葛江華 王巖 王亞萍 孫永國 許迪
摘?要:針對(duì)滾動(dòng)軸承早期故障階段振動(dòng)信號(hào)微弱,信噪比低,提出量子遺傳算法(quantum?genetic?algorithm,簡稱QGA)與隨機(jī)共振相結(jié)合的微弱信號(hào)檢測(cè)方法,提高信號(hào)信噪比并識(shí)別故障位置。首先,對(duì)大參數(shù)信號(hào)變尺度處理,并根據(jù)輸入信號(hào)對(duì)噪聲強(qiáng)度進(jìn)行估計(jì)實(shí)現(xiàn)參數(shù)初始化;其次,以輸出信噪比作為目標(biāo)函數(shù),通過QGA對(duì)系統(tǒng)的雙參數(shù)進(jìn)行自適應(yīng)尋優(yōu);最后,通過系統(tǒng)的隨機(jī)共振實(shí)現(xiàn)微弱信號(hào)信噪比的提高。仿真及實(shí)驗(yàn)結(jié)果表明,該方法充分考慮了系統(tǒng)參數(shù)之間的相互作用,能夠有效提高信號(hào)信噪比,實(shí)現(xiàn)了早期故障階段的微弱信號(hào)檢測(cè)。
關(guān)鍵詞:早期故障診斷;微弱信號(hào)檢測(cè);量子遺傳算法;隨機(jī)共振
DOI:10.15938/j.jhust.2020.03.015
中圖分類號(hào):?TH165+.3;TN911.7
文獻(xiàn)標(biāo)志碼:?A
文章編號(hào):?1007-2683(2020)03-0094-08
Abstract:Aiming?at?the?problems?that?the?vibration?signal?is?weak?and?the?SNR?is?low?in?its?early?failure?stage?of?rolling?bearing,?a?weak?signal?detection?method?combining?Quantum?Genetic?Algorithm?(QGA)?and?Stochastic?Resonance?is?proposed,?which?improves?SNR?and?identifies?fault?location.?Firstly,?the?large?parameter?signal?is?scale?transformed?and?the?noise?intensity?is?estimated?according?to?the?input?signal?to?realize?the?initialization?of?the?parameters.?Secondly,?the?output?SNR?is?selected?as?the?objective?function,?and?the?two?parameter?are?dealt?with?adaptive?optimization?through?the?QGA;?Finally,?the?SNR?of?weak?signal?is?improved?by?stochastic?resonance?system.?Simulation?and?experimental?results?show?that?the?method?fully?considers?the?interaction?between?system?parameters,?and?can?effectively?improve?SNR,?and?achieve?early?detection?of?weak?signal?in?failure?stage.
Keywords:early?fault?diagnosis;?weak?signal?detection;?quantum?genetic?algorithm;?stochastic?resonance
0?引?言
微弱信號(hào)檢測(cè)目前在各領(lǐng)域內(nèi)得到了廣泛研究與發(fā)展。微弱信號(hào)檢測(cè)是將深埋在環(huán)境噪聲中的微弱信號(hào)提取出來,或提高微弱信號(hào)的信噪比。目前應(yīng)用廣泛的有時(shí)域平均法、相關(guān)檢測(cè)法、混沌理論法和窄帶濾波法等[1-3]。
隨著非線性動(dòng)力學(xué)與各交叉學(xué)科的快速發(fā)展,隨機(jī)共振[4-7]方法在微弱信號(hào)檢測(cè)領(lǐng)域得到了廣泛的關(guān)注。隨機(jī)共振方法與上述方法的信號(hào)處理機(jī)制不同,它將濾除噪聲轉(zhuǎn)變?yōu)槔迷肼曉鰪?qiáng)微弱信號(hào),即將噪聲信號(hào)中的能量轉(zhuǎn)移到有用信號(hào)中。冷永剛等[8]提出一階線性系統(tǒng)調(diào)參廣義隨機(jī)共振的特征提取方法,通過調(diào)整一階線性系統(tǒng)參量,獲得信噪比在取極大值情況下的廣義隨機(jī)共振;Tan等[9]通過引入二次采樣解決大參數(shù)對(duì)隨機(jī)共振效果的影響;Mba等[10]將隨機(jī)共振用于健康的齒輪箱并探討諸如殘余信號(hào)和濾波信號(hào)計(jì)算的方法,以幫助遏制假警報(bào),同時(shí)提高整體隨機(jī)共振結(jié)果;Krauss等[11]提出了傳感器的輸出可以確定激勵(lì)隨機(jī)共振產(chǎn)生的噪聲強(qiáng)度。
采用傳統(tǒng)隨機(jī)共振對(duì)加噪信號(hào)進(jìn)行處理,在不調(diào)節(jié)系統(tǒng)參數(shù)的情況下,也就是默認(rèn)a=1、b=1的情況下,隨機(jī)共振現(xiàn)象并沒有發(fā)生。前文已說明隨機(jī)共振的產(chǎn)生取決于輸入信號(hào),噪聲和非線性系統(tǒng)的協(xié)同作用,目前輸入信號(hào)已知,噪聲的強(qiáng)度也僅是高于輸入信號(hào),而不是強(qiáng)度過大完全掩蓋信號(hào),說明是系統(tǒng)內(nèi)的參數(shù)存在問題。
系統(tǒng)的信噪比由噪聲強(qiáng)度和勢(shì)壘協(xié)同作用,在噪聲一定的時(shí)候,系統(tǒng)的信噪比與勢(shì)壘的關(guān)系如圖6所示??梢钥闯鱿到y(tǒng)的輸出信噪比是在隨著勢(shì)壘的變化而變化。通過調(diào)節(jié)系統(tǒng)參數(shù)使勢(shì)壘發(fā)生變化,當(dāng)信號(hào)的勢(shì)壘逐漸增大時(shí),信號(hào)的信噪比先增加后減小,說明只有當(dāng)勢(shì)壘、信號(hào)、噪聲達(dá)到一個(gè)最佳關(guān)系時(shí),才能保證隨機(jī)共振的信噪比最高。
為了進(jìn)一步研究最佳的系統(tǒng)參數(shù),對(duì)加噪信號(hào)采用雙變量自適應(yīng)隨機(jī)共振。如圖7所示為量子遺傳算法對(duì)隨機(jī)共振系統(tǒng)參數(shù)的尋優(yōu)圖。這里以信噪比作為適應(yīng)度函數(shù),自適應(yīng)調(diào)節(jié)系統(tǒng)參數(shù)a和b,由圖可見,頂部區(qū)域?yàn)闈M足最大信噪比的最優(yōu)近似解。
通過計(jì)算得到的系統(tǒng)參數(shù)值,a=0.27588,b=0.40685輸入到系統(tǒng)中產(chǎn)生隨機(jī)共振如圖8所示??梢钥闯鱿鄬?duì)于圖,波形已經(jīng)呈現(xiàn)一定周期性,從頻域可以發(fā)現(xiàn)在0.01Hz(圖中為0.009766Hz,在可接受的誤差范圍之內(nèi))處有明顯的頻率,幅值為0.2172,相對(duì)于原信號(hào)的幅值0.002245得到了很大的提高。
作為對(duì)比,這里也對(duì)單變量的優(yōu)化進(jìn)行了仿真,如圖9所示。
當(dāng)固定一個(gè)參數(shù)b=1,通過遺傳算法可以得到a=0.7746,代入系統(tǒng)中產(chǎn)生隨機(jī)共振,可以看到頻率的幅值為0.1453,要小于雙變量自適應(yīng)隨機(jī)共振的結(jié)果。
通過與傳統(tǒng)隨機(jī)共振、單變量自適應(yīng)隨機(jī)共振對(duì)比發(fā)現(xiàn),本節(jié)的方法要優(yōu)于前兩種方法。對(duì)于微弱信號(hào)和復(fù)雜信號(hào),頻率通常深埋在噪聲頻率中不易識(shí)別,該方法可以最大程度提高頻率幅值,更有利于故障的識(shí)別。
3.2?實(shí)驗(yàn)驗(yàn)證
本文將采用雙列角接觸球軸承故障模擬試驗(yàn)來驗(yàn)證本文提出的微弱信號(hào)檢測(cè)、信號(hào)分解、降噪與特征提取方法的有效性。實(shí)驗(yàn)室搭建的滾動(dòng)軸承振動(dòng)測(cè)試試驗(yàn)臺(tái)如圖10所示。試驗(yàn)臺(tái)主要組成有:SGM7J-04AFC6S伺服電機(jī),額定輸出400W,額定電流2.5A,額定轉(zhuǎn)矩1.27N·m,額定轉(zhuǎn)速3000r/min;YMC122A100加速度傳感器,頻率范圍0.3-10KHz;POD-0.6kg磁粉制動(dòng)器,電壓24V,電流0.81A,額定轉(zhuǎn)矩6N·m,最高轉(zhuǎn)速1800r/min;GFC-40X66梅花聯(lián)軸器;底座與軸承座、連接件與緊固件。
試驗(yàn)對(duì)象為3204ATN雙列角接觸球軸承,如圖12所示,具體參數(shù)如表1所示。根據(jù)滾動(dòng)軸承常見故障位置與故障類型,本文實(shí)驗(yàn)主要模擬內(nèi)圈磨損故障。內(nèi)圈磨損情況如圖11所示,圖中圈內(nèi)的即為磨損位置。轉(zhuǎn)速n=2400r/min,采樣頻率f=2560Hz,基本參數(shù)如表1所示,根據(jù)參數(shù)和式(11)得到內(nèi)圈的故障頻率約為fi=192.84Hz。
式中:Z為滾動(dòng)體個(gè)數(shù);f0為主軸的轉(zhuǎn)頻;d、D為滾動(dòng)體直徑和節(jié)圓直徑;α為接觸角。
原始信號(hào)的幅值圖和頻譜圖如圖12所示。外圈裂痕信號(hào)的噪聲方差估計(jì)值σ2=0.1034,D=0.0064625,A=0.04294,此時(shí)信號(hào)幅值大于信號(hào)的噪聲強(qiáng)度,因此添加噪聲強(qiáng)度D=0.2的白噪聲,
由于實(shí)際信號(hào)不滿足隨機(jī)共振小參數(shù)要求,所以先經(jīng)過變尺度縮小采樣頻率,尺度壓縮比R=512,對(duì)信號(hào)尺度變換之后,采樣頻率fs=f/R=5Hz。
根據(jù)量子遺傳算法尋優(yōu)得到a=1.64278,b=17.4642,隨機(jī)共振得到的頻譜圖如圖13所示,經(jīng)過尺度還原比例f=0.38627R=197.77Hz,接近內(nèi)圈故障頻率,可以看出轉(zhuǎn)頻和故障頻率都有一定程度的增強(qiáng)。
作為對(duì)比,這里也對(duì)單變量的優(yōu)化進(jìn)行了仿真,如圖14所示。
當(dāng)固定一個(gè)參數(shù)a=1,通過遺傳算法可以得到b=16.3541,代入系統(tǒng)中產(chǎn)生隨機(jī)共振,可以看到故障頻率處的幅值為0.1488,要小于雙變量自適應(yīng)隨機(jī)共振的結(jié)果。
4?結(jié)?論
本文提出一種量子遺傳算法與隨機(jī)共振相結(jié)合的微弱信號(hào)檢測(cè)方法,通過仿真與實(shí)驗(yàn)驗(yàn)證得到以下結(jié)論:
1)大參數(shù)信號(hào)經(jīng)過變尺度處理并不影響故障頻率;信號(hào)中的噪聲強(qiáng)度要通過計(jì)算以確定是否需要添加額外白噪聲。
2)量子遺傳算法對(duì)于隨機(jī)共振系統(tǒng)參數(shù)的優(yōu)化效果要優(yōu)于傳統(tǒng)方法和單一參數(shù)優(yōu)化。
3)通過仿真和實(shí)驗(yàn)數(shù)據(jù)的驗(yàn)證,本文方法可以對(duì)早期故障階段的微弱信號(hào)進(jìn)行檢測(cè),得到具體的故障頻率,實(shí)現(xiàn)故障位置的識(shí)別。
參?考?文?獻(xiàn):
[1]?王亞萍,?許迪,?葛江華,等.?基于SPWVD時(shí)頻圖紋理特征的滾動(dòng)軸承故障診斷[J].?振動(dòng)、測(cè)試與診斷,?2017,?37(1):115.
WANG?Yaping,?XU?Di,?GE?Jianghua,?et?al.?Fault?Diagnosis?of?Rolling?Bearings?Based?on?Texture?Features?of?SPWVD?Time-frequency?Map?[J].?Vibration,?Test?and?Diagnosis,?2017,?37?(1):?115.
[2]?郭丹楓,龐兵.振動(dòng)信號(hào)處理的時(shí)頻域方法[J].哈爾濱理工大學(xué)學(xué)報(bào),2007(4):15.
GUO?Danfeng,?PANG?Bing.Time-frequency?Domain?Method?of?Vibration?Signal?Processing?[J]?.Journal?of?Harbin?University?of?Science?and?Technology,?2007?(4):?15.
[3]?LIU?Y,?ZHANG?J?Z.?Predicting?Traffic?Flow?in?Local?Area?Networks?by?the?Largest?Lyapunov?Exponent?[J].?Entropy,2016,18(1):1.
[4]?CHEN?H,?VARSHNEY?P?K,?KAY?S?M,?et?al.?Theory?of?the?Stochastic?Resonance?Effect?in?Signal?Detection:?Part?I-Fixed?Detectors[J].?IEEE?Transactions?on?Signal?Processing,?2007,?55(7):3172.
[5]?CHEN?H,?VARSHNEY?P?K.?Theory?of?the?Stochastic?Resonance?Effect?in?Signal?Detection-Part?II:?Variable?Detectors[J].?IEEE?Transactions?on?Signal?Processing,?2008,?56(10):5031.
[6]?MONIFI?F,?ZHANG?J,?AHIN?Kaya?zdemir,?et?al.?Optomechanically?Induced?Stochastic?Resonance?and?Chaos?Transfer?Between?Optical?Fields[J].?Nature?Photonics,?2016,?10(6):399.
[7]?LU?S,?HE?Q,?KONG?F.?Stochastic?Resonance?with?Woods-Saxon?Potential?for?Rolling?Element?Bearing?Fault?Diagnosis[J].?Mechanical?Systems?&?Signal?Processing,?2014,?45(2):488.
[8]?冷永剛,?田祥友.?一階線性系統(tǒng)隨機(jī)共振在轉(zhuǎn)子軸故障診斷中的應(yīng)用研究[J].?振動(dòng)與沖擊,?2014,?33(17):1.
LENG?Yonggang,?TIAN?Xiangyou.?Application?of?First-order?Linear?System?Stochastic?Resonance?in?Rotor?Shaft?Fault?Diagnosis?[J].?Vibration?and?Shock,?2014,?33?(17):?1.
[9]?TAN?J,?CHEN?X,?WANG?J,?et?al.?Study?of?Frequency-shifted?and?Re-scaling?Stochastic?Resonance?and?Its?Application?to?Fault?Diagnosis[J].?Mechanical?Systems?&?Signal?Processing,?2009,?23(3):811.
[10]MBA?C?U,?MARCHESIELLO?S,?FASANA?A,?et?al.?On?the?Use?of?Stochastic?Resonance?for?Fault?Detection?in?Spur?Gearboxes[J].?Diagnostyka,?2017,?18(3):3.
[11]KRAUSS?P,?METZNER?C,?SCHILLING?A,?et?al.?Adaptive?Stochastic?Resonance?for?Unknown?and?Variable?Input?Signals[J].?Scientific?Reports,?2017,?7(1):2450.
[12]焦尚彬,?李鵬華,?張青,等.?采用知識(shí)的粒子群算法的多頻微弱信號(hào)自適應(yīng)隨機(jī)共振檢測(cè)方法[J].?機(jī)械工程學(xué)報(bào),?2014,?50(12):1.
JIAO?Shangbin,?LI?Penghua,?ZHANG?Qing,?et?al.?Multi-frequency?Weak?Signal?Aaptive?Stochastic?Resonance?Detection?Method?Using?Knowledge?Particle?Swarm?Optimization?[J].?Journal?of?Mechanical?Engineering,?2014,?50?(12):?1.
[13]崔偉成,?李偉,?孟凡磊,等.?基于果蠅優(yōu)化算法的自適應(yīng)隨機(jī)共振軸承故障信號(hào)檢測(cè)方法[J].?振動(dòng)與沖擊,?2016,?35(10):96.
CUI?Weicheng,?LI?Wei,?MENG?Fanlei,?et?al.?Adaptive?Stochastic?Resonance?Bearing?Fault?Signal?Detection?Method?Based?on?Fruit?Fly?Optimization?Algorithm?[J].?Vibration?and?Shock,?2016,?35?(10):?96.
[14]DEY?S,?BHATTACHARYYA?S,?MAULIK?U.?Quantum?Inspired?Genetic?Algorithm?and?Particle?Swarm?Optimization?Using?Chaotic?Map?Model?Based?Interference?for?Gray?Level?Image?Thresholding[J].?Swarm?&?Evolutionary?Computation,?2014,?15:38.
[15]XU?K?J,?REN?S,?QIN?H?Q,?et?al.?Rolling?Bearing?Fault?Diagnosis?Based?on?Quantum?Genetic?Algorithm?and?Spectral?Kurtosis[J].?Zhendong?Yu?Chongji/journal?of?Vibration?&?Shock,?2015,?34(11):105.
(編輯:溫澤宇)