呂小青,張夢龍,徐連勇,荊洪陽,韓永典
焊槍自轉(zhuǎn)角對焊接機(jī)器人能量消耗的影響
呂小青1, 2,張夢龍1,徐連勇1, 2,荊洪陽1, 2,韓永典1, 2
(1. 天津大學(xué)材料科學(xué)與工程學(xué)院,天津 300350;2. 天津市現(xiàn)代連接技術(shù)重點(diǎn)實(shí)驗(yàn)室,天津 300350)
結(jié)合弧焊焊接的內(nèi)在特性,給出了機(jī)器人焊槍自轉(zhuǎn)角的定義.基于三相功率分析儀,搭建了機(jī)器人功率消耗的測量平臺.針對1G、2G和3G位置的直焊縫焊接,使用該平臺測量了CMT弧焊焊接機(jī)器人在不同焊槍自轉(zhuǎn)角作業(yè)過程中消耗的瞬時(shí)功率. 計(jì)算并對比了機(jī)器人的平均功率,發(fā)現(xiàn)在這3種位置,改變焊接起點(diǎn)和終點(diǎn)的焊槍自轉(zhuǎn)角,機(jī)器人在整個(gè)運(yùn)動(dòng)過程和焊縫段消耗的平均功率都有顯著變化. 機(jī)器人在焊縫段和整個(gè)運(yùn)動(dòng)過程中的功率消耗變化規(guī)律相似,存在著能量最優(yōu)的起點(diǎn)和終點(diǎn)焊槍自轉(zhuǎn)角.結(jié)果表明改變焊槍自轉(zhuǎn)角,可以節(jié)省焊接機(jī)器人能量消耗. 在1G、2G和3G位置,分別以各焊接位置所有焊槍自轉(zhuǎn)角組合的平均值計(jì)算,最大可以減少11.1%、5.9%和8.3%的功率消耗.定義了功率消耗最小值附近區(qū)間表示取得功率最小值的難易程度,發(fā)現(xiàn)該區(qū)間概率很小,這進(jìn)一步說明了焊槍自轉(zhuǎn)角對機(jī)器人的功率消耗有顯著影響,為了減少弧焊焊接中機(jī)器人的功率消耗,需要注意焊槍自轉(zhuǎn)角的選擇.最后,簡述了焊槍自轉(zhuǎn)角與機(jī)器人功率消耗,以及工件擺放位置與機(jī)器人功率消耗關(guān)聯(lián)模型的建立思想,并給出了相關(guān)初步結(jié)果.該方面的研究對焊接機(jī)器人能量優(yōu)化和實(shí)際焊接生產(chǎn)有著重要的指導(dǎo)意義.
能量消耗;焊槍自轉(zhuǎn)角;焊接機(jī)器人;直焊縫;焊接位置
隨著工業(yè)生產(chǎn)自動(dòng)化程度的提高,機(jī)器人在工業(yè)生產(chǎn)中的應(yīng)用日漸廣泛[1].節(jié)約能量一直是學(xué)術(shù)界和工業(yè)界關(guān)注的重點(diǎn),因此,隨著機(jī)器人的大范圍應(yīng)用,如何更好地節(jié)約能量必將是未來工業(yè)發(fā)展關(guān)注的核心[2].
機(jī)器人節(jié)約能量本質(zhì)上同機(jī)器人本身運(yùn)動(dòng)學(xué)和動(dòng)力學(xué)緊密聯(lián)系[3-6],但由于不同加工工藝固有特性的不同,在能量優(yōu)化時(shí)關(guān)注重點(diǎn)又存在較大的差別[7-10].如文獻(xiàn)[6]提到了能量優(yōu)化同機(jī)器人運(yùn)動(dòng)方式、運(yùn)動(dòng)速度、到達(dá)目標(biāo)點(diǎn)的精度、負(fù)載狀態(tài)、關(guān)節(jié)摩擦等相關(guān)聯(lián);文獻(xiàn)[9-10]針對點(diǎn)焊中多個(gè)目標(biāo)焊接工作點(diǎn),通過NSGA-II算法(帶精英策略的非支配排序遺傳算法)和粒子群算法等,找到能量最優(yōu)的工作軌跡.點(diǎn)焊軌跡規(guī)劃中能量最優(yōu)和弧焊中軌跡最優(yōu)的根本區(qū)別在于:點(diǎn)焊焊接為不連續(xù)焊接過程,機(jī)械臂在相鄰兩個(gè)目標(biāo)點(diǎn)之間的運(yùn)動(dòng)不受限制,可以通過改變機(jī)器人在兩個(gè)目標(biāo)點(diǎn)之間運(yùn)動(dòng)過程中的姿態(tài)和運(yùn)動(dòng)速度實(shí)現(xiàn)機(jī)器人的能量優(yōu)化,同時(shí)點(diǎn)焊在多個(gè)焊點(diǎn)焊接時(shí),機(jī)器人能量優(yōu)化表現(xiàn)出來更多是最短路徑問題;而弧焊為連續(xù)焊接過程,機(jī)器人末端的運(yùn)動(dòng)速度和焊絲伸出方向的傾角一般在焊接過程中都不會改變,故完全不同于點(diǎn)焊的能量優(yōu)化.目前在弧焊中,相關(guān)機(jī)器人能量優(yōu)化工作尚鮮見報(bào)道.
顯然,焊絲在弧焊過程中繞著軸心轉(zhuǎn)動(dòng)(本文簡稱焊槍自轉(zhuǎn)角[11]),并不影響焊接過程的質(zhì)量,那么就意味著在弧焊過程中,必定存在一個(gè)自由度.故而,本文探討了該自由度(即焊槍自轉(zhuǎn)角)對機(jī)器人焊接過程能量消耗的影響.雖然也可從機(jī)器人動(dòng)力學(xué)和運(yùn)動(dòng)學(xué)著手研究該影響,但首先該路線計(jì)算復(fù)雜,其次難以獲得精確的機(jī)器人模型,基于現(xiàn)有廠家提供模型獲得能量消耗并不準(zhǔn)確,故本文主要通過試驗(yàn)進(jìn)行分析和驗(yàn)證.
圖1?焊槍自轉(zhuǎn)角示意
試驗(yàn)的研究對象為FANUC M10iA/12機(jī)器人和安裝在機(jī)器人法蘭盤的Fronius CMT 4000 Advanced焊機(jī)的CMT焊槍組成的焊接機(jī)器人.機(jī)器人消耗的功率由Aitek AWS2103三相功率分析儀測量.圖2為功率測量的電路示意.
圖2?功率測量示意
由已知的CMT焊槍三維模型,在機(jī)器人示教器中使用直接示教法定義如圖1所示的工具坐標(biāo)系.試驗(yàn)中的焊縫為長1m的直焊縫,焊縫位置分別為1G、2G和3G(1G、2G和3G在此處分別代表待焊接工件所處位置為平焊、橫焊和立向下焊接的位置).焊接機(jī)器人運(yùn)動(dòng)軌跡如圖3所示.
圖3?焊接機(jī)器人運(yùn)動(dòng)軌跡
表1?機(jī)器人運(yùn)動(dòng)軌跡中各段的速度
Tab.1?Velocity of each segment of the robot’s trajectory m/s
三相功率分析儀采樣頻率=1Hz(1Hz為試驗(yàn)中所用三相功率分析儀的最大采樣頻率).每個(gè)試驗(yàn)重復(fù)3次取平均值作為該試驗(yàn)對應(yīng)的平均功率.
2.1.1?1G位置功率測量試驗(yàn)
求得的49個(gè)試驗(yàn)組整個(gè)運(yùn)動(dòng)過程的平均功率可以用圖4所示的平均功率等高圖表示.
表21、1、1、1和1點(diǎn)的世界坐標(biāo)
Tab.2 World coordinates of points A1,B1,C1,D1,and E1 mm
圖4?1G位置機(jī)器人消耗平均功率等高圖
2.1.2?2G位置功率測量試驗(yàn)
機(jī)器人運(yùn)動(dòng)軌跡如圖3(b)所示.2、2、2、2和2點(diǎn)的世界坐標(biāo)如表3所示.
表32、2、2、2和2點(diǎn)的世界坐標(biāo)
Tab.3 World coordinates of points A2,B2,C2,D2,and E2 mm
圖5?2G位置機(jī)器人焊縫段消耗平均功率等高圖
2.1.3?3G位置功率測量試驗(yàn)
機(jī)器人運(yùn)動(dòng)軌跡如圖3(c)所示.3、3、3、3和3點(diǎn)的世界坐標(biāo)如表4所示.
表43、3、3、3和3點(diǎn)的世界坐標(biāo)
Tab.4 World coordinates of points A3,B3,C3,D3,and E3 mm
圖6?3G位置機(jī)器人焊縫段消耗平均功率等高圖
從3個(gè)試驗(yàn)可見,分別在1G、2G和3G焊接位置焊接1m長的直焊縫時(shí),試驗(yàn)中機(jī)器人焊縫段消耗的最大和最小平均功率差分別為35.4W、19.0W和24.7W,分別占平均值的11.1%、5.9%和8.3%.由此可知焊槍自轉(zhuǎn)角對焊接機(jī)器人在1G、2G和3G位置的能量消耗有顯著影響.這主要是由于在焊槍自轉(zhuǎn)角改變時(shí),對應(yīng)的機(jī)器人各關(guān)節(jié)軸的位置和旋轉(zhuǎn)角度及速度不同.
在每種焊接位置(1G、2G和3G),焊縫段和全過程的平均功率消耗變化規(guī)律類似,原因如下:從表1~表4計(jì)算可知,焊縫作業(yè)全過程的機(jī)器人運(yùn)行時(shí)間約為74s,在焊縫段的機(jī)器人運(yùn)行時(shí)間約為50s,這導(dǎo)致焊縫作業(yè)全過程的功率消耗中,焊縫段占很大比例.
另外,本文探究了1G、2G和3G焊接的特定擺放位置時(shí),焊槍自轉(zhuǎn)角對機(jī)器人能量消耗的影響.筆者基于前3個(gè)關(guān)節(jié)運(yùn)動(dòng)數(shù)據(jù)(關(guān)節(jié)旋轉(zhuǎn)角度、角速度和角加速度),建立了簡化的機(jī)器人功率瞬時(shí)消耗的函數(shù)預(yù)測模型.針對本文中1G、2G和3G位置,進(jìn)行了焊槍自轉(zhuǎn)角和能量消耗驗(yàn)證,結(jié)果和實(shí)測基本一致.
改變焊縫起點(diǎn)和終點(diǎn)的焊槍自轉(zhuǎn)角,測量了機(jī)器人在1G、2G和3G不同焊接位置運(yùn)動(dòng)過程中的功率消耗.通過比較平均功率可以得出:改變焊槍自轉(zhuǎn)角時(shí),機(jī)器人消耗的平均功率有顯著變化.在1G、2G和3G位置,通過改變焊槍自轉(zhuǎn)角最多分別可以節(jié)省焊縫段11.1%(35.4W)、5.9%(19.0W)和8.3% (24.7W)的功率消耗.機(jī)器人整個(gè)運(yùn)動(dòng)過程和焊縫段功率變化規(guī)律相似;且焊槍自轉(zhuǎn)角對應(yīng)焊縫段最小功率消耗所占概率區(qū)間較小,分別為7.2%、7.0%和2.9%.故在實(shí)際生產(chǎn)過程中需要注意焊槍自轉(zhuǎn)角的選擇,以減少機(jī)器人能量消耗.
[1] International Federation of Robotics. Executive Sum-mary World Robotics 2019 Industrial Robots[EB/OL]. https://www.ifr.org/free-downloads,2019-09-18.
[2] 工業(yè)和信息化部. 綠色制造工程實(shí)施指南(2016—2020年)[EB/OL]. http://www.miit.gov.cn/n973401/n 1234612/n1234623/c5542102/content.html,2017-03-23.
Ministry of Industry and Information Technology. Green Manufacturing Project Implementation Guide(2016—2020)[EB/OL]. http://www.miit.gov.cn/n973401/n1234 612/n1234623/c5542102/content.html,2017-03-23(in Chinese).
[3] Brossog M,Kohl J,Merhof J,et al. Energy consumption and dynamic behavior analysis of a six-axis industrial robot in an assembly system[J]. Procedia CIRP,2014,23:131-136.
[4] Paes K,Dewulf W,vander Elst K,et al. Energy efficient trajectories for an industrial ABB robot[J]. Procedia College International pour la Recherche en Productique,2014,15:105-110.
[5] Pastras G,F(xiàn)ysikopoulos A,Chryssolouris G. A theoretical investigation on the potential energy savings by optimization of the robotic motion profiles[J]. Robotics and Computer-Integrated Manufacturing,2019,58:55-68.
[6] Garcia R R,Bittencourt A C,Villani E. Relevant factors for the energy consumption of industrial robots[J]. Journal of the Brazilian Society of Mechanical Sciences and Engineering,2018,40(9):464.
[7] 林哲騁,許力. 一種應(yīng)用于激光焊接軌跡規(guī)劃的改進(jìn)蟻群算法[J]. 焊接學(xué)報(bào),2018,39(1):107-110,133-134.
Lin Zhecheng,Xu Li. An improved ant colony optimization applied in programing laser welding path[J]. Transactions of the China Welding Institution,2018,39(1):107-110,133-134(in Chinese).
[8] Bukata L,??cha P,Hanzálek Z. Optimizing energy consumption of robotic cells by a Branch & Bound algorithm[J]. Computers & Operations Research,2019,102:52-66.
[9] 劉云郎. 焊接機(jī)械臂運(yùn)動(dòng)軌跡多目標(biāo)優(yōu)化[D]. 南昌:華東交通大學(xué)機(jī)電與車輛工程學(xué)院,2016.
Liu Yunlang. The Multi-Objective Optimization of Welding Manipulator Trajectory[D]. Nanchang:School of Mechatronics & Vehicle Engineering,East China Jiaotong University,2016(in Chinese).
[10] Wang X,Yan Y,Gu X. Spot welding robot path planning using intelligent algorithm[J]. Journal of Manufacturing Processes,2019,42:1-10.
[11] 劉?斌. 冗余自由度弧焊機(jī)器人系統(tǒng)研究[D]. 蘭州:蘭州理工大學(xué)機(jī)電工程學(xué)院,2008.
Liu Bin. Study on Redundant Arc-Welding Robotic System[D]. Lanzhou:School of Mechanical and Electrical Engineering,Lanzhou University of Technology,2008(in Chinese).
Influence of Welding-Gun Rotation Angle on Energy Consumption of Welding Robot
Lü Xiaoqing1, 2,Zhang Menglong1,Xu Lianyong1, 2,Jing Hongyang1, 2,Han Yongdian1, 2
(1. School of Materials Science and Engineering,Tianjin University,Tianjin 300350,China;2. Tianjin Key Laboratory of Advanced Joining Technology,Tianjin 300350,China)
Based on the inherent characteristics of arc welding,in this paper,we provide a definition for the rotation angle of the welding gun.Using a three-phase power analyzer,we constructed a platform for measuring robot power consumption. For straight welds in the 1G,2G,and 3G positions,we used this platform to measure the instantaneous power consumption of a CMT arc welding robot during the welding process at different welding-gun rotation angles.Then,we calculated and compared the average power consumed by the robot at these angles. The results indicate that the average power consumed by the robot during the whole movement process and during the weld segment change significantly with changes in the welding-gun rotation angles at the starting and end points.The change laws of robot power consumption during the welding seam segment and over the whole movement process are similar,and we identified an energy optimal combination of welding-gun rotation angles at the starting and end points of straight welds. This shows that the energy consumption of the welding robot can be reduced by changing the welding-gun rotation angle. In the 1G,2G,and 3G positions,in terms of the average robot power consumption at all welding-gun rotation-angle combinations,robot power consumption can be reduced by a maximum of 11.1%,5.9%,and 8.3%,respectively. Owing to the difficulty of obtaining exact minimum power consumption,we defined an interval near the minimum power consumption. We found the probability of this interval to be very small. The study results also reveal that the welding-gun rotation angle has a significant influence on the robot power consumption.As such,to reduce the power consumption of the robot in arc welding,it is necessary to carefully consider the welding-gun rotation angle.Lastly,we describe the concept underlying our model of the relationship between the welding-gun rotation angle and robot power consumption and the relationship between the work piece position and the robot power consumption,and provide preliminary results.Research in this area has great significance to the energy optimization of welding robots and actual welding production.
energy consumption;welding gun rotation angle;welding robot;straight seam welding;welding position
TG409
A
0493-2137(2020)11-1191-06
10.11784/tdxbz201911045
2019-11-22;
2020-03-02.
呂小青(1978—??),男,博士,副教授.
呂小青,xiaoqinglv@tju.edu.cn.
國家重點(diǎn)研發(fā)計(jì)劃資助項(xiàng)目(2017YFB1303300).
Supported by the National Key Research and Development Program of China(No. 2017YFB1303300).
(責(zé)任編輯:金順愛)