy and noise,we employ L1-regularized logistic regression (L1-RLR) to select an optimal feature subset.Finally,GTB-PPI model is constructed.Five-fold cross-validation showed that GTB-PPI achieved the accuracies of 95.15%and 90.47%on Saccharomyces cerevisiae and Helicobacter pylori datasets,respectively.In addition,GTB-PPI could be applied to predict the independent test datasets forCaenorhabditis elegans, Escherichia coli, Homo sapiens,and Mus musculus,the one-core PPI network for CD9,and the crossover PPI network for the Wnt-related signaling pathways.The results show that GTB-PPI can significantly improve accuracy of PPI prediction.The code and datasets of GTB-PPI can be downloaded from https://github.com/QUST-AIBBDRC/GTB-PPI/.

    Introduction

    Knowledge of protein-protein interactions (PPIs) can help to probe the mechanisms underlying various biological processes,such as DNA replication,protein modification,and signal transduction [1,2].The accurate understanding and analysis of PPIs can reveal multiple functions at the molecular and proteome levels,which has become a research hotspot[3,4].However,web-lab identification methods suffer from incomplete and false prediction problems [5].Alternatively,employing reliable bioinformatics methods for PPI prediction could provide candidates for subsequent experimental validation in a cost-effective way.

    Compared with structure-based methods,sequence-based methods are straightforward and do not requirea prioriinformation,which have been widely used.Martin et al.[6] proposed the signature kernel method to extract protein sequence feature information,but they did not use physicochemical property information.Subsequently,Guo et al.[7]employed seven physicochemical properties of amino acids to predict PPIs by combining autocovariance and support vector machine (SVM).

    Different feature extraction methods can complement each other,and prediction accuracy can be improved by effective feature fusion [8,9].For instance,Du et al.[8] constructed a PPI prediction framework called DeepPPI,which employed deep neural networks as the classifier.They fused amino acid composition information-based features and physiochemical property-based sequence features.However,presence of information redundancy,noise,and excessively high dimensionalities after feature fusion would affect the classification accuracy.You et al.[10] used the minimum redundancy maximum relevance (mRMR) to determine important and distinguishable features to predict PPIs based on SVM.

    Ensemble learning systems can achieve higher prediction performance than a single classifier.To our knowledge,Jia et al.[11] combined seven random forest (RF) classifiers according to voting principles.As an ensemble learning method,gradient tree boosting(GTB)has been widely applied in miRNA-disease association [12],drug-target interaction[13],and RNA-binding residue prediction [14].GTB outperforms SVM and RF,showing superior model generalization performance.

    Although a large number of algorithms have been proposed and developed,challenges remain for sequenced-based PPI predictors currently available.First,the sequence-only-based information of PPIs is not fully represented and elucidated,and satisfactory results cannot be obtained by merely adjusting individual parameters.Multi-information fusion is a very useful strategy through fusing multiple descriptors,such as pseudo amino acid composition (PseAAC) and pseudo position-specific scoring matrix (PsePSSM),which have been widely applied in PPI prediction [15],Gram-negative protein localization prediction [16],identification of submitochondrial locations [17],and apoptosis protein localization prediction[18].Secondly,there is a severe data imbalance problem in PPI prediction.The number of non-interacting protein pairs is much higher than that of interacting protein pairs.Currently,machine learning methods cannot deal with such problems well and could result in poor overall performance when dealing with imbalanced data [19].

    To overcome the aforementioned limitation of machine learning methods,this study proposes a new PPI prediction pipeline called GTB-PPI.First,we fuse PseAAC,PsePSSM,reduced sequence and index-vectors (RSIV),and autocorrelation descriptor (AD) to extract amino acid compositionbased information,evolutionary information,and physicochemical information.To retrieve effective details representing PPIs without losing important and reliable characteristic information,L1-regularized logistic regression(L1-RLR)is first utilized for PPI prediction to eliminate redundant features.At the same time,we employ GTB as a classifier to bridge the gap between the extracted PPI features and class label.Our data show that the PPI prediction performance of GTB is better than that of SVM,RF,Na?¨ve Bayes (NB),andKnearest neighbors (KNN) classifiers.The linear combination of decision trees can fit the PPI data well.When applied to the network prediction,GTB-PPI obtains the accuracy values of 93.75% and 95.83% for the one-core PPI network for CD9 and the crossover PPI network for the Wnt-related signaling pathways,respectively.

    Method

    Data source

    TheSaccharomyces cerevisiaePPI dataset was obtained from the Database of Interacting Proteins (DIP) (DIP:20070219)[7].Protein sequences consisting of <50 amino acid residues or showing sequence identity ≥40% via CD-HIT [20] were removed.Thus,5594 interacting protein pairs are considered as positive samples;5594 protein pairs with different subcellular location information are selected as negative samples,and their location information is obtained from Swiss-Prot.TheHelicobacter pyloriPPI dataset was constructed before [6],which contains 2916 samples (1458 PPI pairs and 1458 non-PPI pairs).

    Four independent PPI datasets [21] were also used to test the performance of GTB-PPI.These datasets are obtained fromCaenorhabditis elegans(4013 interacting pairs),Escherichia coli(6954 interacting pairs),Homo sapiens(1412 interacting pairs),andMus musculus(313 interacting pairs).The number of unique proteins in each dataset is shown in Table S1.

    Feature extraction

    We fuse PseAAC,PsePSSM,RSIV,and AD to extract the PPI feature information,including sequence-based features,evolutionary information features,and physicochemical property features.The detailed descriptions of methods are presented in File S1.

    L1-RLR

    L1-RLR is an embedded feature selection method.Given the sample datasetD={(x1,y1),(x2,y2),···,(xm,ym)},L1-RLR can be transformed into an unconstrained optimization problem.

    where ‖·‖1represents the L1 norm;lis the number of samples;ω represents the weight coefficient;andCrepresents penalty term,which determines the number of selected features.We use the coordinate descent algorithm in LIBLINEAR [22]to solve Equation (1).

    GTB

    GTB can be used to aggregate multiple decision trees [23,24].Different from other ensemble learning algorithms,GTB fits residual of the regression tree at each iteration using negative gradient values of loss.

    GTB can be expressed as the relationship between the labelyand the vector of input variablesx,which are connected via a joint probability distributionp(x,y).The goal of GTB is to obtain the estimated functionthrough minimizingL(y,F(xiàn)(x)):

    Lethm(x)be them-thdecision tree andJmindicates number of its leaves.The tree partitions the input space intoJmdisjoint regionsR1,m,R2,m,···,RJm,mand predicts a numerical valuebjmfor each regionRjm.The output ofhm(x)can be described as:

    GTB can complement the weak learning ability of decision tree,thus improving the ability of representation,optimization,and generalization.GTB can capture higher-order information and is invariant to scaling of sample data.GTB can effectively avoid overfitting condition by weighting combination scheme.GTB-PPI uses the GTB algorithm of Scikit-learn[25].

    Performance evaluation

    In GTB-PPI pipeline,recall,precision,overall prediction accuracy (ACC),and Matthews correlation coefficient (MCC) are used to evaluate the model performance [8].The definitions are as follows:

    TP indicates the number of predicted PPI samples found in PPI dataset;TN indicates the number of non-PPI samples correctly predicted;FP and FN indicate false positive and false negative,respectively.Receiver operating characteristic(ROC) curve [26],precision-recall (PR) curve [27],area under ROC curve (AUROC),and area under PR curve (AUPRC)are also used to evaluate the generalization ability of GTBPPI.

    Results and discussion

    GTB-PPI pipeline

    The pipeline ofGTB-PPIfor predictingPPIsis shown inFigure 1,which can be implemented usingMATLAB2014a and Python 3.6.There are five steps ofGTB-PPIas described below.

    Figure 1 Overall framework of GTB-PPI for PPI prediction

    Figure 2 Prediction results of different parameters λ,ξ,and lag on the S.cerevisiae and H.pylori datasets

    Data input

    The input values of GTB-PPI are PPI samples,non-PPI samples,and the corresponding binary labels.

    Feature extraction

    PseAAC,PsePSSM,RSIV,and AD are fused to transform the protein character signal into numerical signal.1) Amino acid sequence composition and sequence order information are obtained using PseAAC to construct the 20 +λ dimensional vectors.2) PSSM matrix of the protein sequence is obtained and 20 +20×ξ features are extracted based on PsePSSM.3)Feature information is extracted using RSIV according to the six physicochemical properties.Each protein sequence is constructed as 120+77=197 dimensional vectors.4)Protein sequence is transformed into 3×7×lagdimensional vectors by Morean-Broto autocorrelation(MBA),Moran autocorrelation (MA),and Geary autocorrelation (GA).λ,ξ,andlagare the hyperparameters of GTB-PPI,and their detailed meaning can be seen in File S1.

    Dimensionality reduction

    L1-RLR is first employed to remove redundant features by adjusting the penalty parameters in logistic regression.The performance of L1-RLR is then compared with that of semisupervised dimension reduction (SSDR),principal component analysis (PCA),kernel principal component analysis (KPCA),factor analysis (FA),mRMR,and conditional mutual information maximization (CMIM) onS.cerevisiaeandH.pyloridatasets.

    PPI prediction based on GTB

    According to step 2 for feature extraction and step 3 for dimensionality reduction,L1-RLR is used to better capture the sequence representation details.In this way,GTB-PPI model can be constructed using GTB as the classifier.

    PPI prediction on independent test datasets and network datasets

    The optimal feature set representing PPIs can be obtained through feature encoding,fusion,and selection.GTB is employed to predict the binary labels on four independent test datasets and two network datasets.

    Parameter optimization of PseAAC,PsePSSM,and AD

    It is essential to optimize parameters of PseAAC,PsePSSM,and AD for GTB-PPI predictor construction.We implement the hyperparameter optimization through five-fold crossvalidation.

    To extract features from the sequence,the values for λ of PseAAC,ξ of PsePSSM,andlagof AD should be determined.We set the values of λ as 1,3,5,7,9,and 11;similarly,values for ξ andlagare also set as 1,3,5,7,9,and 11 in order.GTB is then used to predict the binary labels(Tables S2-S4).As shown inFigure 2,the prediction performance onS.cerevisiaeandH.pyloridatasets changed with the alteration in the values of the respective parameters.For the parameter λ in PseAAC,the highest prediction performance for these two datasets was obtained at different λ values:the optimal λ value forS.cerevisiaeis 9,while the optimal λ value ofH.pyloriis 11.Considering that PseAAC generates fewer dimensional vectors than the other three feature extraction methods (PsePSSM,RSIV,and AD),we choose the optimal parameter λ=11 to mine more PseAAC information.The parameter selection of ξ andlagcan be found in File S2.In summary,for each protein sequence,PseAAC extracts 20 +11=31 features,PsePSSM obtains 20 +20×9=200 features,the dimension of RSIV is 197,and AD encodes 3×7×11=231 features.We can obtain 659-dimensional vectors by fusing all four coding methods.Then the 1318-dimensional feature vectors are constructed by concatenating two sequences of protein pairs.

    Effect of dimensionality reduction

    L1-RLR can effectively improve prediction performance with higher computational efficiency.The process of parameter selection is described in File S3.To evaluate the performance of L1-RLR (C=1),we compared its prediction performance with SSDR [28],PCA [29] (setting of contribution rate is shown in Table S5),KPCA [30] (adjustment of contribution rate is shown in Table S6),FA [31],mRMR [32],and CMIM[33] (Table S7).ROC and PR curves of different dimensionality reduction methods are shown inFigure 3.The AUROC and AUPRC are shown in Table S8.The numbers of raw features and optimal features can be obtained in Figures S1 and S2.

    As shown in Figure 3A and B,ROC curves for both theS.cerevisiaeandH.pyloridatasets show that the L1-RLR has superior model performance.For theS.cerevisiaedataset,the AUROC value of L1-RLR is 0.9875,which is 4.55%,4.83%,6.13%,3.21%,1.07%,and 1.09% higher than that of SSDR,PCA,KPCA,FA,mRMR,and CMIM,respectively(Table S8).For theH.pyloridataset,the AUROC value of L1-RLR is 0.9559,which is 3.47%,9.80%,8.59%,8.33%,1.04%,and 9.55% higher than that of SSDR,PCA,KPCA,FA,mRMR,and CMIM,respectively(Table S8).As shown in Figure 3C and D,in PR curves,L1-RLR almost obtains the highest precision value at corresponding recall value.The AUPRC values of L1-RLR are 1.22%-6.21% and 0.36%-11.94%higher than the other six dimensionality reduction methods on theS.cerevisiaeandH.pyloridatasets,respectively(Table S8).These results indicate that L1-RLR can effectively remove the redundant features without losing important information.The effective features related to PPIs could be fed into a GTB classifier,generating a reliable GTB-PPI prediction model.

    Selection of classifier algorithms

    GTB is used as a classifier with the number of iterations set to 1000 and loss function set as ‘‘deviance”.The prediction results of other four classifiers are also provided via five-fold cross-validation,including KNN [34] (number of neighbors=3) (Table S9),NB [35],SVM [36] (recursive feature elimination as the kernel function),and RF [37] (number of the base decision trees=1000) (Table S10).The prediction results of KNN,SVM,NB,RF,and GTB on theS.cerevisiaeandH.pyloridatasets are shown in Table S11 and Figures S3 and S4.We also obtain the ROC and PR curves(Figure 4)and AUROC and AUPRC values for different classifiers(Table S12).

    Figure 4 Comparison of GTB with KNN,NB,SVM,and RF classifiers

    As shown in Figure 4A and B,ROC curves for both theS.cerevisiaeandH.pyloridatasets show that the GTB classifier outperforms than KNN,NB,SVM,and RF.The AUROC values of GTB are 1.16%-24.65% and 0.53%-22.95% higher than the other four classifier methods on theS.cerevisiaeandH.pyloridatasets,respectively (Table S12).As shown in Figure 4C and D,the prediction performance of GTB is superior to KNN,NB,SVM,and RF.The AUPRC values of GTB are 1.42%-24.32% and 0.22%-24.56% higher than the other four classifier methods on theS.cerevisiaeandH.pyloridatasets,respectively (Table S12).These results demonstrate that GTB-PPI can accurately indicate whether a pair of proteins interact with each other within theS.cerevisiaeorH.polyridataset.GTB is an ensemble method using boosting algorithm that can achieve superior generalization performance over a single learner.Specially,RF achieves worse performance than GTB,because all the base decision trees of RF are treated equally.If the base classifier’s prediction performance is biased,the final ensemble classifier may get the unreliable and biased predicted results.GTB can utilize steepest descent step algorithm to bridge the gap between the sequence and PPI label information.

    Figure 5 Prediction results of one-core and crossover networks using GTB-PPIA

    Table 1 Performance comparison of GTB-PPI with other state-of-the-art predictors on the S.cerevisiae dataset

    Comparison of GTB-PPI with other PPI prediction methods

    To verify the validity of the GTB-PPI model,we compare GTB-PPI with ACC+SVM [7],DeepPPI [8],and other state-of-the-art methods on theS.cerevisiaeandH.pyloridatasets.

    As shown inTable 1,for theS.cerevisiaedataset,compared with other existing methods,the ACC of GTB-PPI increases by 0.14%-9.00%;the recall of GTB-PPI is 0.15%higher than DeepPPI[8]and 1.54%higher than MCD+SVM[10];the precision of GTB-PPI is 1.32% higher than DeepPPI [8] and 0.81% higher than MIMI+NMBAC+RF [41].

    As shown inTable 2,for theH.pyloridataset,the performance of GTB-PPI is better than other tested predictors.In terms of ACC,GTB-PPI is 2.88%-7.07% higher than other methods (7.07% higher than SVM [6],4.24% higher than DeepPPI [8],and 3.73% higher than DCT+WSRC [45]).At the same time,the recall of GTB-PPI is 1.71%-12.15%higher than other methods (4.72% higher than DCT+WSRC [45]and 7.91% higher than MCD+SVM [10]).The precision of GTB-PPI is 1.76%-5.67% higher than other methods(4.29% higher than SVM [6] and 5.67% higher than DeepPPI[8]).

    PPI prediction on independent test datasets

    The performance of GTB-PPI can also be evaluated using cross-species datasets.After the feature extraction,fusion,and selection,theS.cerevisiaedataset is used as a training set to predict PPIs of four independent test datasets.

    As shown inTable 3,for theC.elegansdataset,the ACC of GTB-PPI is 0.26% higher than MIMI+NMBAC+RF[41],4.71% higher than MLD+RF [39],and 11.23% higher than DCT+WSRC [45],but 2.42% lower than DeepPPI [8].For theE.colidataset,the ACC of GTB-PPI (94.06%) is 1.26%-27.98% higher than DeepPPI (92.19%) [8],MIMI+NMBAC+RF (92.80%) [41],MLD+RF (89.30%) [39],and DCT+WSRC (66.08%) [45].For theH.sapiensdataset,the ACC of GTB-PPI (97.38%) is 3.05%-15.16% higher than DeepPPI (93.77%) [8],MIMI+NMBAC+RF(94.33%) [41],MLD+RF (94.19%) [39],and DCT+WSRC(82.22%) [45].For theM.musculusdataset,the ACC of GTB-PPI (98.08%) is 2.23%-18.21% higher than DeepPPI(91.37%) [8],MIMI+NMBAC+RF (95.85%) [41],MLD+RF (91.96%) [39],and DCT+WSRC (79.87%) [45].The findings indicate that the hypothesis of mapping PPIs from one species to another species is reasonable.We can conclude that PPIs in one organism might have ‘‘co-evolve”with other organisms [41].

    Table 2 Performance comparison of GTB-PPI with other state-of-the-art predictors on the H.pylori dataset

    Table 3 Performance comparison of GTB-PPI with other state-of-the-art predictors on independent datasets

    PPI network prediction

    The graph visualization of the PPI network can provide a broad and informative idea to understand the proteome and analyze the protein functions.We employ GTB-PPI to predict the simple one-core PPI network for CD9 [46] and crossover PPI network for the Wnt-related signaling pathways[47]using theS.cerevisiaedataset as a training set.

    As shown inFigure 5A,only the interaction between CD9 and Collagen-binding protein 2 is not predicted successfully based on GTB-PPI,which was not predited by Shen et al.[48] either.Compared with Shen et al.[48] and Ding et al.[41],GTB-PPI achieves the superior prediction performance.The ACC is 93.75%,which is 12.50% higher than Shen et al.(81.25%) [48] and 6.25% higher than Ding et al.(87.50%) [41].As shown in Figure 5B,92 of the 96 PPI pairs are identified based on GTB-PPI.The ACC is 95.83%,which is 19.79% higher than Shen et al.(76.04%) [48] and 1.04%higher than Ding et al.(94.79%) [41].

    The palmitoylation of CD9 could support CD9 to interact with CD53 [49].In the one-core network for CD9,we can see that the interaction between CD9 and CD53 is predicted successfully based on GTB-PPI.In the crossover PPI network for the Wnt-related signaling pathways,ANP32A,CRMP1,and KIAA1377 are linked to the Wnt signaling pathway via PPIs.The ANP32A has been demonstrated as a potential tumor suppressor[50],and GTB-PPI could predict its interactions with the corresponding proteins.However,the interaction between ROCK1 and CRMP1 is not predicted.It is likely because we use theS.cerevisiaedataset as a training set,and ROCK1 and CRMP1 are different organism genes fromS.cerevisiae.At the same time,ROCK1 is part of the noncanonical Wnt signaling pathway [47],GTB-PPI may not be very effective in this case.A previous study has reported that AXIN1 could interact with multiple proteins [51].Here,we find that GTB-PPI can predict the interactions between AXIN1 and its satellite proteins,which provides new insights to elucidate the biological mechanism of PPI network.

    Conclusion

    The knowledge and analysis of PPIs can help us to reveal the structure and function of protein at the molecular level,including growth,development,metabolism,signal transduction,differentiation,and apoptosis.In this study,a new PPI prediction pipeline called GTB-PPI is presented.First,PseAAC,PsePSSM,RSIV,and AD are concatenated as the initial feature information for predicting PPIs.PseAAC obtains not only the amino acid composition information but also the sequence order information.PsePSSM can mine the evolutionary information and local order information.RSIV can obtain the frequency feature information using the reduced sequence.AD reflects the physicochemical property features on global amino acid sequence.Second,L1-RLR can obtain effective information features related to PPIs without losing accuracy and generalization.Simultaneously,the performance of L1-RLR is superior to SSDR,PCA,KPCA,FA,mRMR,and CMIMs (Figure 3).Finally,the PPIs are predicted based on GTB whose base classifier is a decision tree,which can bridge the gap between amino acid sequence information features and class label.Experimental results show that the PPI prediction performance of GTB is better than that of SVM,RF,NB,and KNN.Especially,in the field of binary PPI prediction,the L1-RLR is used for dimensionality reduction for the first time.The GTB is also first employed as a classifier.In a word,GTB-PPI shows good performance,representation ability,and generalization ability.

    Availability

    All datasets and code of GTB-PPI can be obtained on https://github.com/QUST-AIBBDRC/GTB-PPI/.

    CRediT author statement

    Bin Yu:Conceptualization,Data curation,Formal analysis,Investigation,Methodology,Writing -original draft,Validation,Writing -review & editing.Cheng Chen:Data curation,Formal analysis,Investigation,Methodology,Writing -original draft,Validation,Visualization.Hongyan Zhou:Formal analysis,Investigation,Methodology,Validation,Visualization.Bingqiang Liu:Formal analysis,Investigation,Methodology,Writing -original draft.Qin Ma:Data curation,Formal analysis,Investigation,Methodology,Writing -original draft,Writing-review& editing.All authors read and approved the final manuscript.

    Competing interests

    The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

    Acknowledgments

    This work was supported by the National Natural Science Foundation of China (Grant No.61863010),the Key Research and Development Program of Shandong Province of China(Grant No.2019GGX101001),and the Natural Science Foundation of Shandong Province of China(Grant No.ZR2018MC007).

    Supplementary material

    Supplementary data to this article can be found online at https://doi.org/10.1016/j.gpb.2021.01.001.

    ORCID

    0000-0002-2453-7852 (Bin Yu)

    0000-0002-4354-5508 (Cheng Chen)

    0000-0003-4093-2585 (Hongyan Zhou)

    0000-0002-5734-1135 (Bingqiang Liu)

    0000-0002-3264-8392 (Qin Ma)

    一区二区三区高清视频在线| 日本撒尿小便嘘嘘汇集6| 听说在线观看完整版免费高清| 成人免费观看视频高清| 久久久久久久久久黄片| 精品国产一区二区三区四区第35| 伊人久久大香线蕉亚洲五| 国产精品免费一区二区三区在线| 精品国产超薄肉色丝袜足j| 亚洲人成网站在线播放欧美日韩| 国产精品99久久99久久久不卡| 又黄又爽又免费观看的视频| 欧美日韩精品网址| 在线观看免费视频日本深夜| 日韩中文字幕欧美一区二区| 国产精品综合久久久久久久免费| 色在线成人网| 久久精品国产亚洲av香蕉五月| 久久狼人影院| 亚洲国产毛片av蜜桃av| 97人妻精品一区二区三区麻豆 | 国产区一区二久久| 免费在线观看视频国产中文字幕亚洲| 久久国产精品男人的天堂亚洲| 成在线人永久免费视频| 很黄的视频免费| 亚洲第一电影网av| 老熟妇乱子伦视频在线观看| 婷婷精品国产亚洲av| 欧美日本视频| 真人做人爱边吃奶动态| 熟妇人妻久久中文字幕3abv| 白带黄色成豆腐渣| 色哟哟哟哟哟哟| ponron亚洲| 精品国产一区二区三区四区第35| 男女下面进入的视频免费午夜 | 成在线人永久免费视频| 欧美在线一区亚洲| 亚洲精华国产精华精| 亚洲成av人片免费观看| 中国美女看黄片| www.www免费av| 久久午夜亚洲精品久久| 久久天躁狠狠躁夜夜2o2o| 麻豆av在线久日| 给我免费播放毛片高清在线观看| 欧美在线一区亚洲| 久久天躁狠狠躁夜夜2o2o| 久久久精品欧美日韩精品| 国产精品日韩av在线免费观看| www.999成人在线观看| 在线免费观看的www视频| 在线观看一区二区三区| 18禁黄网站禁片免费观看直播| 亚洲国产毛片av蜜桃av| 男女下面进入的视频免费午夜 | 十八禁人妻一区二区| 麻豆成人午夜福利视频| 国产成人欧美在线观看| www.熟女人妻精品国产| 欧美一级a爱片免费观看看 | 久久国产精品影院| 动漫黄色视频在线观看| 国产av一区二区精品久久| 色精品久久人妻99蜜桃| 91老司机精品| 神马国产精品三级电影在线观看 | 午夜激情福利司机影院| 亚洲av中文字字幕乱码综合 | 色综合欧美亚洲国产小说| 搞女人的毛片| 国产欧美日韩一区二区三| 最近最新免费中文字幕在线| 我的亚洲天堂| av天堂在线播放| 黄色视频,在线免费观看| x7x7x7水蜜桃| 女性被躁到高潮视频| 一a级毛片在线观看| cao死你这个sao货| 中文字幕最新亚洲高清| 成人av一区二区三区在线看| 亚洲九九香蕉| √禁漫天堂资源中文www| av免费在线观看网站| 国产蜜桃级精品一区二区三区| 18美女黄网站色大片免费观看| 国内久久婷婷六月综合欲色啪| 麻豆成人av在线观看| 午夜免费观看网址| 可以在线观看的亚洲视频| 看黄色毛片网站| 久久久久亚洲av毛片大全| 丝袜美腿诱惑在线| 亚洲国产中文字幕在线视频| 亚洲人成网站在线播放欧美日韩| 视频区欧美日本亚洲| 日韩一卡2卡3卡4卡2021年| 成人永久免费在线观看视频| 久久精品aⅴ一区二区三区四区| 色精品久久人妻99蜜桃| 亚洲在线自拍视频| 日韩精品青青久久久久久| 听说在线观看完整版免费高清| 少妇的丰满在线观看| 成人国产综合亚洲| 长腿黑丝高跟| 夜夜夜夜夜久久久久| 亚洲国产日韩欧美精品在线观看 | 亚洲一区中文字幕在线| 在线观看66精品国产| 国产精品久久久久久亚洲av鲁大| 婷婷精品国产亚洲av在线| 国产精品,欧美在线| 亚洲性夜色夜夜综合| 久久精品成人免费网站| 久久这里只有精品19| 欧美乱妇无乱码| 18禁黄网站禁片午夜丰满| 在线国产一区二区在线| 欧美黑人精品巨大| 99在线视频只有这里精品首页| 看黄色毛片网站| 亚洲国产精品sss在线观看| 亚洲一码二码三码区别大吗| 淫妇啪啪啪对白视频| 午夜视频精品福利| 成人午夜高清在线视频 | 日韩欧美三级三区| 亚洲成a人片在线一区二区| 少妇熟女aⅴ在线视频| 日本 av在线| 桃红色精品国产亚洲av| 欧美乱码精品一区二区三区| 香蕉av资源在线| 午夜精品久久久久久毛片777| 看黄色毛片网站| 国产成人系列免费观看| 国产色视频综合| 国产成人精品久久二区二区免费| 久久99热这里只有精品18| 两性夫妻黄色片| 国产激情偷乱视频一区二区| 午夜福利欧美成人| 在线观看日韩欧美| 又黄又爽又免费观看的视频| 变态另类丝袜制服| 亚洲欧美精品综合久久99| 在线观看免费视频日本深夜| 99国产综合亚洲精品| 美女扒开内裤让男人捅视频| 国产爱豆传媒在线观看 | 中出人妻视频一区二区| 黑人巨大精品欧美一区二区mp4| 99在线人妻在线中文字幕| 中文字幕精品亚洲无线码一区 | 亚洲av日韩精品久久久久久密| 欧美中文日本在线观看视频| 亚洲精品国产区一区二| 欧美日韩乱码在线| 国产高清videossex| 日韩欧美 国产精品| 国产精品精品国产色婷婷| 一卡2卡三卡四卡精品乱码亚洲| 一区二区三区激情视频| 欧美日韩亚洲综合一区二区三区_| 99热这里只有精品一区 | 怎么达到女性高潮| 久久狼人影院| 99热6这里只有精品| 在线十欧美十亚洲十日本专区| 午夜免费观看网址| x7x7x7水蜜桃| 在线观看www视频免费| 午夜福利免费观看在线| 午夜福利成人在线免费观看| 18禁观看日本| 两个人视频免费观看高清| 九色国产91popny在线| 91字幕亚洲| 大型av网站在线播放| 亚洲人成网站高清观看| 亚洲真实伦在线观看| 久久亚洲真实| 中文资源天堂在线| 色综合亚洲欧美另类图片| 在线观看日韩欧美| 精品少妇一区二区三区视频日本电影| 久久中文字幕人妻熟女| 淫妇啪啪啪对白视频| 亚洲美女黄片视频| 亚洲五月婷婷丁香| 欧美激情久久久久久爽电影| 女性生殖器流出的白浆| 亚洲天堂国产精品一区在线| 国产在线观看jvid| 国产麻豆成人av免费视频| 亚洲国产精品合色在线| videosex国产| 日韩欧美在线二视频| 18禁观看日本| 成人手机av| 欧美乱色亚洲激情| 欧美激情极品国产一区二区三区| 午夜久久久久精精品| 神马国产精品三级电影在线观看 | 久久午夜综合久久蜜桃| 午夜免费成人在线视频| 中国美女看黄片| 亚洲午夜理论影院| 天堂√8在线中文| 精品欧美一区二区三区在线| 麻豆久久精品国产亚洲av| 51午夜福利影视在线观看| 两个人看的免费小视频| 在线观看一区二区三区| 欧美色欧美亚洲另类二区| 侵犯人妻中文字幕一二三四区| videosex国产| 国内精品久久久久精免费| 欧美av亚洲av综合av国产av| 在线观看免费午夜福利视频| 中文亚洲av片在线观看爽| 俄罗斯特黄特色一大片| 日日夜夜操网爽| 久久狼人影院| 欧美丝袜亚洲另类 | 亚洲国产精品合色在线| 国产精品爽爽va在线观看网站 | 巨乳人妻的诱惑在线观看| 99在线视频只有这里精品首页| 欧美精品啪啪一区二区三区| av有码第一页| 黄片播放在线免费| 免费av毛片视频| 夜夜夜夜夜久久久久| 妹子高潮喷水视频| 在线观看午夜福利视频| 在线十欧美十亚洲十日本专区| 黄色视频不卡| 国产在线精品亚洲第一网站| 久久精品aⅴ一区二区三区四区| 黄色片一级片一级黄色片| 在线观看66精品国产| 国内毛片毛片毛片毛片毛片| 午夜福利成人在线免费观看| 精品少妇一区二区三区视频日本电影| 国产主播在线观看一区二区| 满18在线观看网站| 熟女少妇亚洲综合色aaa.| 一级黄色大片毛片| 宅男免费午夜| 国产精华一区二区三区| 国内久久婷婷六月综合欲色啪| 中文字幕av电影在线播放| 精品国产国语对白av| 少妇 在线观看| www.自偷自拍.com| 淫秽高清视频在线观看| 中文字幕人妻熟女乱码| 国产久久久一区二区三区| 久久 成人 亚洲| 午夜福利一区二区在线看| 女生性感内裤真人,穿戴方法视频| 狠狠狠狠99中文字幕| 真人一进一出gif抽搐免费| 91老司机精品| 亚洲av中文字字幕乱码综合 | 此物有八面人人有两片| 亚洲精品国产区一区二| 精品不卡国产一区二区三区| 757午夜福利合集在线观看| 亚洲国产日韩欧美精品在线观看 | 中文字幕人妻熟女乱码| 黄片大片在线免费观看| 亚洲aⅴ乱码一区二区在线播放 | 日本 av在线| 丁香欧美五月| av中文乱码字幕在线| 一区二区三区高清视频在线| 亚洲成人免费电影在线观看| 婷婷亚洲欧美| 天天一区二区日本电影三级| 在线国产一区二区在线| 啦啦啦韩国在线观看视频| 精品第一国产精品| 欧洲精品卡2卡3卡4卡5卡区| 日本撒尿小便嘘嘘汇集6| 日本一区二区免费在线视频| 国产亚洲av嫩草精品影院| 夜夜爽天天搞| 精品免费久久久久久久清纯| 久久久久久大精品| 女生性感内裤真人,穿戴方法视频| 岛国视频午夜一区免费看| 丰满的人妻完整版| av在线播放免费不卡| 成人三级黄色视频| 欧美av亚洲av综合av国产av| 精品人妻1区二区| 欧美+亚洲+日韩+国产| 日韩免费av在线播放| ponron亚洲| 12—13女人毛片做爰片一| 国产午夜福利久久久久久| 在线观看免费视频日本深夜| 亚洲欧美精品综合一区二区三区| 欧美日韩瑟瑟在线播放| 精品卡一卡二卡四卡免费| 波多野结衣巨乳人妻| 真人做人爱边吃奶动态| 国产1区2区3区精品| 日日摸夜夜添夜夜添小说| 久久青草综合色| 脱女人内裤的视频| 99精品在免费线老司机午夜| 欧美一级a爱片免费观看看 | 国内精品久久久久久久电影| x7x7x7水蜜桃| 亚洲免费av在线视频| 国产97色在线日韩免费| 最新在线观看一区二区三区| 十分钟在线观看高清视频www| 两人在一起打扑克的视频| 97超级碰碰碰精品色视频在线观看| 热99re8久久精品国产| 在线看三级毛片| 狂野欧美激情性xxxx| 精品日产1卡2卡| 午夜成年电影在线免费观看| 黄色丝袜av网址大全| 亚洲在线自拍视频| 成人欧美大片| 99久久99久久久精品蜜桃| 国产亚洲精品一区二区www| 久久精品亚洲精品国产色婷小说| 超碰成人久久| 国产精品98久久久久久宅男小说| 又紧又爽又黄一区二区| 国产99白浆流出| 亚洲专区中文字幕在线| 午夜福利在线在线| 成人三级黄色视频| 欧美黑人精品巨大| 国产一卡二卡三卡精品| 亚洲男人天堂网一区| 在线天堂中文资源库| 国产一区二区三区在线臀色熟女| 久久中文字幕一级| 亚洲av熟女| 丝袜人妻中文字幕| 一级作爱视频免费观看| 99久久精品国产亚洲精品| 国产v大片淫在线免费观看| 欧美中文综合在线视频| 91大片在线观看| 怎么达到女性高潮| 在线观看舔阴道视频| 1024手机看黄色片| 国产成人av教育| 亚洲成国产人片在线观看| 欧洲精品卡2卡3卡4卡5卡区| 日本一本二区三区精品| 男男h啪啪无遮挡| 日韩国内少妇激情av| 国语自产精品视频在线第100页| 日韩中文字幕欧美一区二区| 日韩免费av在线播放| 在线视频色国产色| 黄色女人牲交| 亚洲中文av在线| 两个人视频免费观看高清| 两个人看的免费小视频| 色哟哟哟哟哟哟| 亚洲av成人av| 亚洲色图 男人天堂 中文字幕| 精品一区二区三区av网在线观看| 日本黄色视频三级网站网址| 国产精品二区激情视频| 99精品久久久久人妻精品| 久久久久国产一级毛片高清牌| 我的亚洲天堂| 在线十欧美十亚洲十日本专区| 身体一侧抽搐| 巨乳人妻的诱惑在线观看| 中文字幕人妻丝袜一区二区| 久久中文字幕一级| 大香蕉久久成人网| 性欧美人与动物交配| 国产精品一区二区免费欧美| 久久精品亚洲精品国产色婷小说| 成人特级黄色片久久久久久久| av天堂在线播放| 国产精品久久久人人做人人爽| av在线播放免费不卡| 性色av乱码一区二区三区2| svipshipincom国产片| 亚洲国产日韩欧美精品在线观看 | 97碰自拍视频| 中文字幕另类日韩欧美亚洲嫩草| 少妇的丰满在线观看| 国产精品亚洲一级av第二区| 欧美黑人精品巨大| 俄罗斯特黄特色一大片| 真人一进一出gif抽搐免费| 亚洲av电影不卡..在线观看| 国产激情偷乱视频一区二区| 国产精品1区2区在线观看.| 久久久久亚洲av毛片大全| 亚洲第一青青草原| 国产黄色小视频在线观看| 亚洲人成电影免费在线| 国产精品永久免费网站| 国产精品亚洲美女久久久| 丝袜在线中文字幕| 草草在线视频免费看| 91av网站免费观看| 亚洲人成电影免费在线| 伦理电影免费视频| 亚洲专区字幕在线| 国内少妇人妻偷人精品xxx网站 | 久久九九热精品免费| 中出人妻视频一区二区| 看黄色毛片网站| 精品一区二区三区视频在线观看免费| 国产一区在线观看成人免费| 精品久久久久久久毛片微露脸| 久久性视频一级片| 久久伊人香网站| 一本大道久久a久久精品| ponron亚洲| 岛国视频午夜一区免费看| 色播亚洲综合网| 国产单亲对白刺激| 99久久99久久久精品蜜桃| 12—13女人毛片做爰片一| 宅男免费午夜| 一级片免费观看大全| 成年人黄色毛片网站| 欧美丝袜亚洲另类 | 青草久久国产| 日韩欧美在线二视频| 超碰成人久久| 人人妻,人人澡人人爽秒播| 88av欧美| 久久久久国内视频| 欧美中文综合在线视频| 天天一区二区日本电影三级| 女人高潮潮喷娇喘18禁视频| 亚洲精品国产精品久久久不卡| 一本久久中文字幕| 国内久久婷婷六月综合欲色啪| 欧美精品啪啪一区二区三区| 91成人精品电影| a级毛片a级免费在线| 变态另类丝袜制服| 中文在线观看免费www的网站 | 天天一区二区日本电影三级| 免费看a级黄色片| 亚洲av日韩精品久久久久久密| 欧美色视频一区免费| 黑人欧美特级aaaaaa片| 一边摸一边做爽爽视频免费| av欧美777| 欧美黑人巨大hd| 欧美中文综合在线视频| 婷婷亚洲欧美| 男女下面进入的视频免费午夜 | 欧美成狂野欧美在线观看| 欧美久久黑人一区二区| 侵犯人妻中文字幕一二三四区| 一区二区日韩欧美中文字幕| 欧美在线一区亚洲| 99热这里只有精品一区 | 在线观看66精品国产| 国产精品久久久人人做人人爽| 欧美黑人巨大hd| 欧美国产日韩亚洲一区| 久热爱精品视频在线9| 国产免费av片在线观看野外av| 久久精品91无色码中文字幕| 久久久久精品国产欧美久久久| 少妇 在线观看| 欧美黄色片欧美黄色片| 制服诱惑二区| 日日爽夜夜爽网站| 嫩草影视91久久| 国产精品av久久久久免费| 女人被狂操c到高潮| 亚洲国产精品合色在线| 国产主播在线观看一区二区| 在线观看午夜福利视频| 国产在线精品亚洲第一网站| 每晚都被弄得嗷嗷叫到高潮| 久久久久久久午夜电影| 97超级碰碰碰精品色视频在线观看| 亚洲一区二区三区不卡视频| 亚洲第一av免费看| 男女视频在线观看网站免费 | 女警被强在线播放| 在线观看舔阴道视频| 搡老岳熟女国产| 亚洲精华国产精华精| 欧美久久黑人一区二区| 少妇粗大呻吟视频| 成在线人永久免费视频| 精品午夜福利视频在线观看一区| 精品福利观看| 天堂动漫精品| 免费在线观看成人毛片| 国产免费男女视频| 日韩欧美一区视频在线观看| www.www免费av| 久久 成人 亚洲| 波多野结衣av一区二区av| 老鸭窝网址在线观看| 精品一区二区三区av网在线观看| 欧美黑人精品巨大| 91麻豆av在线| av天堂在线播放| 久久久国产成人免费| 一级黄色大片毛片| 久久精品国产亚洲av高清一级| 男男h啪啪无遮挡| 亚洲成av片中文字幕在线观看| 日韩欧美在线二视频| 国产男靠女视频免费网站| 欧美黑人巨大hd| 看片在线看免费视频| 国产在线观看jvid| 成人手机av| 无限看片的www在线观看| 18禁国产床啪视频网站| 中文字幕精品亚洲无线码一区 | 黄色 视频免费看| 中文字幕另类日韩欧美亚洲嫩草| 精品久久久久久久久久久久久 | 久久亚洲精品不卡| 在线观看免费午夜福利视频| 757午夜福利合集在线观看| 男女床上黄色一级片免费看| 欧美丝袜亚洲另类 | 欧美又色又爽又黄视频| 久久久国产成人免费| 黄网站色视频无遮挡免费观看| 色播亚洲综合网| 两性午夜刺激爽爽歪歪视频在线观看 | 特大巨黑吊av在线直播 | xxxwww97欧美| 国产男靠女视频免费网站| xxxwww97欧美| 亚洲精品一区av在线观看| 很黄的视频免费| 黄色 视频免费看| 欧美在线一区亚洲| 久久久久久久久中文| 亚洲激情在线av| 欧美中文日本在线观看视频| 999久久久精品免费观看国产| 性色av乱码一区二区三区2| 高潮久久久久久久久久久不卡| 国产在线观看jvid| 午夜精品久久久久久毛片777| 亚洲一区中文字幕在线| 琪琪午夜伦伦电影理论片6080| 国产精品永久免费网站| 精品人妻1区二区| 国产色视频综合| 婷婷亚洲欧美| 免费高清在线观看日韩| xxx96com| 在线观看一区二区三区| 亚洲人成伊人成综合网2020| 欧美三级亚洲精品| 亚洲aⅴ乱码一区二区在线播放 | 成人三级做爰电影| ponron亚洲| 久久久久九九精品影院| 99国产精品一区二区三区| 啦啦啦 在线观看视频| 高清在线国产一区| 国产精品久久久av美女十八| 在线观看免费午夜福利视频| 日本成人三级电影网站| 狠狠狠狠99中文字幕| 看黄色毛片网站| 男女床上黄色一级片免费看| 国产成人啪精品午夜网站| 国产男靠女视频免费网站| 国产熟女午夜一区二区三区| 亚洲中文字幕日韩| 视频区欧美日本亚洲| 亚洲在线自拍视频| 黄色女人牲交| 午夜福利成人在线免费观看| 亚洲精品一区av在线观看| 久久香蕉激情| 亚洲电影在线观看av| 久久亚洲真实| 亚洲国产精品合色在线| av在线天堂中文字幕| 国产精品野战在线观看| 99精品欧美一区二区三区四区| 成人18禁在线播放| 午夜福利欧美成人| 成年女人毛片免费观看观看9| 此物有八面人人有两片| 欧美日韩福利视频一区二区| 妹子高潮喷水视频| 国产成人影院久久av| 国产精品99久久99久久久不卡| 精品免费久久久久久久清纯| 国产亚洲精品一区二区www| 久久久国产精品麻豆|