劉 紅,翟長鑫,文燕燕,席 磊,杜宗育
可見光通信系統(tǒng)光源優(yōu)化布局模型
劉 紅1,2*,翟長鑫1,2,文燕燕1,2,席 磊1,2,杜宗育1,2
1長春理工大學光電工程學院,吉林 長春 130022;2長春理工大學光電工程國家級實驗教學示范中心,吉林 長春 130022
針對可見光通信系統(tǒng)存在的光照度和接收平面功率分配不均勻的問題,提出了基于多種群遺傳算法的光源布局模型。以15個LED燈為例,構(gòu)造和接收功率方差有關(guān)的適應(yīng)度函數(shù),采用多個種群協(xié)同進化的方式,對LED燈的位置坐標信息進行尋優(yōu)。經(jīng)Matlab R2016a仿真結(jié)果表明,優(yōu)化后的功率分布直觀上更均勻,功率方差達到1.5744 dBm,照度范圍為889 lx ~1009 lx,照度均勻度亦達到91.73%,均優(yōu)于傳統(tǒng)遺傳算法優(yōu)化的布局和多種群遺傳算法優(yōu)化的矩形布局,從而為系統(tǒng)優(yōu)化LED燈布局使得用戶獲得更好的通信體驗提供了一種借鑒方案。
可見光通信系統(tǒng);光源布局;照度均勻度;功率均勻性;多種群遺傳算法
21世紀是數(shù)據(jù)爆炸式增長的時代,光通信技術(shù)因其信噪比高,調(diào)制速率快,保密安全性好的優(yōu)點逐步取代傳統(tǒng)的無線通信,可見光通信也成為了研究的熱點之一。在可見光通信[1-5](visible light communication,VLC)系統(tǒng)中,為使照度分配均勻和通信功率覆蓋均衡化,使用戶得到更好的通信體驗,常采用算法對LED的布局進行優(yōu)化,王加安等[6]以能量損耗最小為原則,采用PSO算法優(yōu)化LED圓形陣列的相關(guān)參數(shù);Ding等[7]提出進化算法,以接收功率的比值為目標函數(shù),對LED的發(fā)光光強進行優(yōu)化;Liu等[8]提出基于基因密度的改進遺傳算法,以接收光功率方差最小為原則,對LED的位置進行優(yōu)化。多種群遺傳算法(multi-population genetic algorithm,MPGA)采用多個種群協(xié)同進化的方式,在多元函數(shù)尋優(yōu)方面往往能得到一個較為理想的結(jié)果?;谠撍惴?,本文針對接收平面是長方形的情形,以接收功率方差最小化為目標函數(shù),對LED的位置進行優(yōu)化,使得照度和功率分布更均勻,提高了通信系統(tǒng)的性能。
圖1 VLC系統(tǒng)模型
功率表征VLC系統(tǒng)的通信性能的好壞,VLC系統(tǒng)的另一個重要參量為光照度,用來表征系統(tǒng)照明的質(zhì)量。
假設(shè)系統(tǒng)采用的LED為朗伯輻射源,發(fā)光強度表示為
則接收機接收來自單個LED的照度為
天花板上LED燈的排布位置如圖2所示,第一象限有三個位置擺放LED燈,基于長方形的對稱性,在其余三個象限的相應(yīng)位置擺放相應(yīng)的LED燈,在軸上關(guān)于軸對稱上下各擺放一個LED燈,在原點位置處擺放一個LED燈,共計15個LED燈,通過對稱性,可以得到五組不同的模式。
系統(tǒng)仿真參數(shù)如表1所示。
圖2 LED燈布局圖
表1 系統(tǒng)仿真參數(shù)
位于接收平面上均勻分布的51′31個接收器接收來自所有LED的沖激響應(yīng)信號,用接收平面接收功率的方差值來表征功率分布的均勻性情況,并將方差值作為該系統(tǒng)優(yōu)化的目標函數(shù)。方差越小,功率分布越均勻。引入照度均勻度(最小照度值/照度均值)來描述照度分布情況,照度均勻度越接近1,光線分布越均勻,視覺感受效果越好。為使方差值盡可能的小,照度均勻度盡可能接近1,采用多種群遺傳算法對系統(tǒng)模型進行優(yōu)化處理,經(jīng)優(yōu)化后的系統(tǒng)可達到通信和照明的一個較優(yōu)的狀態(tài)。
多種群遺傳算法[11]是在傳統(tǒng)遺傳算法(genetic algorithm,GA)的基礎(chǔ)上發(fā)展得到的。傳統(tǒng)遺傳算法采用單個種群進化的策略,交叉概率和變異概率為固定值,因此在應(yīng)用時存在早熟收斂的問題,即種群個體極有可能陷入局部最優(yōu)解,或是未成熟收斂問題,即算法達到最大迭代次數(shù)時,還未得到最優(yōu)解。多種群遺傳算法引入多個種群協(xié)同進化的策略,使用移民算子,并將交叉概率和變異概率控制在一個區(qū)間內(nèi),有效避免早熟收斂問題;同時引入精華種群,避免了未成熟收斂的問題。
算法具體操作如下。
1) 染色體編碼
2) 生成初始種群
多種群遺傳算法采用多個種群協(xié)同進化的方式,應(yīng)用Matlab遺傳算法工具箱的crtbp函數(shù),創(chuàng)建10個40行140列的二維矩陣,代表了MP=10個種群,每個種群包含NIND=40個染色體個體,每個個體上有140個基因位,即生成了初始可行解集。
3) 構(gòu)造適應(yīng)度函數(shù)
適應(yīng)度函數(shù)影響算法整體的收斂性能。種群進化過程中,染色體中適應(yīng)度函數(shù)值較優(yōu)的個體更接近問題的最優(yōu)解,被選中的概率很大,因此該優(yōu)良基因保留到下一代的可能性很大,適應(yīng)度函數(shù)值是染色體能否保留到下一代的依據(jù),從一定程度上決定了算法整體的進化過程,適應(yīng)度函數(shù)的復(fù)雜度決定了算法的復(fù)雜度。本文將適應(yīng)度函數(shù)設(shè)計為目標函數(shù)的倒數(shù)后再轉(zhuǎn)化為求最大值問題:
4) 遺傳操作
①選擇操作
模擬自然界“優(yōu)勝劣汰”的生存法則,采用輪盤賭選擇方法,每條染色體遺傳給下一代的可能性是該染色體個體適應(yīng)度值與種群中所有染色體個體適應(yīng)度值和之比。該方法確保適應(yīng)度值大的染色體個體能有較大的幾率遺傳給下一代,優(yōu)秀染色體個體適應(yīng)度函數(shù)值依次增加,逐漸向最大值逼近。
② 交叉操作
采用單點交叉的方式,隨機配對的兩條染色體個體按照交叉概率相互交換部分基因,產(chǎn)生新的染色體個體。交叉概率決定了算法的全局搜索能力,針對傳統(tǒng)遺傳算法交叉概率取值不同而導致尋優(yōu)結(jié)果不同的問題,多種群遺傳算法將交叉概率限制在一個區(qū)間內(nèi),在染色體個體適應(yīng)度值高時減小交叉概率,反之增大,確保算法的穩(wěn)健性。
③變異操作
采用位點變異的方式,按照變異概率改變?nèi)旧w個體的某些基因值,產(chǎn)生相似的染色體。變異概率決定算法的局部搜索能力。與交叉類似,多種群遺傳算法在染色體個體適應(yīng)度值高時減小變異概率,反之增大,可有效地加快算法收斂。
④移民操作
多種群遺傳算法中多個種群協(xié)同進化,各種群間通過移民算子進行信息交流,移民算子用適應(yīng)度值大的個體去替換適應(yīng)度值小的個體,加快了算法的收斂速度并有效防止算法陷入局部最優(yōu)。
⑤算法終止
多種群遺傳算法將所有種群每次迭代的最優(yōu)染色體個體保存到精華種群,不再參與遺傳操作,當精華種群中最優(yōu)個體出現(xiàn)次數(shù)超過算法初始設(shè)定的最優(yōu)個體最少保持代數(shù)時,即為最優(yōu)解,此時算法終止,解決了傳統(tǒng)遺傳算法未成熟收斂的問題。
多種群遺傳算法的詳細參數(shù)如表2所示,流程圖如圖3所示。
表2 算法參數(shù)表
圖3 算法流程圖
可見光通信系統(tǒng)實驗仿真平臺為Matlab R2016a。經(jīng)MPGA算法優(yōu)化得到的位置參數(shù)為1=2.5,2=2.5,3=1.57;1=1.5,2=1.03,3=1.5,4=1.5。將優(yōu)化后的變量代入仿真系統(tǒng)模型,得到圖4所示的照度和功率分布圖。設(shè)定GA的交叉概率c為0.7,變異概率m為0.05,GA優(yōu)化得到的位置參數(shù)為1=2.42,2=1.57,3=2.49;1=1.11,2=1.46,3=1.28,4=1.5,優(yōu)化后的照度和功率分布如圖5所示。陳勇等[12]曾針對5 m′5 m正方形的天花板提出5′5 LED布局,借鑒該模型,本文對5 m′3 m的長方形天花板提出5′3矩形布局,并采用MPGA優(yōu)化位置參數(shù),作為實驗的對比,驗證本文所提方案的可行性,矩形布局參數(shù)分布如圖6所示。三種方案LED燈的布局圖如圖7所示。
MPGA與GA優(yōu)化后的功率分布圖大體相似,均四個角落處各有較高的波包,中間區(qū)域微微隆起,四邊呈現(xiàn)幅度較大的滑坡,直觀上分布較均勻,從底部的等高線圖來看,MPGA優(yōu)化分布在中間和四角區(qū)域等高線分布更為稠密,即功率分布圖在此處更為陡峭些,GA優(yōu)化功率分布則較平緩,鑒于功率分布隆起的部分可以平衡凹陷的部分,MPGA優(yōu)化分布要優(yōu)于GA優(yōu)化,且MPGA優(yōu)化后功率覆蓋區(qū)間比GA優(yōu)化后的結(jié)果要小,因此MPGA優(yōu)化效果要優(yōu)于GA;矩形布局優(yōu)化后功率呈現(xiàn)馬鞍面形狀的分布,功率集中分布在房間的寬度中間區(qū)域,等高線分布稀疏,功率分布覆蓋區(qū)間非常大,功率分布隆起部分遠不能抵消凹陷部分,效果最不理想。三種方案照度分布與功率分布情況相似。從圖7上看,MPGA和GA優(yōu)化后的LED燈除中軸線外,其余分布在天花板邊緣,而矩形布局下仍有LED燈分布在中間區(qū)域。具體參數(shù)如表3所示。
從表中得到,本文所提經(jīng)MPGA優(yōu)化后的LED布局方案功率方差達到1.5744 dBm,其余兩種方案功率方差偏大,即表示MPGA優(yōu)化后的LED布局下接收功率分布均勻性最好。在照度方面,三種方案的照度都達到了ISO規(guī)定,MPGA優(yōu)化后布局的照度范圍為889 lx~1009 lx,區(qū)間長度最小,均勻性達到91.73%,優(yōu)于GA優(yōu)化布局和MPGA優(yōu)化矩形布局下的結(jié)果,驗證了所提方法的可行性。
圖4 MPGA優(yōu)化參數(shù)分布圖。(a) 照度;(b) 功率
圖5 GA優(yōu)化參數(shù)分布圖。(a) 照度;(b) 功率
圖6 MPGA優(yōu)化矩形布局參數(shù)分布圖。(a) 照度;(b) 功率
圖7 LED燈布局圖。(a) MPGA優(yōu)化;(b) GA優(yōu)化;(c) 矩形布局
表3 布局參數(shù)表
可見光通信系統(tǒng)中存在功率分配不均勻影響用戶體驗的問題。本文以5 m′3 m′3 m房間作為系統(tǒng)模型,以置于天花板上15個LED燈為例,通過Matlab R2016a模擬仿真室內(nèi)接收的光照度和功率情況。為達到功率分布更均勻采用多種群遺傳算法,將LED燈位置信息作為染色體個體,構(gòu)造和功率方差有關(guān)的適應(yīng)度函數(shù),多種群遺傳算法在傳統(tǒng)遺傳算法的基礎(chǔ)上引入移民算子和精英保留策略,經(jīng)多個種群協(xié)同進化求得最優(yōu)解。代入仿真模型中,求得通信系統(tǒng)照度和接收功率分布情況,并引入傳統(tǒng)遺傳算法優(yōu)化布局和多種群遺傳算法優(yōu)化的矩形布局作為對比。實驗證明,經(jīng)多種群遺傳算法優(yōu)化的布局功率分布直觀上感受最均勻,方差可達到1.5744 dBm,照度范圍在889 lx~1009 lx之間,照度均勻度達到91.73%,均優(yōu)于其余兩種方案。從而,為可見光通信系統(tǒng)尋求已定LED燈的最佳位置提供了一種可靠的借鑒方案。
[1] Xu Y Q, Hua J, Gong Z,. Visible light communication using dual camera on one smartphone[J]., 2018, 26(26): 34609?34621.
[2] Chi N, Hass H, Kavehrad M,.Visible light communications: demand factors, benefits and opportunities[J]., 2015, 22(2): 5?7.
[3] Rajagopal S, Roberts R D, Lim S K. IEEE 802.15.7 visible light communication: modulation schemes and dimming support[J].2012, 50(3): 72?82.
[4] Komine T, Nakagawa M. Fundamental analysis for visible-light communication system using LED lights[J]., 2004, 50(1): 100?107.
[5] Zhao L, Peng K. Optimization of light source layout in indoor visible light communication based on white light-emitting diode[J].2017, 37(7): 0706001.
趙黎, 彭愷. 基于白光發(fā)光二極管的室內(nèi)可見光通信光源布局優(yōu)化[J]. 光學學報, 2017, 37(7): 0706001.
[6] Wang J A, Che Y, Lü C,. LED layout for indoor visible light communication based on energy optimization[J].2017, 37(8): 0806003.
王加安, 車英, 呂超, 等. 基于能量最優(yōu)的室內(nèi)可見光通信LED布局[J]. 光學學報, 2017, 37(8): 0806003.
[7] Ding J P, Huang Z T, Ji Y F. Evolutionary algorithm based power coverage optimization for visible light communications[J].,2012, 16(4):439–441.
[8] Liu H L, Wang X, Chen Y,. Optimization lighting layout based on gene density improved genetic algorithm for indoor visible light communications[J].2017, 390: 76–81.
[9] Ding D Q, Ke X Z, Xu L P. An optimal lights layout scheme for visible-light communication system[C]//, 2007: 2–189–2–194.
[10] Liu H L, Liu Z Y, Xu Y,. Coverage uniformity with improved genetic simulated annealing algorithm for indoor visible light communication[J]., 2019, 439: 156–163.
[11] Jiao Y L, Zhang P, Tian G D,. Slotting optimization of automated warehouse based on multi-population GA[J].(), 2018, 48(5): 1398–1404.
焦玉玲, 張鵬, 田廣東, 等. 基于多種群遺傳算法的自動化立體庫貨位優(yōu)化[J]. 吉林大學學報(工學版), 2018, 48(5): 1398–1404.
[12] Chen Y, Shen Q X, Liu H L. Optimization algorithm of receiver optical power uniformity in indoor visible light communication[J]., 2018, 45(5): 0506003.
陳勇, 沈奇翔, 劉煥淋. 室內(nèi)可見光通信中接收光功率均勻性優(yōu)化方法[J]. 中國激光, 2018, 45(5): 0506003.
An optimized light source layout model for visible light communication system
Liu Hong1,2*, Zhai Changxin1,2, Wen Yanyan1,2, Xi Lei1,2, Du Zongyu1,2
1School of Photo-Electronic Engineering, Changchun University of Science and Technology, Changchun, Jilin 130022, China;2National Demonstration Center for Experiment Opto-Electronic Engineering Education, Changchun University of Science and Technology, Changchun, Jilin 130022, China
Power distributions under the proposed layout optimized by MPGA
Overview:With the rapid development of technology, traditional wireless communication can’t quite meet the needs of fast-growing data service gradually. Researchers are seeking new ways to overcome this conundrum. Since the light communication has the advantages of high SNR, high modulation rate and high security, it is promising to achieve a new height in data communication system. Visible light communication also becomes a hot field for scientists to explore. However, there are many problems to solve in order to make a perfect visible light communication system. Due to the LED lamps discretely mounted on the ceiling, distributions of illuminance and power are incredibly uneven on the receiving plane, so that user experiences can’t be exhilarating. To create a better atmosphere for communication, a layout optimized by multi-population genetic algorithm is proposed. Traditional genetic algorithm may get involved in premature convergence or running into a local optimization solution. The strategy of multi-population co-evolution is introduced into multi-population genetic algorithm to get rid of these problems. The immigration operation strengthens the bond of multi-populations, and the elitism strategy makes sure that the result is found out under our request. A room with dimensions 5 m′3 m′3 m plays the role of simulation model. Particularly, the base of the model is rectangular, which is different from most of the previous studies. 15 specific LED lamps are mounted on the ceiling and serve as sources of optical illuminance and power. The position coordinates of lamps make up chromosome individuals. A function related to the variance of the receiving power is constructed as the fitness function. After being optimized by the algorithm, parameters are plugged into the model simulated on Matlab R2016a. Furthermore, to illustrate the effectiveness of the proposed method, layout optimized by traditional genetic algorithm and rectangular layout optimized by multi-population genetic algorithm are taken as comparisons. The diagrams show that parameters of the proposed method are the evenest intuitively. Through the numerical analysis, the variance of power reaches 1.5744 dBm, the illuminance falls in a range between 889 lx and 1009 lx and the uniformity ratio of illuminance is 91.73%, all of these parameters in multi-population genetic algorithm (MPGA) are the best among the three methods mentioned above. Therefore, the feasibility of this optimization method is evidently proved by this experiment. It can provide references when people tend to find a way to properly design the LED layout, thus finally contributes to building the visible light communication system.
Citation: Liu H, Zhai C X, Wen Y Y,An optimized light source layout model for visible light communication system[J]., 2020, 47(7): 190565
An optimized light source layout model for visible light communication system
Liu Hong1,2*, Zhai Changxin1,2, Wen Yanyan1,2, Xi Lei1,2, Du Zongyu1,2
1School of Photo-Electronic Engineering, Changchun University of Science and Technology, Changchun, Jilin 130022, China;2National Demonstration Center for Experiment Opto-Electronic Engineering Education, Changchun University of Science and Technology, Changchun, Jilin 130022, China
To solve the unevenness of distributions of optical illuminance and power in visible light communication system, a light source layout based on multi-population genetic algorithm is proposed. Taking 15 LED lamps as an example, the position coordinates were optimized under the fitness function related to variance of received power through the co-evolution of multi-populations. The simulation results on Matlab R2016a showed that, after being optimized, the distribution of power was evener intuitively, the variance of power reached 1.5744 dBm, the illuminance fell in a range between 889 lx and 1009 lx and the uniformity ratio of illuminance was 91.73%, all of which were better than those of the layout optimized by traditional genetic algorithm and the rectangular layout optimized by multi-population genetic algorithm. This experiment provides a feasible solution for optimizing the visible light communication system so that users can have a more comfortable communication trip in this system.
visible light communication system; light source layout; the uniformity ratio of illuminance; the evenness of power; multi-population genetic algorithm
TN929.12
A
10.12086/oee.2020.190565
: Liu H, Zhai C X, Wen Y Y,. An optimized light source layout model for visible light communication system[J]., 2020,47(7): 190565
劉紅,翟長鑫,文燕燕,等. 可見光通信系統(tǒng)光源優(yōu)化布局模型[J]. 光電工程,2020,47(7): 190565
* E-mail: zhaixin1997@gmail.com
2019-09-21;
2020-01-16
劉紅(1969-),女,碩士,教授,碩士生導師,主要從事智能測試和模式識別方向的研究。E-mail:zhaixin1997@gmail.com